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Manure amendment reduced plant uptake and enhanced
rhizodegradation of 2,2′,4, 4′-tetrabrominated diphenyl ether in soil
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Abstract
To test whether manure amendment in soil reduces plant uptake of persistent organic pollutants, carrot (Daucus carota L.) was
used as a model plant and 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) was selected as a model persistent organic pollutant
to conduct a pot experiment with contaminated soil amended by composted pig manure. The results showed that the concentra-
tion and bioconcentration factors (BCFs) of BDE-47 in the edible part of carrot significantly decreased from 229.7 ± 28.2 to 43.4
± 20.4 ng g−1 and from 1.86 ± 0.5 to 0.15 ± 0.03, respectively, with increasing composted pig manure dose from 0 to 4%. Organic
matter (OM) derived from composted pig manure played a dominant role in reducing persistent organic pollutant bioavailability
in soil. Composted pig manure amendment and carrot cultivation jointly altered the bacterial community composition in soil,
especially the rhizosphere. Rhizodegradation of BDE-47 was enhanced from 8.6 to 28.5%with increasing composted pig manure
dose from 0 to 4%, corresponding to increased soil microbe diversity and polybrominated diphenyl ether-degrading bacteria
(Sphingomonas, etc.) abundance in the rhizosphere. This study is the first, to the best of our knowledge, to provide an effective
agronomic strategy of manure amendment to reduce plant uptake and simultaneously enhance rhizodegradation of persistent
organic pollutants in soil, and thus potentially reduce human health risks through dietary intake.
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Introduction

Polybrominated diphenyl ethers (PBDEs) are a group of
semi-volatile, persistent, and bioaccumulative contaminants.
Their toxicity and tendency for global transport have led to
international bans or restrictions on their use (Ockenden et al.

2003) as illustrated by the inclusion of some polybrominated
diphenyl ethers as persistent organic pollutants under the
Stockholm Convention (Wang et al. 2014). As an additive-
type flame retardant, polybrominated diphenyl ethers could
be released into the surroundings during their production,
usage, and disposal, and then be spread in the environment
through atmospheric dry and wet deposition, and farm appli-
cation of sewage sludge (Hites 2004; Li et al. 2014b;
Robinson 2009), and therefore have frequently been detected
in the environment (Elliott et al. 2015; Guo et al. 2007; Peng
et al. 2007; Vrkoslavová et al. 2010; Wang et al. 2011c; Yu et
al. 2015; Zhang et al. 2013a; Zhu et al. 2015). Soil has been
considered a major sink for organic pollutants due to its high
sorption capacity. E-waste disassembling and farm applica-
tion of sewage sludge may bring a number of organic pollut-
ants, including polybrominated diphenyl ethers, to soil (Li et
al. 2015). Polybrominated diphenyl ethers can be adsorbed in
soil, degraded by microorganisms, or taken up by plant
(Chow et al. 2015; Huang et al. 2010, 2011; Wang et al.
2015), further bio-accumulate through the food chain with
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potentially harmful effects to human health (Bocio et al.
2003; Hu et al. 2010; Mahmood et al. 2015; Vrkoslavová et
al. 2010). Toxicological studies have demonstrated that
polybrominated diphenyl ethers have endocrine-disrupting
properties and may cause liver and thyroid toxicity in humans
(Darnerud et al. 2005; Jiang et al. 2012). The lipophilicity and
ubiquitous presence of polybrominated diphenyl ethers may
also pose a threat to the health of aquatic or terrestrial eco-
system (Crosse et al. 2012; Zhang and Liu 2014). Meanwhile,
slightly contaminated soil are still in use to ensure agricultural
product supply due to cultivated land shortage (Chow et al.
2015; Zhang et al. 2013a). Due to the potential environmental
risk associated with accumulation of polybrominated
diphenyl ethers in plant-soil systems, feasible solutions for
inhibiting plant uptake of contaminants need to be carefully
considered in order to obtain safe agricultural products grown
in contaminated soils.

