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Abstract
Kobresia grasslands on the Tibetan Plateau comprise the world’s largest pastoral alpine ecosystem. Overgrazing-driven degra-
dation strongly proceeded on this vulnerable grassland, but the mechanisms behind are still unclear. Plants must balance the costs
of releasing C to soil against the benefits of accelerated microbial nutrient mineralization, which increases their availability for
root uptake. To achieve the effect of grazing on this C-N exchange mechanism, a 15NH4

+ field labeling experiment was
implemented at grazed and ungrazed sites, with additional treatments of clipping and shading to reduce belowground C input
by manipulating photosynthesis. Grazing reduced gross N mineralization rates by 18.7%, similar to shading and clipping. This
indicates that shoot removal by grazing decreased belowground C input, thereby suppressing microbial N mining and overall soil
N availability. Nevertheless, NH4

+ uptake rate by plants at the grazed site was 1.4 times higher than at the ungrazed site, because
plants increased N acquisition to meet the high N demands of shoot regrowth (compensatory growth: grazed > ungrazed). To
enable efficient N uptake and regrowth, Kobresia plants have developed specific traits (i.e., efficient above-belowground
interactions). These traits reflect important mechanisms of resilience and ecosystem stability under long-term moderate grazing
in an N-limited environment. However, excessive (over)grazing might imbalance such C-N exchange and amplify plant N
limitation, hampering productivity and pasture recovery over the long term. In this context, a reduction in grazing pressure
provides a sustainable way to maintain soil fertility, C sequestration, efficient nutrient recycling, and overall ecosystem stability.
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Introduction

The Tibetan Plateau hosts the world’s largest and highest
grasslands and one of the most sensitive and fragile ecosys-
tems, vulnerable to global environmental change and anthro-
pogenic activities (e.g., Cui et al. 2006; Babel et al. 2014;
Chen et al. 2014). The Tibetan grasslands play an important
role in ecosystem functioning, e.g., soil carbon (C) storage (ca.
7.4 Pg C), water and soil conservation, and climate regulation
(Yang et al. 2008; Lin et al. 2017). Tibetan grasslands support
a diversity of plants, livestock, and local pastoral communities
(Kang et al. 2007). The alpine Cyperaceae mats of Kobresia
pygmaea are the major constituent of the Tibetan grasslands
and cover an area of 450,000 km2, ranging from 3000 to
nearly 6000 m in altitude (Miehe et al. 2008, 2017). The
grazing lawns grow 2–4 cm high and develop a firm closed
root system in the upper 30 cm of soil (termed Kobresia turf,
Kaiser et al. 2008). Consequently, Kobresia root mats are
characterized by high quantities of roots and rhizogenic
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organic matter that contribute to the large stores of C, nitrogen
(N), and other nutrients (Kaiser et al. 2008). Soil C and N
dynamics in response to land use change represent a poten-
tially important feedback to climate (Harris 2010; Chen et al.
2013).

The Kobresia grasslands have developed as the conse-
quence of over ca. 8 thousand years of moderate grazing
(Miehe et al. 2009, 2014, 2017), and nowadays in Northern
Tibet, they still provide forage resources for livestock equiv-
alent to more than 1.7 million sheep (Feng et al. 2017). K.
pygmaea has been evolutionarily selected due to its specific
traits reflecting strategies of both resistance (through avoid-
ance) and tolerance (through re-growth capacity): tiny leaves
that prevent complete grazing removal and a very large and
durable root system that ensures efficient water and nutrient
uptake and storage (Xu et al. 2014; Schleuss et al. 2015) and
prevents trampling damage (Kaiser et al. 2008); a mixed re-
productive strategy also improves their competitiveness com-
pared to other plants (Seeber et al. 2015).

The short-term compensatory growth ofK. pygmaeamay be
undermined by serious restrictions on plant re-growth and re-
production due to long-term overgrazing. Indeed, semi-
sedentary management has replaced the traditional migratory
management and increased the number of livestock since the
late 1970s; this has contributed to the degradation of about 30%
of the grasslands (Zhou et al. 2005). The subsequent deteriora-
tion of the Kobresia turf induced further losses of C and N
(Wang et al. 2005b; Su et al. 2015). To counter degradation,
the central and regional government has launched a series of
ecological restoration projects since 2004. Excluding grazing
by fencing has been proposed as one restoration practice to
balance the stocking rate with grassland productivity.
However, the effects on ecosystem recovery of Kobresia grass-
land are not sufficiently understood (Yu et al. 2016).

