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Abstract
The effect of grazing on the abundance, composition, and methane (CH4) uptake of methanotrophs in grasslands has
been well documented in the past few decades, but the dominant communities of active methanotrophs responsible
for CH4 oxidation activity in grazed soils are still poorly understood. In this study, we characterized the metabol-
ically active, aerobic methanotrophs in grasslands with three different levels of grazing (light, medium, and heavy)
by combining DNA-stable isotope probing (SIP) and quantitative PCR (qPCR) for methane monooxygenase (pmoA)
gene– and 16S rRNA gene–based amplicon sequencing. The CH4 oxidation potential was as low as 0.51 μmol g dry
weight−1 day−1 in the ungrazed control, while it decreased as grazing intensity increased in grazed fields, ranging
from 2.25 μmol g dry weight−1 day−1 in light grazed fields to 1.59 in heavily grazed fields. Increased CH4 oxidation
activity was paralleled by twofold increases in abundance of pmoA genes and relative abundance of methanotroph-
affiliated 16S rRNA genes in the total microbial community in grazed soils. SIP and sequencing revealed that the
genera Methylobacter and Methylosarcina (type I; Gammaproteobacteria) and Methylocystis (type II;
Alphaproteobacteria) were active methanotrophs responsible for CH4 oxidation in grazed soils. Light and interme-
diate grazing stimulated the growth and activity of methanotrophs, while heavy grazing decreased the abundance and
diversity of the active methanotrophs in the typical steppe. Redundancy and correlation analysis further indicated that
the variation of bulk density and soil C and N induced by grazing determined the abundance, diversity of active
methanotrophs, and methane oxidation activity in the long-term grazed grassland soil.
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Introduction

Methane (CH4) is the second most important anthropogenic
greenhouse gas and is about 28 times more efficient at absorb-
ing infrared radiation than CO2 (Stocker et al. 2013). Methane
emissions can be attenuated by aerobic methane-oxidizing
bacteria known as methanotrophs. These bacteria have the
ability to utilize methane as their source of C and energy.
Methanotrophs can act either as a bio-filter in wetland agri-
cultural soils (paddy field) or as a methane sink in well-aerated
soils (Bridgham et al. 2013; Fan et al. 2019a, b; Kolb 2009;
Wei et al. 2019). Although methane can also be oxidized an-
aerobically by microbes using nitrite, nitrate, ferric iron, and
sulfate as electron acceptors, methanotrophs are ubiquitous in
nature and represent the only oxic biogenic sink for the green-
house gas methane (Fan et al. 2019b; Hanson and Hanson
1996; Shen et al. 2019; Trotsenko and Murrell 2008).
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Historically, aerobic methanotrophs have been classified as
types I, II, and X, based on physiological, biochemical, and
phenotypical characteristics (Veraart et al. 2015). Nowadays,
they are preferentially classified based on phylogeny, either
belonging to the classes ofGammaproteobacteria (referred to
as type I or X methanotrophs), Alphaproteobacteria (referred
to as type II methanotrophs), or to the phyla Verrucomicrobia
(referred to as type III methanotrophs) and NC10 (Knief 2015;
Stein et al. 2012). More specifically, type I methanotrophs
belong to the Methylococcaceae (type Ia and type Ib) and
Methylothermaceae (type Ic) families, while type II
methanotrophs are divided into type IIa (Methylocystaceae)
and type IIb (Beijerinckiaceae) (Lüke and Frenzel 2011).
Converting CH4 to methanol is the key step in the CH4 oxi-
dation pathway, which is catalyzed by the enzyme methane
monooxygenase (Hanson and Hanson 1996). The pmoA gene
encodes the β-subunit of the particulate methane
monooxygenase enzyme (pMMO) and is the most commonly
used functional marker for identifying methanotrophs in envi-
ronmental samples (Dumont 2014).

Grasslands are one of the largest terrestrial ecosystems in
the world, covering approximately 20–40% of the earth’s sur-
face and accounting for up to 40% of the total land area in
China (Nan 2005). Grassland soils are one of the largest ter-
restrial methane sinks with the capacity for methane oxidation
(Pachauri et al. 2014). As the most popular management of
grasslands, animal grazing may lead to different soil physical
conditions (e.g., bulk density and aeration status) and chemi-
cal properties (e.g., pH and organic matter content) (Li et al.
2008; Steffens et al. 2008). Soil bulk density and moisture are
considered to be critical factors for CH4 oxidation activity in
soil (Serrano-Silva et al. 2014). Animal grazing alters
methanotroph composition and methane uptake activities by
reducing soil water content and soil aeration through herbage
removing and tramping, respectively (Leriche et al. 2001;
Zhou et al. 2008). Heavy grazing has been reported to signif-
icantly reduce annual CH4 uptake, while light-to-moderate
grazing has been shown to have either a considerable positive
impact on CH4 uptake or to not significantly change CH4