Manure is widely used in traditional agronomic practices as
fertilizer to improve crop quality and yield (e.g., production per
unit of agricultural land) by returning nutrients to the soil (Choi
et al. 2001; Zhang et al. 2018). Appropriate application of ma-
nure can develop a sustainable and productive agricultural sys-
tem owing to its improvement of edaphic properties, especially
soil organic matter (SOM) (Wen et al. 1992; Liu et al. 2010).
SOM is a key component for many biogeochemical processes
and a determining factor for the behavior of organic contami-
nants in soil ecosystems (Liu et al. 2012b). Application of
glomalin-related soil protein led to reduced SOM in soil, which
enhanced the availability of polycyclic aromatic hydrocarbons
(PAHs) (Gao et al. 2017). Thus, we hypothesized that applica-
tion of manure may increase SOM and thus reduce plant uptake
of contaminants in soil. Recently, in terms of reducing plant
uptake of persistent organic pollutants, biochar and cationic sur-
factant have been studied (Hurtado et al. 2016; Khan et al. 2013;
Lu and Zhu 2009; Song et al. 2016; Yu et al. 2009). Although
manure is more commonly used in agricultural production than
biochar and cationic surfactant, few studies have investigated
the effect of manure on plant uptake of polybrominated diphenyl
ethers. On the one hand, manure application is likely to increase
the content of SOM, which might enhance the adsorption of
polybrominated diphenyl ethers in soil and consequently reduce
uptake by plants. On the other hand, microbial activities play a
very important role in affecting the behavior of organic pollut-
ants in soils, such as degradation and formation of non-
extractable residues (Macleod and Semple 2003).
Polybrominated diphenyl ethers could be biodegraded by
Sphingomonas , Pseudomonas , Burkholderia , and
Rhodococcus under aerobic or anaerobic conditions (Liu et al.
2012a; Shi et al. 2013; Stiborova et al. 2015). Manure may
improve soil porosity and nutrient availability, resulting in im-
proved soil microbial biomass, soil enzyme activity, and soil
microbial diversity (Liu et al. 2010; Luo et al. 2009), which
might potentially lead to enhanced biodegradation of

polybrominated diphenyl ethers in soil. However, to the best
of our knowledge, there is no literature analyzing the effect of
manure on the biodegradation of polybrominated diphenyl
ethers in soil. Meanwhile, there is evidence supporting rhizo-
sphere effects on the degradation of persistent organic pollutants
(Lu et al. 2015; Song et al. 2016; Wang et al. 2011a; Zhao et al.
2017), but none specifically addressing the influence of manure
amendment on rhizodegradation of persistent organic pollutants.
Therefore, it is necessary to investigate the impact of manure on
the bioavailability and biodegradation of persistent organic pol-
lutants in plant-soil systems.

The present study tests the hypothesis that the application of
manure will increase the soil organic matter content and there-
fore increase the microbial activity to enhance the degradation
of organic pollutants in soil and reduce the uptake of pollutants
by plant. Therefore, a pot experiment was conducted where
BDE-47, a typical congener of polybrominated diphenyl ethers,
was selected as a model compound because of its high toxicity
and extensive occurrence in the soil environment due to expo-
sure, intense absorption in soil, or degradation of more highly
brominated polybrominated diphenyl ethers (Hakk et al. 2010;
Li et al. 2014b). Carrot (Daucus carota L.), a tuberous vegeta-
ble, was used as the model plant because the edible part is in
direct contact with the contaminated soil raising concerns over
contamination (Chow et al. 2015; Wang et al. 2011b). Soil was
amended with compost prepared from pig manure and it is used
as an agronomical practice since it is a nutrient source for plants
(Choi et al. 2001).

Materials and methods

Chemicals

Standards of BDE-47 (2, 2′, 4, 4′-tetrabrominated diphenyl
ether), 2, 4, 4′-tribrominated diphenyl ether (BDE-28), 2, 2′,
4-tribrominated diphenyl ether (BDE-17), 4, 4′-dibrominated
diphenyl ether (BDE-15), 4-monobrominated diphenyl ether
(BDE-4) were obtained fromAccuStandard Inc. (NewHaven,
Connecticut, USA). Themain physicochemical characteristics
of BDE-47 are: molecular formula, C12H6Br4O; formula
weight, 485.79; water solution, 94.7 μg/L; logKow, 6.39
(Darnerud et al. 2001). All solvents used (n-hexane and
acetone) were of HPLC grade and purchased from Merk
(Darmstadt, Hesse, Germany). Kieselguhr (0.074–0.15 mm)
was purchased from Sigma-Aladdin (Los Angeles, California,
USA). Florisil (0.15–0.3 mm) was purchased from TEDIA
(Fairfield, Ohio, USA). Anhydrous sodium sulfate, potassium
dihydrogen phosphate (KH2PO4), ammonium nitrate
(NH4NO3), potassium sulphate (K2SO4), silica gel (0.074–
0.15 mm), quartz sand, and concentrated sulfuric acid (analyt-
ical reagent grade) were purchased from Sinopharm chemical
reagent company (Nanjing, Jiangsu, China).
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Soil and composted manure preparation