Besides grazing stress, plant growth in such harsh alpine
environments is co-restricted by numerous abiotic factors,
such as high solar radiation, low temperature and precipita-
tion, a short vegetation period, and nutrient deficiency
(Callaway et al. 2002; Miehe et al. 2017). Among the nutri-
ents, N is most limited and its availability has a major impact
on net primary production in Tibetan grasslands. This has
been confirmed by previous N fertilization experiments
(Song et al. 2007; Seeber et al. 2015; Wang et al. 2015;
Zong et al. 2016). The prevailing low N availability in
Tibetan grassland is mainly because (1) most N is in organic
forms and not directly plant available, (2) N mineralization
from organic forms is suppressed by low temperature (Wang
et al. 2016), (3) N availability has strong temporal and spatial
variability during the short growing seasons (Song et al. 2007;
Xu et al. 2011a, b), and (4) large amounts of N have been
removed from the ecosystem, since intensive grazing hampers
the natural livestock-mediated N redistribution: most of the
yak dung is used as a fuel source by Tibetan nomads, and a

part of urine is easily lost through volatilization and nitrate
leaching (Luo et al. 2010).

K. pygmaea faces two major challenges under grazing:
First, N should be captured efficiently by roots; second, min-
eralization of organic N forms should be enhanced (Kuzyakov
and Xu 2013; Dijkstra et al. 2016). In fact,K. pygmaea invests
a very high proportion of assimilated C in root production
(with root to shoot ratios of up to 20) to compete for N with
microorganisms and coexisting plants (Xu et al. 2011a, b;
Kuzyakov and Xu 2013) and develops chemical (N forms)
and/or temporal niche differentiation (Xu et al. 2011a, b;
Jiang et al. 2017). In addition, it has become increasingly clear
that plants can stimulate microbial growth, activity, and en-
zyme production by providing labile and energy-rich C com-
pounds. The microbes accelerate soil organic matter (SOM)
decomposition and increase N availability through rhizo-
sphere priming effects (Kuzyakov 2002; Jones et al. 2009).
Root exudates are known to be the key C inputs in this cold,
semi-arid ecosystem (Farrar and Jones 2000; Cleveland et al.
2004). However, grazing alters the amount of photosynthetic
assimilates and their allocation belowground, which, in turn,
affects SOM mineralization and nutrient uptake by plants,
with feedback to net primary production and C sequestration
(Paterson and Sim 2000; Sun and Wang 2016a). In this N-
limited ecosystem, we assume that K. pygmaea interacts with
microorganisms for an improved N supply, which is highly
important for sustaining regrowth after grazing. Such interac-
tions also help to explain the existence and long-term stability
of this unique ecosystem despite natural and human distur-
bance over the past millennia.

Nonetheless, major changes in pasture management (i.e.,
intensive grazing) and climate in recent decades have strongly
impacted the plant-soil system, with unknown consequences
for N pools and cycles (e.g., exchange mechanisms). This
could be an important mechanism underlying degradation in
Kobresia grasslands. Identification of the role of grazing on
the exchange mechanisms for the Tibetan grassland is chal-
lenging because the grazing activities have inconsistent defi-
nitions and various standards. Exclusion experiments provide
a feasible way for studying grazing effects based on the as-
sumption of inverse process direction and ecosystem recovery.
To further clarify the exchange mechanisms, we investigated
gross mineralization, N uptake by plants and N partitioning
in the plant-soil system on grazed and ungrazed sites.
Clipping (simulating defoliation by grazing) and shading,
that reduce the leaf area and the light-dependent reactions,
respectively (Detling et al. 1979, Schmitt et al. 2013), were
used to manipulate photosynthesis and hence the C alloca-
tion into belowground (i.e., root and soil).We hypothesized
that (1) grazing-driven removal of shoots lowers photosynthe-
sis and belowground C translocation, reduces microbial activ-
ities in the rhizosphere, and thus decreases soil gross N min-
eralization; (2) N uptake rates of plants and N retention in root
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biomass will be higher in the grazed Kobresia grassland, in
order to ensure N delivery for an efficient regrowth of new
shoots. To test these hypotheses, we conducted an in situ 15N
labeling study at grazed and ungrazed sites. Considering the
long-term grazing impacts onKobresia grasslands, we expect-
ed that K. pygmaea developed specific strategies for N uptake
and partitioning to facilitate plant re-growth after grazing. The
15N dilution approach was used to quantify in situ gross N
mineralization at grazed and ungrazed sites.

Materials and methods

Study area

The study site is located in the core area of alpine K. pygmaea
grasslands adjacent to the Naqu Ecological and
Environmental Observation and Research Station (Xizang,
China; 31° 16′ 45″N, 92° 59′ 37″ E; 4410 m above sea level).
The Research Station was established in 2007 as the
BKobresia Experimental Monitoring Area^ (KEMA), close
to the village Kema, and now managed by the Institute of
Tibetan Plateau Research, Chinese Academy of Science.
This area is influenced by a moderately continental monsoon-
al climate with mean summer precipitation of 276 mm (June–
September). Average annual temperature was − 1.2 °C in the
previous 5 years (Miehe et al. 2011). Our experiment was
conducted from July to August 2012 during the growing sea-
son, which lasted from mid-May to mid-September. A mean
temperature of 10.4 °C was recorded (Babel et al. 2014).