uptake (Chen et al. 2011; Ma et al. 2018). Previous studies
either measured the abundance and/or composition of
methanotroph in grassland soils or try to link CH4 uptake with
the abundance of the pmoA gene. However, mere presence of
pmoA genes under in situ soil conditions may not necessarily
reflect the functional activity of CH4 oxidation (Nannipieri
et al. 2019). To our knowledge, there are little studies that link
CH4 oxidation with functional active methanotrophs in grazed
grassland soils.

The objective of this study was to obtain information on the
presence of aerobic methanotrophs affected by grazing gradi-
ents in the field and to identify the active microorganisms
responsible for CH4 oxidation in a typical steppe grazed soils.
We applied quantitative PCR (qPCR) of the pmoA gene and

Miseq sequencing coupled with DNA-based stable isotope
probing (SIP) to study the active methanotroph communities
from field soils. Based on previous studies, we hypothesized
that different levels of grazing would alter the abundance and
communities of activemethanotrophs and change the methane
oxidation activity.

Materials and methods

Setup of the experiment

Four different stocking rates were established in 2005, with
zero, three, nine, and fifteen sheep per two hectares, at the
Inner Mongolia Grassland Ecosystem Research Station
(IMGERS, 43° 37′ N, 116° 43′ E) on the Xilingol steppe of
the Xilin River basin. The dominant plant species in the study
area is Leymus chinensis with some Stipa grandis and
Cleistogenes squarrosa. The four stocking rates were classi-
fied as ungrazed control (CK), light grazing (G1), moderate
grazing (G2), and heavy grazing (G3). Each year, sheep are in
the field from June to September (~ 95 days), in accordance
with the local summer grazing season. The different stocking
rate treatments were arranged in a randomized block design
with three replicates separated by fences, and the plot size for
each block was 2 ha. Composite soil samples of each replicate
were collected from the upper 10-cm layer from 5 random
locations using a 5 cm in diameter soil auger in August 2015
and transported to the laboratory with a cold chain. After pass-
ing through a 2-mm sieve, soil samples of each replicate were
separated into three subsamples for DNA extraction, physico-
chemical property analysis, and SIP incubation experiments,
respectively. Soil physicochemical properties were deter-
mined according to the protocols of the Handbook of Soil
Analysis (Pansu and Gautheyrou 2007). The soil type is dark
chestnut (calcic Chernozem according to the ISSS Working
Group RB (1998)).

Microcosm incubations for SIP and CH4 oxidation poten-
tial were conducted in sterile 120-mL glass serum vials in
triplicate, containing 10 g (dry weight) of soils, and sealed
with butyl rubber stoppers. Each microcosmwas injected with
either 13CH4 (99 atom % 13C, Sigma-Aldrich, USA) or CH4

(99.5% pure, as control) to a final concentration of 8% (v/v) in
the headspace and incubated at 25 °C in dark conditions for
28 days. CH4 oxidation potential was assessed from the zero-
order decrease in CH4 concentration in the headspace of the
serum vials within 12 h and measured with gas chromatogra-
phy (Shimadzu GC12-A, Japan) (Kightley et al. 1995). After
more than 90% of the CH4 was consumed, the headspace was
flushed with pressurized synthetic air (20% O2, 80% N2) for
1 min to maintain oxic conditions and, after that, the labelled
or unlabelled CH4 was renewed. The atmosphere of the mi-
crocosms was renewed three times with pressurized synthetic
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air and labelled or unlabelled CH4 during the incubation peri-
od. Destructive sampling was performed in triplicate for fur-
ther soil analysis after incubation of SIP microcosms for
28 days.

Nucleic acid extraction and SIP fractionation

DNA was carefully extracted from 0.5 g of soil using a
FastDNA SPIN kit for soil (MP Biomedicals; Solon, OH,
USA) according to the manufacturer’s instructions. Negative
control without soil was not tested as this study focuses on the
active methanotrophs which were labelled with 13C
(Vestergaard et al. 2017). The concentrations and quality of
DNAwere estimated by a Nanodrop®ND-2000 UV-Vis spec-
trophotometer (NanoDrop Technologies, Wilmington, DE,
USA) and gel electrophoresis.