A loamy soil without detectable polybrominated diphenyl ethers
was collected from suburbs of Nanjing, China, dried at ambient
temperatures (1.5 ± 0.3% of water content), ground, and passed
through a 2-mm nylon sieve. The basic physicochemical char-
acteristics of the soil (dry matter content) are: pH (H2O), 7.43;
total organic C, 4.16 g kg−1; total N, 0.48 g kg−1; total P,
0.57 g kg−1; total K, 19.19 g kg−1; CEC, 17.32 cmol kg−1; and
clay 32.8%, silt 56.8%, and sand 10.4%. Composted pigmanure
without detectable polybrominated diphenyl ethers was collect-
ed from suburbs of Yingtan, China. The basic physicochemical
characteristics of the composted pig manure are: pH (H2O), 8.7;
total organic C, 175.4 g kg−1; total N, 28.2 g kg−1; total P,
32.9 g kg−1; total K, 45.3 g kg−1.

Pot experiment

An aliquot of 1000 g soil was spiked with 100 mL, 4 mg L−1

BDE-47 dissolved in acetone and mixed thoroughly followed
by solvent volatilization under a fume hood for 24 h to prepare
BDE-47 spiked soil. An aliquot of 960 g spiked soil was
mixed homogeneously with 40 g un-spiked soil, 10 g
composted pig manure and 30 g un-spiked soil, 20 g
composted pig manure and 20 g un-spiked soil, and 40 g
composted pig manure, respectively, to give 0 (serve as the
control), 1%, 2%, and 4% composted pig manure (w/w)
amended and 384.5 ng g−1 BDE-47 contaminated soil with
three replicates each. Two layers of dense nylon mesh were
placed in the bottom of each porcelain pot to prevent soil
components from leeching. Each porcelain pot received a total
of 3000 g prepared soil. All soil received mineral nutrients at
rates of 100 mg P (KH2PO4), 300 mg N (NH4NO3), and
200 mg K (K2SO4) kg

−1 soil as base fertilizer in preparation
for plant cultivation. Pots of parallel treatments without
seeding (plant-free) were set up as blank control.

Seeds of carrot (Daucus carota L.) purchased from Ganxin
Seeds Company (Ganxin, Jiangxi, China) were sterilized in
5% H2O2 (w/w) solution for 30 min, washed with deionized
water thoroughly, and germinated on clean moist filter paper
in the dark at 20 °C. In each pot, approximately ten pre-
germinated seeds were sown, and 7 days after germination,
the seeds were thinned to three. All pots were positioned ran-
domly once every 3 days in the greenhouse. Deionized water
was added as required to maintain 30–35% of soil moisture
content, corresponding to 60–70% of water holding capacity.
The temperature in the greenhouse fluctuated between 25–
35 °C in the daytime and 15–25 °C in the nighttime. The
moisture in the greenhouse fluctuated between 50 and 75%.

After 90 days, carrots were harvested and separated into
aboveground tissue (stem and leaf) and root (edible part).
They were fully rinsed with deionized water to remove adher-
ing dust or soil, and then dried with filter paper. All carrot

samples were cut into small pieces and individually stored in
glass tubes at − 20 °C prior to the determination of BDE-47.

Soil samples were collected from each pot. Rhizosphere soil
was collected from the soil adhered tightly to roots and bulk soil
was collected from the residual soil (Cui and Yang 2011). In
detail, carrot roots were pulled from cultivated soil, shook con-
tinuously until the roots were free of large soil particles, then the
soil adhered tightly to the root was collected as the rhizosphere
soil. Aliquots of samples were stored at − 80 °C for microbial
analysis. The rests were ground, sieved with 0.25 mm nylon
sieve, and stored at − 20 °C prior to the determination of
polybrominated diphenyl ethers, soil properties.