The sites are dominated by K. pygmaea (Cyperaceae),
which covers more than 80% of the surface area. K. pygmaea
is accompanied (remaining 20%) by other graminoid species,
such as Carex ivanoviae, Carex spp., Poa spp., Festuca spp.,
Stipa purpurea, and Trisetum spp., as well as a small number
of rosette and cushion plants (Arenaria bryophylla, Arenaria
kansuensis, Androsace tapete, Leontopodium nanum,
Lamiophlomis rotata). The K. pygmaea lawn has an average
height of 2 cm at the grazed site, overlying a dense root mat of
approximately 14 cm. The soil is classified as a stagnic
Cambisol (humic, eutric) (IUSS Working Group WRB
2006). The upper soil horizons (Afe horizons, according to
Kaiser et al. 2008) consist of humified organic matter and a
large quantity of living and dead roots. Soils are free of car-
bonates in the upper 15 cm and havemean pH values of 6.4. A
detailed description of soil characteristics is reported by
Schleuss et al. (2015).

The study site is traditionally used as a continuously grazed
pasture. However, livestock stocking exceeds the carrying ca-
pacity, and thus, the pasture in this region is intensively grazed
(Ingrisch et al. 2015; Wei and Chen 2001). To assess the effect
of grazing exclusion on pasture restoration, a grassland area of
100 × 250 m was fenced in 2010 (excluding livestock such as

yaks and goats, but allowing minor grazing by small mam-
mals). The experiment was established within the fence (re-
ferred to as the ungrazed site) and outside but near to the fenced
area (referred to as the grazed site). Two percent more vegeta-
tion coverage was observed after grazing exclusion, but there
was no significant difference between plant communities.

15N labeling experimental setup, sampling,
and analysis

The in situ 15N labeling experiment was started in August 12.
On each site (grazed and ungrazed), 16 square plots (15 ×
15 cm) were randomly selected; 12 of them were randomly
chosen for three treatments: control, clipping, and shading
with four replicates. The remaining four plots were reference
plots, which were injected only with water to determine plant
and soil properties as well as 15N natural abundance.

The in situ gross N mineralization rate at 0–10 cm depth
was estimated by a 15N dilution approach (Davidson et al.
1991; Hart et al. 1994; Murphy et al. 2003). An amount of
4.562 mg 15N was added as (15NH4)2SO4 (10 atom% 15N) to
each plot. We used the same labeling grid with 16 injection
points to ensure a uniform distribution of tracer in each plot.
(15NH4)2SO4 was dissolved in water and 1 ml of this tracer
solution was injected at 5 cm soil depth for each injection
point with a dispensing pipette. The Binitial^ soil cores (two
soil cores per plot, 5 cm diameter × 10 cm depth) from each
15N-labeled plot were sampled 3 h after labeling (the t0 point).
After that, four labeled plots as replicates were subjected to
clipping or shading under both grazing regimes. For clipping,
the plant shoots were clipped at 1 cm above the soil surface
and thereafter allowed to grow continuously. For shading, the
light intensity was reduced by more than 90% by a fine black
mesh cover throughout the experimental period of 28 days.
The four remaining labeled plots with untreated plants were
referred to as control (without clipping and shading, but with
tracer injection). Previous studies showed that a period of
6 days allowed an accurate quantification of gross mineraliza-
tion by 15N pool dilution approach (Mikan et al. 2000;
Murphy et al. 2003). Since the N mineralization rate in alpine
grasslands is slow, we took two further soil cores from each
plot after 6.5 days of in situ incubation (the t1 point). The soil
samples were transferred immediately to the lab and well
mixed after removing the roots. Fresh soil subsamples (8 g
from each replicate) were extracted for 1 h with 30 ml 0.5 M
K2SO4. The concentrations of soil NO3

− and exchangeable
NH4

+ were determined with an autoanalyzer (AA3, Bran-
Luebbe, Germany). NH4

+ in the extracts was determined by
a diffusion process (Murphy et al. 2003), and the 15N enrich-
ment was determined with an isotope ratio mass spectrometer
(Mat 253, Finnigan MAT).