Density gradient centrifugation was performed on bulk
DNA extracted from the 13CH4 and CH4 treatments as de-
scribed by Liu et al. (2019a) and Zhang et al. (2019), with a
minor modification in scale: 2.5 μg of DNAwere mixed with
gradient buffer/CsCl solution in a 5.1-mL Beckman ultracen-
trifuge tube and DNAwas fractionated into 14 equal fractions
after centrifuged at 177,000gav for 44 h at 20 °C in a Vti65.2
vertical rotor (Beckman Coulter, Palo Alto, CA, USA) (Jia
et al. 2019). The fractionated DNAwas purified and dissolved
in 30 μL of TE buffer.

Quantitative PCR of the pmoA genes

Quantitative PCR analysis of the pmoA gene in bulk DNA and
in eachDNA gradient fractionwas performed to determine the
growth and efficiency of 13C incorporation into the genomic
DNA of methanotroph communities, respectively. The primer
pair A189f and mb661r (Costello and Lidstrom 1999; Holmes
et al. 1995) was used for the qPCR of the pmoA gene as
described previously (Zheng et al. 2014). qPCR runs were
carried out in a LightCycler® 480II (Roche, Germany).
Efficiencies of 89–105% were obtained for all gene amplifi-
cations, with R2 values ranging between 0.992 and 0.999.

MiSeq sequencing and phylogenetic analysis

Methanotroph-affiliated 16S rRNA gene was amplified in
both 13CH4 and CH4-control microcosms in bulk DNA and
in heavy fractions of each gradient with standard PCR condi-
tions and quantified DNA as suggested (Schöler et al. 2017).
Methanotroph-affiliated 16S rRNA libraries were constructed
and sequenced using an Illumina® MiSeq sequencer
(Illumina, San Diego, CA, USA) by Majorbio Bio-pharm
Technology Co., Ltd. (Shanghai, China) with a universal
515F-907R primer assay as reported previously (Daebeler
et al. 2014; Zheng et al. 2014). Raw fastq files were quality-
filtered by Trimmomatic and merged by FLASH with the

following criteria: (i) The reads were truncated at any site
receiving an average quality score < 20 over a 50-bp sliding
window. (ii) Sequences with overlap being longer than 10 bp
were merged according to their overlap with mismatch no
more than 2 bp. (iii) Sequences of each sample were separated
according to barcodes (exactly matching) and primers
(allowing 2 nucleotide mismatching), and reads containing
ambiguous bases were removed. We obtained a total of
1,809,594 high-quality sequences with an average of 37,940
for each sample. Rarefying may bring out some problems but
is still a popular method in the study of microbial ecology
(Delgado-Baquerizo et al. 2018). To avoid potential bias
caused by sequencing depth, all sequence data were rarefied
to 17,454 sequences per sample for the downstream analyses.
Operational taxonomic units (OTUs) were clustered with 97%
similarity cutoff using UPARSE (version 7.1 http://drive5.
com/uparse/) with a novel “greedy” algorithm that performs
chimera filtering and OTU clustering simultaneously. The
taxonomy of each 16S rRNA gene sequence was analyzed
by the RDP Classifier algorithm (http://rdp.cme.msu.edu/)
against the Silva (SSU123) 16S rRNA database using a con-
fidence threshold of 97%.

Distribution of the methanotroph communities in situ and
in the incubation experiment among different grazing intensi-
ties was evaluated by principal component analysis (PCA) in
R using the vegan package. Redundancy analysis (RDA) was
also performed to identify the abiotic factors (bulk density,
total C, Olsen P, and NO3

−-N) that are most important in
shaping activemethanotroph communities in the grazed grass-
land soils. The neighbor-joining tree was constructed by
MEGA 7 with 1000-fold bootstrap support (Kumar et al.
2016).

Statistical analysis and sequencing data deposition

Significant differences of CH4 oxidation potential, pmoA, and
methanotroph-affiliated 16S rRNA genes relative abundance
among different treatments were assessed by one-way analy-
sis of variance (ANOVA) followed by Tukey’s post hoc test.
All analyses were conducted by SPSS version 20 (IBM Co.,
Armonk, NY, USA).

The reads for the 16S rRNA genes of the in situ and incu-
bated soil samples were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) under accession number PRJNA432864.

Results

Soil physicochemical properties

The general physicochemical characteristics for the soils from
different stocking rates (no grazing (CK), light grazing (G1),
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moderate grazing (G2), and heavy grazing (G3)) are summa-
rized in Table 1. Soil pH was significantly lower in the G2
(6.89) soil compared with other grazed soils (G1: 8.12; G3:
7.69) and the ungrazed control (CK: 7.62). Soil bulk density
showed a significant positive relationship with increasing
stocking rates (r = 0.96, p < 0.001). The contents of total soil
C and nutrients, including SOM, total C, total N, Olsen P, and
K, were highest in the G1 soils compared with other samples.
Grazing led to significantly less exchangeable NH4

+-N in the
grazed soils of G1, G2, and G3, compared with the ungrazed
control.