Analysis of BDE-47 and its metabolites

Analysis of BDE-47 and its debrominated metabolites was
performed according to a previous study (Xiang et al. 2016)
with minor modification. Briefly, BDE-47 and its metabolites
were extracted from soil and plant samples by accelerate sol-
vent extraction (ASE200, Dionex, USA) using a mixture of n-
hexane and acetone (4:1, v/v). Afterwards, a purification pro-
cess was conducted using solid phase extraction (SPE) for
separation of interfering co-extracts. A sulfuric acid silica
gel SPE column was filled with 0.5 g anhydrous sodium sul-
fate then 1 g sulfuric acid silica gel and 1 g anhydrous sodium
sulfate to purify soil samples. A multi-layer Florisil/sulfuric
acid silica gel SPE column was filled, first with 0.5 g anhy-
drous sodium sulfate and then followed by 0.5 g Florisil, 0.5 g
sulfuric acid silica gel and 1 g anhydrous sodium sulfate to
purify plant samples. An Agilent 6890A gas chromatograph
(Agilent Technologies, USA) coupled with electron capture
detector (ECD) was used to quantify the amount of target
compounds. A DB-5 capillary column (30 m × 0.25 mm ×
0.25 μm, Agilent Technologies, USA) was used for the sepa-
ration of polybrominated diphenyl ethers. The detector tem-
perature was set at 298 °C. The injection was performed in the
splitless mode with 265 °C of injector temperature and 1-μL
injection volume.

Microbial diversity analysis

To evaluate bacterial community composition, samples from
the rhizosphere soil and bulk soil were analyzed using 16s
rRNA sequencing (Vestergaard et al. 2017; Schöler et al.
2017). Genomic DNA was extracted from 1 g soil using a
PowerSoil DNA Isolation Kit (MoBio Labs, Solana Beach,
CA, USA) following the manufacturer’s instruction. The
DNA concentration was quantified with a Nanodrop
Spectrophotometer (Thermo Scientific). For 16s rRNA anal-
ysis, the hypervariable V4-V5 region was amplified by poly-
merase chain reactions (PCRs) using the universal primer pair
515F (5′-GTGCCAGCMGCCGCGG-3′) and reverse primer
907R (5′-CCGTCAATTCMTTTRAGTT-3′) with unique
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12 nt barcode (Angenent et al. 2005). PCR amplification was
performed with a 25-μL mixtures, which contained 1× PCR
buffer, 1.5 mMMgCl2, each primer at 1.0 μMand 0.5 U of Ex
Taq (TaKaRa, Dalian, China), each deoxynucleoside triphos-
phate at 0.4 μM and 10 ng soil genomic DNA. Triplicate PCR
products were pooled for electrophoresis. The band with cor-
rect size was excised and then purified by TaKaRa MiniBEST
Agarose Gel DNA Extraction Kit 66 (TaKaRa, Dalian, China)
and also quantified by Nanodrop Spectrophotometer. The pu-
rified amplicons were pooled by equal molar amount from
each sample. The sequencing samples were conducted with
TruSeq DNA kit following manufacture’s instruction.

Processing of the raw sequences was performed using the
Quantitative Insights Into Microbial Ecology (QIIME) 1.9.0-
dev pipeline (Caporaso et al. 2010). The pair-end reads were
merged with FLASH (Magoč and Salzberg 2011). Reads with
ambiguous bases, improper primers, and quality score < 20
were discarded before clustering. The resultant high-quality
sequences were then clustered into operational taxonomic units
(OTUs) at 97% similarity using UPARSE algorithm, version
7.1 (http:// drive5/uparse/). Taxonomic classification of the rep-
resentative sequence from individual OTU was performed by
RDP classifier, version 2.2 (Wang et al. 2007). The downstream
analysis was performed in QIIME and R v3.2.1 (Dixon 2003):
(a) alpha diversity index expressed as Shannon index was cal-
culated; (b) heatmap analysis was performed using vegan pack-
age depending on vegdist and hclust function.

Quality control and statistics

To estimate BDE-47 recoveries in soil and carrot samples, a
recovery study was conducted by spiking 0.1 μg of BDE-47

to either 1 g of soil or 1 g of carrot sample (combined above-
ground tissue and root). The average recovery of triplicate
samples was 92.4 ± 1.8% in the soil samples and 99.1 ±
1.4% in the carrot samples. Together with each extraction
batch (12 samples), one procedure blank was carried out.
Data were analyzed using a one-way ANOVA (LSD) with a
significance level of p < 0.05. All statistical analyses were
performed using SPSS 16.0 for Windows (SPSS Inc., USA).