Nitrogen uptake by plants and 15N partitioning in the plant-
soil system were traced by in situ 15NH4

+ labeling because
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NH4
+ is the dominating mineral N form in the soil. Following

the 15N labeling and the treatments (clipping and shading),
samples of shoots, roots, and soil were taken from each plot
3 h and 7, 14, and 28 days after labeling. The shoot biomass
was cut within an area of 25 cm2 on each small plot close to
the soil surface. After sampling cutting, root and soil samples
were taken by soil cores of 0–10 cm soil depth, because over
70% of the total root biomass is concentrated within this ho-
rizon (Schleuss et al. 2015). Fresh soil samples were sieved
through a 2-mm mesh. The separated roots were washed with
tap water and soaked into 0.5 mM CaCl2 solution for 30 min,
then rinsed with distilled water to remove 15N absorbed on the
root surface. Plant materials and soil samples were dried at
65 °C for 72 h and ground to a fine powder using a ball mill
(MM2, Fa. Retsch, Haan, Germany). They were weighed into
tin capsules to analyze total C and N contents and stable iso-
tope signatures using an elemental analyzer (EA 1112, CE
Instruments, Milan, Italy), ConFlo III device (Finnigan
MAT, Bremen, Germany), and continuous-flow gas isotope
ratio mass spectrometry (MAT253, Finnigan MAT, Bremen,
Germany). Bulk density was determined by oven-drying un-
disturbed soil at 105 °C for 48 h (Van Reeuwijk 2002). Soil
pH was measured by a dry soil-water ratio of 1:2. Total C and
N stocks of plant and soil as well as the contents of NO3

− and
exchangeable NH4

+ (unlabeled) were determined on the ref-
erence plots.

Calculations and statistics

Soil gross N mineralization rate was calculated from the mea-
sured NH4

+ pool and atom % 15N of NH4
+ as follows

(Murphy et al. 2003):

m ¼ M 1−M 0

t1−t0
⋅
ln
AP0−APC

AP1−APC

ln
M 1

M 0

where m is the gross mineralization rate (mg N kg−1 day−1),
M0 is the initial exchangeable NH4

+ pool (mg N kg−1), M1 is
the post-incubation exchangeable NH4

+ pool (mg N kg−1),
AP0 is the initial atom-%-15N of NH4

+, AP1 is the post-
incubation atom-%-15N of NH4

+, APC is the atom-%-15N of
NH4

+ in unlabeled control, and t0 and t1 are the time points (in
day) of initial and post-incubation soil core sampling, respec-
tively. Net mineralization and net nitrification were deter-
mined from the difference in the N pool of exchangeable
NH4

+ and of NO3
−, respectively, after 6.5 days of incubation

(Hart et al. 1994).
15N uptake by plants (or 15N allocation to soil) was calcu-

lated by an isotope mixing model (Robinson 2001), as the
product of the N content of the pool, the mass of the compo-
nent per square meter, and its APE (atom-%-excess 15N). APE

is the 15N difference between 15N-labeled and unlabeled
plants or soil. The proportion of 15N recovered in plants (or
soil) was calculated by dividing plant 15N uptake (or 15N
incorporation of soil) by total amount of 15N injected into
the soil. Based on previous studies (Xu et al. 2011a, b), an
assumption was made that the N forms in Tibetan grasslands
do not change during the 3-h period of labeling. The NH4

+

uptake rate by plants was calculated by dividing the actual
NH4

+ uptake amount by time and root biomass. The actual
NH4

+ uptake from soil by plants was calculated as follows:

U unlabeled ¼ U labeled⋅ munlabeled=mlabeledð Þ
where Ulabeled is the amount of 15NH4

+ uptake by plants, m-
unlabeled is the content of total exchangeable NH4

+ in the unla-
beled soil, and mlabeled is the total mass of injected 15N
(McKane et al. 2002; Xu et al. 2011a, b).

The relative growth rate (RGR) of shoots (or roots) for each
treatment was determined by their initial and final biomass
during 28 days of experiment period, calculated as follows
(Hunt et al. 2002):

RGR ¼ log final shoot biomassð Þ− log initial shoot biomassð Þ½ �=time

Normality (Shapiro-Wilk test, p > 0.05) and homogeneity of
variance (Levene test, p > 0.05) were examined before the sta-
tistical analysis. Data were log-transformed prior to analysis if
theywere non-normally distributed. Repeatedmeasures analysis
of variance (ANOVA) with the sampling date as the within-
subject factor and grazing and treatments (control, clipping,
and shading) as the between-subject factors was calculated for
shoot and root biomass; 15N recovery in shoot, root, and total
biomass; and NO3

− and exchangeable NH4
+ contents. One-way

ANOVAwas used to assess the effect of grazing and then the
effects of control, clipping, and shading nested within each of
the grazing treatment on the parameters of plants (C and N
stocks, RGR of shoot/root, total biomass, NH4

+ uptake rate, total
plant 15N recovery) and those of soil (C and N stocks, the min-
eral N contents, gross and net N mineralization, net N nitrifica-
tion, bulk density, and pH). ANOVAswere followed by post hot
test for multiple comparison using least significant differences.
All statistical analyses were performed with SPSS 16 (SPSS
Inc., Chicago, IL, USA) and considered significance at a
p < 0.05 level.