Abundance and diversity of methanotrophs in situ

The abundance of methanotrophs was estimated in soil sam-
ples in situ by qPCR targeting the pmoA gene (Fig. 1a). The
results showed that pmoA gene abundance ranged from
7.74 × 105 ± 2.13 × 104 copies g−1 soil in G1 soil to 6.59 ×
105 ± 0.95 × 105 copies g−1 soil in G3 soil. The abundance
of pmoA gene increased with increasing grazing intensities.
The light grazing (G1) had a significantly lower abundance of
the pmoA gene compared with the ungrazed control (CK).

PCA showed that over 67% methanotroph variations
were explained by the first two axes, with PC1 and PC2
explaining 48.9% and 17.7% of the total variance, re-
spectively (Fig. 1b).

Methane oxidation potential and abundance
of methanotrophs

The CH4 oxidation potential under a headspace of 8%
(v/v) CH4 concentration ranged from 1.59 ± 0.07 to
2.25 ± 0.07 μmol g dry weight−1 day−1 for the grazed
soils (Fig. 2). No significant differences in the CH4

oxidation potential were observed between 13CH4 la-
belled and CH4 control microcosms. The CH4 oxidation
potential was as low as 0.51 ± 0.05 μmol g dry weight−1

day−1 in the ungrazed control, which was significantly
lower than the grazed soils. Compared with the light
and intermediate grazing, the heavy grazing significantly
decreased the CH4 oxidation potential.

The community size of methane-oxidizing bacteria
was not significantly different for the ungrazed control
after 28 days of incubation (Fig. 3a). The copy number
of pmoA genes increased significantly from 1.38 × 107 ±
3.21 × 105 at day 0 to 3.39 × 107 ± 0.5 × 106 in micro-
cosms of the G3 soil after 28 days of incubation.
Significantly higher abundances of the pmoA gene were
observed in the G1 and G2 soils, representing 12- and
6-fold increases, respectively (Fig. 3a). Similar results
were observed from the relat ive abundance of
methanotrophs reads to total 16S rRNA reads by
MiSeq amplicon sequencing (Fig. 3b). Methanotrophs
reads showed a significant increase after 28 days of
incubation in the grazed soils but not in the ungrazed
control. Correlation analysis showed a strong correlation
between the potential CH4 oxidation rates and pmoA
quantities (r = 0.92, p < 0.01) during incubation, but not
with pmoA quantities in situ (r = − 0.517, p = 0.085).

Active methanotrophs in soils

The relative proportion of pmoA across CsCl gradients
was similar among the three soils despite the differences
in the intensity of grazing (Fig. 4a). The maximum rel-
ative proportion of pmoA was initially detected in the
l igh t f r ac t ions (a round a buoyan t dens i ty of
1.723 g mL−1) in the CH4 microcosms but shifted to
the heavy fractions (around a buoyant density of
1.745 g mL−1) in the 13CH4 microcosms after the 28-
day incubat ion (Fig . 4a) . This ind ica ted tha t
methanotrophs grew by assimilating CH4 during active
methane oxidation. By contrast, no significant shifts in
the relative proportion of pmoA were observed in the

Table 1 Physicochemical
properties of the grassland soils
used in this study

Soil properties CK G1 G2 G3

pH 7.62 ± 0.61a 8.12 ± 0.02a 6.89 ± 0.21b 7.69 ± 0.18a

Bulk density (g cm−3) 1.25 ± 0.01d 1.28 ± 0.01c 1.35 ± 0.01b 1.37 ± 0.01a

Moisture content (%) 20.09 ± 0.91a 21.72 ± 1.26a 17.78 ± 0.77b 16.90 ± 0.99b

SOM (g kg−1) 20.44 ± 1.83b 32.16 ± 1.68a 22.95 ± 2.20b 22.66 ± 1.67b

TN (g kg−1) 0.18 ± 0.02ab 0.23 ± 0.03a 0.17 ± 0.02b 0.16 ± 0.02b

TC (g kg−1) 1.94 ± 0.20b 2.43 ± 0.32a 1.69 ± 0.25b 1.70 ± 0.20b

Olsen P (mg kg−1) 2.22 ± 0.19b 2.70 ± 0.22a 2.22 ± 0.13b 2.03 ± 0.19b

K (mg kg−1) 321.3 ± 35.52c 652.1 ± 36.65a 488.9 ± 53.26b 342.9 ± 43.48c

NO3
−-N (mg kg−1) 7.92 ± 1.39a 9.45 ± 2.17a 5.39 ± 1.50a 7.12 ± 2.69a

Exchangeable NH4
+-N (mg kg−1) 1.87 ± 0.49a 1.03 ± 0.38b 1.10 ± 0.56b 1.12 ± 0.43b