Results and discussion

Uptake of BDE-47 in carrot and dissipation of BDE-47
in soil

After 90 days of carrot planting, BDE-47 concentrations in
roots simultaneously decreased with increasing amount of
the amended composted pig manure in soil (Fig. 1a, p <
0.05). The 4% composted pig manure treatment was particu-
larly effective for reducing uptake of BDE-47 in roots with the
reduction of 81.1% compared to the control, due to a differ-
ence ascribed to higher amount of SOM than the control
(Table S1). Bioconcentration factor (BCF)—the quotient be-
tween the plant and soil concentrations—(Bizkarguenaga et
al. 2016; Song et al. 2010) of BDE-47 was calculated to fur-
ther assess the uptake of BDE-47 in the roots (Fig. 1b).
Bioconcentration factor values for carrot roots in the
composted pig manure treatments decreased from 1.86 ± 0.5
to 0.15 ± 0.03 with increasing dose of composted pig manure
(Fig. 1b, p < 0.05), indicating that composted pig manure
amendment reduced the uptake of BDE-47 in carrot root.
Similar result was reported by Bizkarguenaga et al. (2016)
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that lower bioconcentration factor values of polybrominated
diphenyl ethers were obtained from carrots grown in compost-
amended soils.

BDE-47 concentrations in aboveground carrot tissues
decreased with increasing amount of composted pig ma-
nure in soil compared with the control (Fig. 1a), indicating
that composted pig manure treatments inhibited the trans-
fer of BDE-47 to the aboveground tissues. Translocation
factor (TF)—the quotient between aboveground tissue and
root concentrations of xenobiotics—is often used to assess
the plant’s capability to accumulate and translocate xeno-
biotics (Lu et al. 2015; Wang et al. 2015). Translocation
factor values of BDE-47 ranged from 0.40 ± 0.05 to 0.45 ±
0.03 (Fig. 1b), which was consistent with Li’s study (Wang
et al. 2011b). No difference was observed between the
treatment’s translocation factor values, which were con-
firmed by a strong linear correlation between BDE-47 con-
centrations in the carrot roots and those in the aboveground
tissues (Fig. 2, R2 = 0.96, p < 0.001). It demonstrated that
accumulation of BDE-47 in aboveground carrot tissues
may result mainly from the root-to-aboveground transport
as it is reported that root uptake and translocation are the
main source of BDE-47 in shoots of radishes (Huang et al.
2010). Our results further support lowered human exposure
risks to soil contaminations in produce via manure amend-
ment by documenting the clear inhibition of BDE-47 ac-
cumulation in both above and below ground carrot tissues
with the addition of composted pig manure.

After 90 days of greenhouse cultivation, the BDE-47
concentrations in the composted pig manure amended soil
were significantly higher than in the control (Table 1),
which might be due to that composted pig manure amend-
ment facilitated adsorption and consequently inhibited the
dissipation of BDE-47 in soil. Compared to the plant-free

soil, the dissipation of BDE-47 in the bulk soil was en-
hanced by carrot cultivation (Table 1). The increased dis-
sipation of BDE-47 might be attributed to carrot uptake as
well as enhanced microbial degradation in majority soil
(Kim et al. 2007; Zhang et al. 2013b). However, carrot
uptake was not a dominant factor in the dissipation of
BDE-47 in the cultivated soil because the amount of
BDE-47 in whole carrot was less than 1% of the initial
BDE-47 amount in one pot (Table S3) based on mass
balance. Hence, microbial degradation was the main con-
tributor to the BDE-47 dissipation in majority of the cul-
tivated soil (Stiborova et al. 2015). BDE-47 dissipation
percentages in the rhizosphere soil were greater than in
the bulk soil (Table 1), indicating that the degradation of
polybrominated diphenyl ethers was enhanced by rhizo-
sphere microorganisms. This is congruent with previous
studies that have found that the degradat ion of
polybrominated diphenyl ethers could be enhanced in the
rhizosphere of mangrove and ryegrass (Chen et al. 2015;
Wang et al. 2011a). Compared to the bulk soil, the BDE-
47 dissipation percentages in the rhizosphere soil in-
creased by 8.6, 13.4, 20.9, and 28.5% for the control, 1,
2, and 4% composted pig manure treatments, respectively
(Table 1), suggesting that the rhizodegradation of BDE-47
could be enhanced by composted pig manure amendment.
The increased concentrations of degradation product: 2, 4,
4′-tribrominated diphenyl ether in rhizosphere soil (Table
S4) also confirmed the result. These observations suggest
that, in the presence of carrot, composted pig manure
amendment enhanced microbia l degrada t ion of
polybrominated diphenyl ethers in the rhizosphere.