Results

Above- and belowground C and N stocks

In general, shoot biomass made only a minor contribution to
the overall stocks of C (1.5%) and N (0.9%) on average,
whereas the majority of the total C and N was stored below-
ground, mainly in root mats (root + soil). The root biomass
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contributed 13.5 and 4.0% of the total C and N storage, and
the soil accounting for 85.0 and 95.2%, respectively.

Three years after grazing exclusion, C and N stocks in
shoots increased by 46.2% (p < 0.01) and 29.7%, respectively,
compared to those in the grazed site. In contrast, C and N
stocks of the root biomass decreased by 14.6 and 10.4%
(p < 0.05; Fig. 1). Grazing exclusion increased soil C and N
stocks by 14.7 and 18.2%, respectively (p < 0.05). As a result,
the overall total C and N stored in the upper 10-cm root mats
(root + soil) were 10.2 and 16.9% larger in the ungrazed site
than those in the grazed site (p < 0.05; Fig. 1).

Mineral N and soil N transformation processes

NH4
+ was the dominant mineral N form in this Kobresia pas-

ture, and its content in the unlabeled soil was about four times
higher than that of NO3

− (Fig. 1). Grazing exclusion increased
the content of NO3

− and exchangeable NH4
+ in unlabeled soil

by 32 and 72%, respectively (p < 0.05; Fig. 1). The combined
mineral N pool (exchangeable NH4

+, NO3
−) was on average

1.4 times higher in ungrazed site than that in grazed site (p <
0.05). After tracer addition, the NO3

− and exchangeable NH4
+

contents were similar during 28 days after labeling under both
grazing regimes, despite their differences before labeling (Fig.
S1; Table S2). The NO3

− content fluctuated with time under
both grazing regimes (ranged from 2.1 to 4.7 μg N g−1 soil),
but that of exchangeable NH4

+ strongly decreased (ranged
from 80.4 to 12.5 μg N g−1 soil).

The gross N mineralization rate was averagely lower for the
grazed site compared to that for the ungrazed site among all
treatments (p < 0.05; Fig. 2). In the grazed site, the highest N
mineralization was for control (10.4 mg N kg−1 soil day−1),
followed by clipping (8.7 mg N kg−1 soil day−1) and by shading
(5.6 mgN kg−1 soil day−1). A similar pattern was evident for the
ungrazed site: 12.8, 10.7, and 9.2 mg N kg−1 soil day−1 for

control, clipping, and shading, respectively (Fig. 2). Linear re-
gression between gross N mineralization rates and the mean
increase in N stock in plant biomass showed a weak relationship
at the grazed site (r2 = 0.3, p = 0.07), but the relationship was
much stronger at the ungrazed site (r2 = 0.6, p = 0.003; Fig. 2).

The negative values of net N mineralization under both
grazing regimes (Table S1) indicated that NH4

+ consumption
(including immobilized NH4

+, NH4
+ oxidization, gaseous

losses, and plant uptake) exceeded gross mineralization. The
highest average net mineralization rate was observed for con-
trol, which was followed by clipping and then shading, under
both grazing regimes. Net N nitrification rates at the grazed
site were on average 1.7 times higher than at the ungrazed site
(Table S1), indicating higher potential N losses by emission,
denitrification, and leaching.

Shoot and root biomass production

Grazing exclusion increased shoot biomass (p < 0.001, Fig. 3;
Table S4). For example, the shoot biomass was about 26%
higher in the control of the grazed sites (160 g m−2) compared
with that in the ungrazed control (202 g m−2; Fig. 3). Yet,
grazing exclusion had only a small effect on the relative
growth rate (RGR) of shoot biomass (for control and shading,
Fig. 4), whereas clipping (simulated grazing) increased the
RGR of shoot biomass for both grazing regimes (p < 0.05).
The clipping effect on the RGRwas significantly higher at the
intensively grazed site compared to that at the grazing
exclosure (p < 0.05; Fig. 4).

In contrast to the shoot biomass, root biomass decreased by
12% following grazing exclusion (in the upper 10 cm depth;
Fig. 3, Table S4). This resulted in a lower root to shoot invest-
ment at the ungrazed site (root to shoot ratio 7.9) than at the
grazed site (root to shoot ratio 11.4). The mean biomass of the
control was 1494 and 1638 g m−2 in the ungrazed and the
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Fig. 1 The photo (left) shows the
characteristics of K. pygmaea and
of the upper 10 cm of soils at
grazed and ungrazed sites.
Subfigures (right) illustrate C and
N stocks in plant and soil as well
as the content of mineral N (ex-
changeable NH4

+, NO3
−) in the

soil. Values are means ± standard
errors (n = 8). Asterisk indicates
significant difference level (*
p < 0.05, ** p < 0.01)



grazed sites, respectively. Clipping did not change root bio-
mass under both grazing regimes. Shading inhibited root
growth and led to the lowest root biomass under both grazing
regimes (Fig. 3). Nonetheless, no significant difference in the
RGR of roots was observed between grazed and ungrazed
sites (0.02 g g−1 day−1 on average, data not presented).