SOM, soil organic matter; TC, total C; TN, total N; K, available K. Different letters within the same row denote
significant differences (p < 0.05) among soils using ANOVAwith Tukey’s post hoc test
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CH4 and 13CH4 incubations of the ungrazed control soil
(Fig. 4a). Miseq sequencing of methanotroph-affiliated
16S rRNA gene distributed across the CsCl gradient
also indicated the assimilation of CH4 in the three
grazed soils but not in the ungrazed control during the
active methane oxidation (Fig. 4b).

Phy logene t i c ana lys i s r evea l ed tha t ac t i ve
methanotrophs in the 13C-DNA from the three grazed
soils were most closely affiliated with Methylobacter
and Methylosarcina of type Ia and Methylocystis of type
II methanotrophs (Fig. 5; Supplementary fig. 1).
Methylosarcina was enriched in the heavy fractions in
grazed soils G1 and G2 after incubation, while
Methylocystis was only enriched in G1 soil (Fig. 5).

Correlating soil properties with active methanotroph
communities

Bulk density, total C, and Olsen P in combination with NO3
−-

N explained the highest percentage of the variance of active
methanotroph communities (Fig. 6). The soil bulk density and
NO3

−-N content were significantly correlated with the first
axis (explaining 77.3% of the total variance).

Correlation analysis showed that the soil bulk density was
negatively correlated with the increase of pmoA gene abun-
dance (r = − 0.767, p < 0.05) and methane oxidation potential
(r = − 0.782, p < 0.05) during the incubation in the grazed
grassland soils (Supplementary fig. 3). The ungrazed control
was excluded for the correlation analysis because of no

Fig. 2 CH4 oxidation potential in
different grazing soils with a CH4

concentration of 8% (v/v) in air.
Bars represent standard error of
triplicate samples. The different
letters above the columns indicate
a significant difference (p < 0.05)
based on the analysis of variance
with Tukey’s post hoc test
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Fig. 1 Abundance of pmoA gene (a) revealed by quantitative PCR and
principal component analysis (PCA) of methanotroph-affiliated 16S
rRNA reads (b) by MiSeq amplicon sequencing in grazed grassland soil

in situ. Bars represent standard error of triplicate samples. The different
letters above the columns indicate a significant difference (p < 0.05)
based on the analysis of variance with Tukey’s post hoc test
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detectable growth of methanotrophs and extremely low CH4

oxidation potential in the ungrazed control soil (Figs. 2 and 3).

Discussion

Effect of grazing on methanotroph community in situ

The abundance and communi ty compos i t ion of
methanotrophic bacteria were evaluated for three field sam-
ples all exhibiting various levels of grazing. The abundance of
a key gene in the methane oxidation pathway, the pmoA, was

used as a proxy for the population of methanotrophs in the
steppe. Compared with the ungrazed control, the abundance
of pmoA gene significantly decreased in G1 soil, while in-
creased in G3 soil (Fig. 1a). Abell et al. (2009) found that
the abundance of the predominant type I methanotrophs was
positively affected by long-term cattle grazing in an alpine
meadow soil. In contrast, no significant change of
methanotroph abundance with grazing was observed in an
alpine meadow (Zheng et al. 2012). On the other hand, graz-
ing was reported to impact the composition of the
methanotrophic community in a typical grassland, while no
impact was apparent in an alpine meadow (Zhou et al. 2008;

Fig. 4 Quantitative distribution of the pmoA gene based on qPCR across
the entire buoyant density gradient of the DNA fractions (a) and
percentage distribution of methanotroph-affiliated 16S rRNA reads by
MiSeq amplicon sequencing for the heavy DNA (fraction as 4–7) (b)

from soil microcosms incubated with 12CH4 or
13CH4 for 28 days. The

normalized data are the ratios of the gene copy number in each DNA
gradient to the maximum quantities from each treatment