Effect of composted pigmanure on the fate of BDE-47
in the plant-soil system

As expected, composted pig manure amendment signifi-
cantly increased the SOM content (Table S1), which is in
congruence with former studies that indicate that the ap-
plication of exogenous organic matter can increase SOM
content (Liu et al. 2010; Rivero et al. 2004). Furthermore,
positive correlations between the SOM contents and cor-
responding BDE-47 residues in plant-free soil or bulk soil
were observed (R2 = 0.99, 0.98, respectively, p < 0.01,
Fig. S1), indicating that the OM derived from composted
pig manure played an important role in adsorbing
polybrominated diphenyl ethers in soil no matter cultivat-
ed carrot or not. In contrast, a negative linear relationship
between the SOM contents and corresponding BDE-47
concentration in carrot roots was found (R2 = 0.90, p <
0.05, Fig. S2), indicating that the OM derived from
composted pig manure played an important role in reduc-
ing polybrominated diphenyl ether bioavailability in soil.
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Bacterial community composition in soil

Relative abundance of the microbial community was mea-
sured in the rhizosphere soil and bulk soil using the Shannon
index and indicated that diversity in the control was lower
than in the composted pig manure treatments (Fig. 3), demon-
strating that soil microbial diversity was modified starting
from the first dose of composted pig manure. Meanwhile,
microbial diversity in the rhizosphere soil was lower than
the bulk soil (Fig. 3, p < 0.05). Increased B-glucosidase activ-
ity has been shown to decrease microbial diversity in the rhi-
zosphere (Pathan et al. 2015). The lowest microbial diversity
with the fastest dissipation of hexachlorobenzene is observed
within 2 mm of the rhizosphere of ryegrass (Song et al. 2016).
In this study, lower microbial diversity and higher BDE-47
dissipation percentage were found in the rhizosphere soil
(Fig. 3, Table 1) which indicates faster microbial degradation
of BDE-47 relative to the bulk soil.

At the genus level, a heatmap coupled with cluster anal-
ysis was performed (Fig. 4). The bacterial communities in
the control soil, composted pig manure amended bulk soil,
and composted pig manure amended rhizosphere soil were
individually clustered together, indicating that composted
pig manure amendment and carrot cultivation jointly al-
tered the bacterial community composition. The predomi-
nant bacteria were Anaerolineaceae, Ohtaekwangia,
Betaproteobacteria, and Gemmatimonas, and their abun-
dance was improved by composted pig manure amend-
ment (Fig. 4). Among these bacteria, Ohtaekwangia were
considered eutrophic bacteria since they could utilize eas-
ily degradable organic compounds and multiplied rapidly
(Li et al. 2014a). Betaproteobacteria, as a class of gram-
negative Proteobacteria, have significant contributions to
nitrogen fixation in various kinds of plants (Ishii et al.
2011) and can produce nitrate by oxidizing ammonium
which is important for plant growth (Bouskill et al. 2011).

Bacterial degradation of BDE-47 in the rhizosphere

Compared with the bulk soil, higher concentrations of
debrominated degradation product: 2, 4, 4′-tribrominated
diphenyl ether (BDE-28) were observed in the rhizosphere
soil (Table S4), confirming a faster microbial degradation of
BDE-47 in the rhizosphere. Samples taken from the rhizo-
sphere soil revealed that several types of bacteria benefited
from the addition of composted pig manure (Fig. 4); spe-
cifically, linear correlations were observed between the dis-
sipation of BDE-47 in the rhizosphere and the relative
abundance of bacteria (e.g., Sphingomonas, Arthrobacter,
and Pseudomonas etc., with R2 of 0.99, 0.78, and 0.94,
respectively (Fig. 5, Table S7)). Among these bacteria, three

Table 1 2,2′,4,4′-tetrabrominated diphenyl ether (BDE-47) concentra-
tions (ng g−1, dry weight) and dissipation percentages (%) in the initial
soil (the soil collected at the beginning of cultivation), plant-free soil (FS),

bulk soil (BS), and rhizosphere soil (RS) amended with 0 (serve as the
control), 1, 2, and 4% composted pig manure (CPM) after 90-day
cultivation