Plant N uptake and 15N partitioning in the soil-plant
system

The NH4
+ uptake rate by plants (within 3 h after 15N pulse

label ing) was higher at the grazed si tes (0.67 ±

0.03 μg N g−1 root−1 h−1) than that at the ungrazed sites
(0.48 ± 0.04 μg N g−1 root−1 h−1; p < 0.05).

Overall, 86.3 and 79.7% of the 15N were recovered in the
plant-soil system (the upper 10-cm root mats) at the grazed
and ungrazed sites, respectively. The major portion of 15N
remained in soil (0–10 cm; range from 41.8 to 62.6%) 28 days
after the labeling. This was independent of grazing and treat-
ments (control, clipping, and shading).

The total 15N recovery in plant biomass (shoots + roots) is
higher at grazed site than that at ungrazed site 28 days after
labeling (p = 0.01; Table S5). The total plant 15N recovery was
36.5 and 42.1% for control at the grazed and ungrazed sites,

Fig. 2 Left: gross N mineralization rate (mg N kg−1 soil day−1) in soil of
the grazed and ungrazed sites. Capital letters indicate significant
differences (post hoc LSD test, p < 0.05) between grazed and ungrazed
sites. Lowercase letters indicate significant differences (post hoc LSD
test, p < 0.05) between treatments (control, clipping, and shading)

nested within each grazing regime. Right: relationship between gross N
mineralization rate (mg N m−2 day−1) and the mean increment of N stock
in plant biomass (mg N m−2 day−1) for the grazed and ungrazed sites.
Each point represents the individual replicates of each treatment (control,
clipping, and shading)

Fig. 3 Shoot and root biomass
(g m−2) during 28 days after
labeling. The values of bottom
figures show the total plant
biomass (shoots + roots) 28 days
after the labeling. CK: control,
SH: shading, CL: clipping. Values
are means ± standard errors (n =
4). Letters indicate significant
differences at p < 0.05 within
treatments (control, shading, and
clipping) for grazed and ungrazed
sites
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respectively (Fig. 5). The 15N recovery in plants was slightly
increased by clipping at the grazed sites, but it was reduced by
clipping at the ungrazed sites. Shading had the lowest 15N
recovery under both grazing regimes at all times (Fig. 5) and
did not differ between grazing regimes. Notably, 15N
partitioning between shoot and root biomass showed deviat-
ing patterns with grazing regime, which is why both compart-
ments are presented separately (see below).

The 15N recovery in shoots for control was about two times
lower at the grazed site (11.0%) than that at the ungrazed site
(19.2%). An even lower 15N recovery was observed following
clipping and shading for both grazing regimes, essentially due

to the lowered shoot biomass (Fig. 5). The 15N recovery in
shoots correlated positively with root biomass, but negatively
with soil exchangeable NH4

+ content under both grazing re-
gimes (p < 0.001; Table S3).

15N recovery in roots was higher at grazed sites than that at
ungrazed sites for all treatments 28 days after the labeling
(p < 0.05); the 15N recovery in roots for control was 25.5
and 22.9% at grazed and ungrazed sites, respectively (Fig. 5,
Table S5). Compared to the respective control, clipping in-
creased the 15N recovery in roots of grazed plants (28.7%),
while it decreased the 15N recovery of the ungrazed plants
(19.0%, Fig. 5). Under both grazing regimes, the respective

Fig. 4 Left: relative growth rate (RGR) of shoots (g g−1 day−1). Values are
means ± standard errors (n = 4). Capital letters indicate significant differ-
ences (post hoc LSD test, p < 0.05) between grazed and ungrazed sites.
Lowercase letters indicate significant differences (post hoc LSD test,
p < 0.05) between treatments (control, clipping, and shading) nested

within each grazing regime. Right: relationship between the RGR of
shoot (g g−1 day−1) and 15N recovery in the root biomass (%). Each point
represents the individual replicates of each treatment (control, clipping,
and shading) for grazed and ungrazed sites

Fig. 5 The 15N recovery (% of
input) in shoot and root biomass
during 28 days after labeling. The
values at the bottom figures show
the 15N recovery (%) in total plant
biomass at the last sampling. CK:
control, SH: shading, CL:
clipping. Values are means ±
standard errors (n = 4). Lowercase
letters indicate significant
differences at p < 0.05 within
treatments (control, shading, and
clipping) under each grazing
regime
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lowest 15N recovery in roots was observed for shading. The
15N recovery in root biomass was negatively correlated with
soil exchangeable NH4

+ content under both grazing regimes
(p < 0.001), but its correlation with the shoot biomass was sig-
nificant only at the grazed sites (p < 0.05; Table S3), reflecting
that root N uptake was important for the re-growth of photo-
synthetically active shoots in the grazed K. pygmaea grassland.
Linear regression between the RGR of shoots and 15N recovery
in roots showed a significant relationship for grazed site (r2 =
0.33, p < 0.05), but not for the ungrazed one (Fig. 4).