Fig. 3 Abundances of pmoA gene by quantitative PCR (a) and relative
abundance of methanotrophic reads to total 16S rRNA gene reads by
MiSeq amplicon sequencing (b) in soil microcosms over an incubation
period of 28 days. The error bars represent the standard errors of triplicate

microcosms. The different letters above the columns indicate a significant
difference (p < 0.05) based on the analysis of variance with Tukey’s post
hoc test
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Zheng et al. 2012). In this study, distribution ofmethanotrophs
among the soils analyzed shown by PCA indicated a signifi-
cant impact of grazing on the methanotroph communities
(Fig. 1b). In addition, we observed a significantly lower abun-
dance of methanotrophs in G1 soil, even though the concen-
trations of SOM and TN were significantly higher than others
(Table 1). Some factors like the availability of N, cross-feed-
ing, and other C sources, apart from the CH4 availability, have
also been proposed to regulate the population size of
methanotrophs in upland soils (Li et al. 2018; Malghani
et al. 2016). In this study, the pmoA abundance was strongly
correlated with SOM (r = − 0.758, p < 0.01), TN (r = − 0.584,
p < 0.05), and moisture content (r = − 0.611, p < 0.05). The
low abundance of methanotrophs in G1 soil was mainly as-
cribed to the competition between methanotrophs, which rep-
resent only a small fraction of the total bacterial community,
and heterotrophs, which was markedly stimulated by the

higher nutrients in G1 soil. These results indicate that long-
term grazing changes not only the soil properties but also the
abundance and composition of functional microbes like
methanotrophs in situ.

Effect of grazing on CH4 oxidation potential

The CH4 oxidation potential measurements are useful for
comparing the relative activities of the methanotroph popula-
tions within samples from different environmental conditions
(Kightley et al. 1995). The potential CH4 oxidation rates were
variable between the grassland samples, ranging from 0.51 ±
0.05 to 2.25 ± 0.07 μmol g−1 d−1 (Fig. 2). While the potential
CH4 oxidation rates were within ranges seen in wetlands (0.17
to 80 μmol CH4 g

−1 d−1) (Graef et al. 2011) and geothermal
environments (1.0–141 μmol CH4 g

−1 d−1) (Sharp et al. 2014)
with similar elevated CH4 concentrations (> 5% v/v), they
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Fig. 6 Redundancy analysis
(RDA) between soil physico-
chemical properties (bulk density,
total C, Olsen P, andNO3

−-N) and
active methanotrophs revealed by
MiSeq amplicon sequencing of
labelled DNA during the incuba-
tion in the grazed grassland soils
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were higher than those in upland soils (up to 74.64 nmol CH4

g−1 d−1) reported by Knief et al. (2003), and in grassland soils
(2.42 to 21.54 nmol CH4 g−1 d−1) reported by Kou et al.
(2017) with lower concentrations of CH4 (< 0.1% v/v). The
strong correlation (r = 0.92, p < 0.01) between the potential
CH4 oxidation rates and pmoA quantities suggests that there
are a constant activity and a consistent abundance of
methanotrophs throughout the 28-day incubation period. A
similar trend was observed from the relative abundance of
methanotroph reads to total 16S rRNA gene reads by MiSeq
amplicon sequencing (Fig. 3b), further proving the activity of
methanotrophs during incubation. However, the CH4 oxida-
tion potential was as low as 0.51 ± 0.05 μmol g−1 dry weight
day−1 in the ungrazed control. In agreeing with this, no growth
of methanotrophs was detected in the ungrazed control using
qPCR of pmoA genes and relative abundance of methanotroph
reads to total 16S rRNA gene reads by MiSeq amplicon se-
quencing (Fig. 3). Also, methanotrophs were not labelled by
13C-CH4 confirming our expectation of low CH4 oxidation
activity in the site and negligible growth of methanotrophs
(Fig. 4). It is well known that N fertilizers inhibit CH4 oxida-
tion by ammonia, which competes with CH4 for the methane
monooxygenases in methanotrophs (Bédard and Knowles
1989). Even though the affinity of MMO for CH4 is 600–
1300-fold higher than its affinity for ammonia, high concen-
trations of ammonium (40 mg NH4

+-N kg−1) are known to
substantially inhibit CH4 oxidation (Alam and Jia 2012).
Grazing exclusion has been reported to increase plant bio-
mass, root biomass, root exudate, and available soil N
(Wang et al. 2018). The concentrations of exchangeable
NH4

+-Nwere significantly higher in the ungrazed control than
the grazed soils, which could partly explain the low CH4 ox-
idation in the ungrazed control soil. Ho et al. (2019) suggest
that “high-affinity” methanotrophs predominate CH4 oxida-
tion in native upland soils, while canonical methanotrophs
predominate in the anthropogenic-impacted upland soils.
Another possible explanation for the low CH4 oxidation po-
tential in the ungrazed control could be due to the
methanotrophs in this site predominantly composed of the
putative “high-affinity” methanotrophs. Moreover, no corre-
lation (r = − 0.517, p = 0.085) between the potential CH4 ox-
idation rates and pmoA abundance in situ was observed, fur-
ther proving that the mere presence of pmoA genes under in
situ soil conditions may not necessarily reflect the functional
activity of CH4 oxidation (Nannipieri et al. 2019).