Treatments Concentration
ng g−1

Dissipation percentage
%

Initial FS BS RS FS BS RS

Control 384.5aA 125.2dB 121.5dB 88.4bC 67.4aB 68.4aB 77.0aA

1% CPM 384.5aA 160.4cB 152.9cB 101.4aC 58.3bB 60.2bB 73.6bA

2% CPM 384.5aA 232.2bB 196.0bC 115.6aD 39.6cC 49.0cB 69.9bA

4% CPM 384.5aA 324.4aB 269.0aC 121.1aD 15.6dC 30.0dB 68.5bA

Values with uppercase letters in the same line of BConcentration^ or BDissipation percentage^ indicate significant differences of BDE-47 concentrations
or dissipation percentages of soil samples in one treatment at p < 0.05. Values with lowercase letters in the same column indicate significant differences of
BDE-47 concentrations or dissipation percentages in soils of different treatments at p < 0.05
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Fig. 3 Shannon index in the rhizosphere soil (RS) and bulk soil (BS)
amended with 0 (serve as the control), 1, 2, and 4% composted pig manure
(CPM). Values are the means ± standard deviation (n = 3). Bars with letters
indicate significant differences in microbial diversity in the BS (lowercase)
or RS (uppercase) at p< 0.05. Bars with asterisks indicate significant differ-
ences in microbial diversity within the same treatment at p < 0.05

812 Biol Fertil Soils (2018) 54:807–817



types of bacteria were associated with polybrominated
diphenyl ethers degradation in the rhizosphere:
Sphingomonas, the predominant polybrominated diphenyl
ether-degrading bacteria in contaminated sewage sludge
(Stiborova et al. 2015), Pseudomonas, a kind of 4-
chlorobenzoate-degrading bacteria (Löffler et al. 1995),
which can degrade BDE-209 with certain amount of co-
metabolic substrates (Shi et al. 2013), and Rhodococcus, a
kind of butachlor- and PCB-degrading bacteria, was able to
degrade polybrominated diphenyl ethers on account of their
similar chemical structure (Liu et al. 2012a; Robrock et al.
2009). Among the polybrominated diphenyl ether-degrading

bacteria, the relative abundance of Sphingomonas was the
highest; compared to the control of rhizosphere soil, the
relative abundance of Sphingomonas increased by 21.7–
203% in the composted pig manure amended rhizosphere
soil. Therefore, we suggest that the degradation of BDE-47
is mainly attributed to Sphingomonas in the rhizosphere.

Environmental implications

Application of manure is a conventional agronomic tech-
nique that aids plant growth by adding nutrients to the soil,

Fig. 4 Heatmap of bacterial community composition coupled with cluster analysis in the rhizosphere soil (RS) and bulk soil (BS) amended with 0 (serve
as the control), 1, 2, and 4% composted pig manure (CPM) at the genus level
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promoting healthy soil communities and recycling a valu-
able waste product. In this study, effects of composted
manure amendment on the degradation and bioavailability
of BDE-47 in soil are demonstrated. BDE-47 can be
absorbed from the soil by carrot and thus potentially cause
harm to human health via consumption. Composted pig
manure amendment could substantially absorb BDE-47 in
soil and consequently reduce uptake of BDE-47 in carrot
tissues, thus the reducing risks of human exposure to BDE-
47 through dietary intake. This strategy might also be ef-
fective for other polybrominated diphenyl ethers or their
analogs (e.g., polychlorinated biphenyls, polychlorinated
dibenzofuran, etc.). Considering that plant uptake was mi-
nor in composted pig manure amended soil, microbial deg-
radation was likely the main route of BDE-47 dissipation.
The addition of composted pig manure significantly stim-
ulated the microbial degradation of BDE-47 in the rhizo-
sphere through improving soil nutrient cycles and increas-
ing the abundance of polybrominated diphenyl ether-
degrading bacteria (e.g., Sphingomonas, Pseudomonas,
and Rhodococcus, etc.). This study provides a feasible ag-
ronomic strategy of manure amendment for reducing plant
uptake of persistent organic pollutants and enhancing re-
moval of persistent organic pollutants by microbial degra-
dation in the rhizosphere and therefore, improving food
safety. However, it is worth mentioning that application
of manure or compost manure may also introduce contam-
inants such as heavy metals or antibiotic residues into the
soil (Cheesanford et al. 2009; Ko et al. 2008). Future stud-
ies are needed to investigate these effects and whether this

agronomic strategy of manure amendment could be used
for other agriculturally important field crops and/or other
types of organic pollutants.
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