Discussion

Grazing effects on N stocks

Soil N stocks in the upper 10-cm root mats were 15% lower
under grazing (Fig. 1). This is consistent with several studies
reporting negative grazing effects on N stocks, especially
within the upper soil horizon (Table S6). In the grazed
Kobresia pastures, the lower N stocks are mainly attributed
to (1) the increasing stocking numbers in recent decades,
which increased outflows of nutrients from the soil-plant sys-
tem by livestock consumption, (2) redistribution of N from the
grazing sites to the captive area adjacent to the villages, (3)
collection of dung for household fuel, (4) gaseous N loss, and
(5) nitrate leaching (Table S1; He et al. 2011; Zhong et al.
2017). Consequently, Soil C sequestration might be limited
under grazing due to the tight stoichiometric relationships be-
tween C and N (Fig. 1; Hu et al. 2016). However, there are
also other studies reporting neutral or even positive grazing
effects on N stocks (Table S6). This could be ascribed to
grazing intensity and site differences in altitude and regional
climate conditions (e.g., temperature, precipitation). For ex-
ample, moderate grazing intensity has been suggested as a
suitable way to preserve the capacity of Tibetan grasslands
to store C and nutrients (Hafner et al. 2012; Zhang et al.
2015; Zhou et al. 2016). However, the intrinsic mechanisms
controlling N stocks following grazing are less understood in
this alpine environment. This requires more detailed investi-
gation of N cycling processes such as microbial N minerali-
zation and plant N acquisition.

Grazing effects on soil N mineralization

Mineral N that highly depends on microbial gross N mineral-
ization (i.e., the ammonification process) and subsequent ni-
trification constitutes about 80% of plant-available N in
Tibetan grasslands (Xu et al. 2006). We found that grazing
decreased gross N mineralization (Fig. 2), causing lower con-
tents of exchangeable NH4

+ and NO3
− in the soil (Fig. 1).

Nitrogen mineralization is a microbially driven process and
is largely determined by both quality and quantity of labile C

compounds (Hart et al. 1994). Grazing decreased these labile
C inputs because a permanent removal of photosynthetic
shoots directly reduces rhizodeposition (Kuzyakov et al.
2002; Schmitt et al. 2013; Wei et al. 2016). Additionally, a
higher allocation of C assimilates is required (a) to sustain
shoot re-growth (the higher RGR, Fig. 4) and (b) to support
the increasing root biomass (Fig. 3), with its associated C
maintenance costs, leading to a low rhizodeposition. By
means of 13C pulse labeling for the same study site, Ingrisch
et al. (2015) showed that most of the 13C was recovered in the
roots and only a minor portion (< 10%) remained in the soil
after 2 months. Of secondary importance was that grazing
caused changes to the chemical composition of roots and litter
(e.g., lower cellulose, higher lignin/N ratio, and tannin con-
tent), restraining the C release via decomposition (Luo et al.
2009, 2010). We suggest that the lower input of labile C
inhibited the growth and activity of microorganisms and
enzyme production (Shahzad et al. 2012, 2015). Therefore,
these had negative effects on gross N mineralization.
Indeed, photosynthetic manipulations via clipping and
shading also decreased gross N mineralization compared to
the control, for both grazing regimes (Fig. 2). In summary,
we confirmed our first hypothesis that intensive grazing sup-
presses microbial N mining and has a negative impact on
gross N mineralization.

Since N mineralization is also restricted by abiotic environ-
mental conditions such as low precipitation and temperature,
decreasing gross N mineralization rates might aggravate pre-
vailing N limitations, with respective feedbacks for plant and
microbial N uptake (Song et al. 2007, 2011;Wang et al. 2012).
In agreement with this, net N mineralization was negative,
indicating a strong N limitation to both plants and microor-
ganisms (Table S1; Lang et al. 2016). The correlation between
gross Nmineralization in soil and the N stock in plant biomass
was weak under grazing, but it was strengthened by grazing
exclusion (Fig. 2) due to the higher available N supply via the
increased rate of gross mineralization. We suggest that in-
creased grazing pressure may disturb the exchange between
plant C input and microbial N releases, further exacerbating N
limitation in this deficient, vulnerable ecosystem and decreas-
ing C sequestration.