It is widely accepted that heavy grazing would cause a
decline in CH4 oxidation rate (Chen et al. 2011). Previous
studies have indicated that an increase in stocking rate induced
a reduction in CH4 uptake (Holst et al. 2008; Wang et al.
2012). Simulating the effects of grazing management with
the PaSim model, Soussana et al. (2004) have suggested that
a decline in the greenhouse gas sink activity of managed
steppes occurs with increased stocking intensity. In this study,

heavy grazing significantly decreased the potential CH4 oxi-
dation rate in G3 soil compared with light and intermediate
grazing in G1 and G2 soils (Fig. 2). Heavy grazing could
significantly increase soil bulk density and directly affect the
air permeability incurred from sheep trampling (Table 1) (Ball
et al. 2012; Pan et al. 2018a). Furthermore, heavy grazing
would decrease aboveground plant and litter biomass and con-
sequently increase water stress, potentially inhibiting the ac-
tivities of methanotrophs indirectly (Chen et al. 2011; Cui
et al. 2018; Liu et al. 2007). Heavy grazing has been previ-
ously reported to inhibit the growth of ammonia-oxidizing
bacteria, reducing the nitrification activity in grazed grassland
soils (Pan et al. 2018b). In contrast to these negative impacts
on plants, soil properties, and microbes by heavy grazing,
light grazing could lead to a greater diversity of plant species,
and the dense fibrous rooting systems of plants would benefit
soil organic matter formation and soil C sequestration (Reeder
and Schuman 2002). N returned in animal excreta and/or
modification of N uptake and C exudation by frequently
defoliated plants could also promote soil fertility and enhance
microbial activities (Le Roux et al. 2003; Luo et al. 2019; Pan
et al. 2018a; Zhou et al. 2010; Zhu et al. 2018). This study
showed that grazing alters soil functional traits with light and
intermediate grazing stimulating the growth and activity of
methanotrophs, while heavy grazing significantly decreased
the abundance of methanotrophs and the methane oxidation
potential.

Active methanotrophs in grazed soils

Overall, the methanotroph communities present before and
after incubation were similar (Supplementary fig. 1).
Communities of the active 13C-labelled methanotrophs were
more diverse in the light and intermediate grazed soils than in
the heavily grazed soil (Fig. 5). The active methanotroph com-
munity included members of Methylobacter and
Methylosarcina (type I methanotrophs) and Methylocystis
(type II methanotrophs) (Supplementary fig. 2). Most of the
active methanotrophs (> 90%) were closely related to the type
I methanotroph,Methylobacter luteus (Fig. 5), a species orig-
inally isolated from a sewage (Bowman et al. 1993;
Romanovskaia et al. 1978). Methylobacter-related type I
methanotrophs have been reported to be responsible for the
majority of methane oxidation in a long-term grazing site in
Austria and also in six grazed grassland soils across New
Zealand (Abell et al. 2009; Di et al. 2010). The mean annual
temperature of 0.3 °C and maximum monthly mean tempera-
tures of 19 °C in the studied field favored the growth of
Methylobacter- re la ted type I methanotrophs , as
Methylobacter species have been reported to prefer cold envi-
ronments such as the active layer of Arctic permafrost
(Liebner et al. 2009), high Arctic wetlands (Graef et al.
2011), lake sediments (He et al. 2012), plateau wetlands
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(Deng and Dumont 2016), and rice fields from cold regions
(Sultana et al. 2019). No active methanotrophs in this study
were affiliated with the proposed atmospheric methane-
oxidizing lineages USCα and USCγ (Knief et al. 2003).
Moreover, Methylosarcina of type I methanotrophs, which
have shown a transient ability to oxidize methane at atmo-
spheric levels and also possible support “high-affinity” meth-
ane oxidation activity in paddy soil (Cai et al. 2016), were
detected during CH4 oxidation in G1 and G2 soils. Recently,
canonical methanotrophs have been suggested to predominate
CH4 oxidation as high-affinity methane-oxidizers in
anthropogenically-impacted upland soils (Ho et al. 2019).
Furthermore, Methylocystis of type II methanotrophs were
only detected in the G1 soil. The significantly higher content
of SOM in the G1 soil might partly explain the result, as some
Methylocystis species are known to oxidize and grow on ace-
tate and ethanol in addition to methane (Belova et al. 2011; Im
et al. 2011). Another reason for it should be the significantly
higher Olsen P in the G1 soil, because the abundance of type II
methanotrophs are positively related to phosphorus and adopt
a competitor-ruderal lifestyle (Ho et al. 2013). It thus suggests
that the diverse activemethanotrophs and higher abundance of
pmoA genes in the light and intermediate grazed soils enabled
the significantly higher CH4 oxidation potential. These results
indicate that light and intermediate grazing stimulate the
growth and activity of diverse methanotrophs, while heavy
grazing significantly decreases the abundance and diversity
of active methanotrophs in this typical steppe.

Methanotroph activity

Animal grazing alters soil water and energy balance by reduc-
ing vegetation, increasing soil compaction, or reducing soil
aeration by trampling and also soil chemical properties (e.g.,
pH and organic matter content), which would subsequently
induce variation of microbial communities and activity (Li
et al. 2019; Liu et al. 2019b; Lu et al. 2019; Pan et al.
2018c; Saggar et al. 2004; Steffens et al. 2008; Yu et al.
2018). Numerous studies have estimated the impact of grazing
on either methanotroph communities or methanotroph activity
(CH4 uptake), even though the abundance and composition of
methanotrophs may not necessarily reflect their activity (Abell
et al. 2009; Savian et al. 2014; Van den Pol-van Dasselaar
et al. 1999; Zheng et al. 2012). In this study, DNA-SIP was
used to link the identity and function of methanotrophs in
grazed grassland soils. RDA showed that soil bulk density
and NO3

−-Nwere significantly correlatedwith the distribution
of active methanotrophs in grazed grassland soils (Fig. 6).
Methane diffusion, which is determined by the soil bulk den-
sity and moisture, is considered the limiting factor for CH4

oxidation in soil (Serrano-Silva et al. 2014; Walkiewicz et al.
2018). The single quantification of target genes may not nec-
essarily reflect their functional activity (Nannipieri et al.

2019). In this study, no correlation (r = − 0.517, p = 0.085)
between the potential CH4 oxidation rates and pmoA abun-
dance in situ was observed. We linked the potential CH4 ox-
idation rates with the increase of pmoA gene abundance dur-
ing the incubation. The significant correlation between the soil
bulk density and the increases of pmoA gene abundance (r = −
0.767, p < 0.05), and also methane oxidation potential (r = −
0.782, p < 0.05) during the incubation in the grazed grassland
soils further indicated the important impact of bulk density on
the methanotroph communities and functional activity
(Supplementary fig. 3). These results indicate that grazing
induced variation of bulk density and soil C and N altering
the abundance and communities of active methanotrophs and
subsequently changes the CH4 oxidation activity.

SIP studies often require in vitro incubations and only par-
tially reflect conditions in situ. This method may distort the
relative abundance of organisms active in a particular process
(Chen and Murrell 2010; McDonald et al. 2005). Fairly high
CH4 concentrations, which probably do not reflect on in situ
methane levels (typically atmospheric methane levels), were
selected in our incubations in order to ensure the labelling of
active microbial communities during the CH4 oxidation. The
often occurring cross-feeding effect for SIP experiments is not
a problem in this study because methanotrophs prefer to uti-
lize CH4 as their source of C and energy even with the exis-
tence of microbial metabolites or microbial residues from la-
belled methanotrophs (Bao et al. 2019). No significant chang-
es in the methanotroph communities before and after incuba-
tion were found in this study, which indicate that SIP results
might largely reflect the functional process of methane oxida-
tion under field conditions (Supplementary fig. 1). The lack of
labelled methanotrophs in the ungrazed control could mainly
be due to little microbial growth during incubation, as DNA-
SIP relies on cell proliferation. The lowest CH4 oxidation
potential rate observed in the ungrazed control further sup-
ports the negligible activity of methanotrophs, even though
the activity might have resulted from the activation of dormant
microbial populations rather than by their growth (Ho et al.
2015). It is worth mentioning that phospholipid fatty acid
analysis (PLFA)–based SIP could ensure labelling
methanotrophs at low methane concentrations, however,
which would enable the detection of microbial groups but
not on microbial genera or species as DNA-SIP (Ho et al.
2019).

Conclusions

Overall, this study showed that high abundance and diversity
of methanotroph communities under in situ soil conditions
may not necessarily reflect high functional activity of CH4

oxidation. Light and intermediate grazing stimulated the
growth and activity of active methanotrophs, while heavy
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grazing significantly decreased the abundance and diversity of
active methanotrophs. Phylogenetic analysis of the 13C-
enriched DNA fractions from the DNA-SIP microcosms re-
vealed that the active methanotrophs were dominated by the
genus Methylobacter of type I. This study also showed that
soil physicochemical properties, bulk density, and soil C and
N are key factors determining the abundance and composition
of active methanotrophs and subsequently the CH4 oxidation
activity in the long-term grazed grassland soil.
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