Grazing effects on plant growth

Several studies report that plants respond to grazing by in-
creasing their growth rates to compensate for the lost tissues
(Hilbert et al. 1981; Oesterheld and McNaughton 1991;
Kuzyakov et al. 2002). This physiological mechanism is re-
ferred to as compensatory growth (Mcnaughton 1979; Wang
et al. 2005a). We found that K. pygmaea increased the relative
growth rate (RGR) of shoots after simulated grazing (clipping)
and induced compensatory growth under both grazing re-
gimes. An increase in the RGR of shoots was especially
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evident at the grazed sites, suggesting that K. pygmaea effi-
ciently develops new photosynthetic biomass. A fast regrowth
of shoots is an important plant trait to cover the highmetabolic
C costs of root maintenance (Poorter et al. 1990; Chapin et al.
2002). To sustain the continual renewal of shoot biomass,
however, K. pygmaea faces increasing demands for resource
uptake, which is especially challenging in these N and P co-
limited environments (Wise and Abrahamson 2015; Miehe
et al. 2017). From this perspective, K. pygmaea develops a
large amount of root biomass in order to exploit nutrients at
the times and depths of their availability. Indeed, Kobresia
pygmea has a far higher root than shoot biomass, i.e., root to
shoot ratio of ~ 8 for the ungrazed sites (in 0–10 cm), and the
ratio can be even higher (up to 20) when the entire rooting
zone is considered (ca. 0–25 cm, Li et al. 2008; Schleuss et al.
2015). Such root to shoot ratios are common in other grazing-
driven ecosystems (Milchunas and Lauenroth 1993;
Mcnaughton et al. 1998; Yan et al. 2013) and in cold and
dry climates (e.g., arctic tundra, Callaghan et al. 2005), or
for ecosystems with extremely low nutrient status
(McConnaughay and Coleman 1999; Lambers et al. 2011).
Avery higher root biomass production or root activity is a trait
ofK. pygmaea to obtain nutrients (Schleuss et al. 2015) and to
facilitate shoot re-growth under prevailing deficient nutrient
conditions. Given a lower soil N availability at the grazed
sites, we found that the root biomass (0–10 cm) was about
13% higher for grazed site than that for ungrazed site.
Kobresia pygmaea even sustained root growth after clipping,
presumably to counteract nutrient limitation (Chapin 1980;
Sun and Wang 2016). In summary, a dense root network for
nutrient uptake and efficient compensatory growth are impor-
tant traits contributing to the high grazing tolerance of K.
pygmaea. This particularly matters in this pastoral ecosystem,
where plants have had to cope with grazing impacts for more

than 8000 years (Miehe et al. 2009). These traits at least partly
explain the wide dominance of K. pygmaea on the Tibetan
Plateau (Miehe et al. 2017).

Grazing effects on plant N uptake and 15N
partitioning

Although 15NH4
+ can be lost via NH3 volatilization (Cameron

et al. 2013) or via leaching after nitrification, more than 80%
of added 15N was recovered in the upper plant-soil system
after 28 days. About 40% of added 15N was recovered in total
plant biomass. This is in a similar range to other studies for the
Kobresia grasslands (Song et al. 2007; Xu et al. 2004, 2011a,
b; Schleuss et al. 2015; Jiang et al. 2017) and indicates effi-
cient plant N uptake in this N-limited ecosystem. Higher NH4

+

uptake rates at grazed site than at ungrazed site are ascribed to
upregulation of NH4

+ transport systems (i.e., the most domi-
nant N form) in K. pygmaea roots in response to grazing
(McKane et al. 2002; Jackson et al. 2008; Nacry et al. 2013).
Clipping even slightly increased the plant 15N recovery (shoot
+ root) at grazed sites. This agrees with our second hypothesis
that grazing increases plant N acquisition to sustain shoot bio-
mass (i.e., for compensatory growth). A negative correlation
between total plant 15N recovery and soil exchangeable NH4

+

content demonstrated that plants utilized NH4
+ for re-growth

(Table S3). In fact, the mineral soil N contents (NO3
− + ex-

changeable NH4
+, Fig. 1) were lower for grazed site than those

for ungrazed site, presumably due to stimulated plant N uptake
and decreasing N mineralization rates following grazing
(Figs. 1 and 2). Since low N availability can constrain N ab-
sorption by roots, K. pygmaea increased root biomass to oc-
cupy larger soil volumes and to extend the root surface for
acquiring as much N as possible, especially in response to
grazing (Fig. 3). Consequently, a positive correlation between

Fig. 6 Grazing effects on plant N
uptake and the exchanges
between plant C input and
microbial N mineralization. The
increase in grazing intensity
amplified the plant N limitation in
Kobresia grasslands
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the total plant 15N recovery and the root biomass was ob-
served for both grazing regimes (Table S3). Besides root bio-
mass, grazing also increased root N uptake and N retention (as
reserves) in roots (root 15N recovery: grazed > ungrazed, Fig.
5) and ultimately caused a higher belowground investment
than for ungrazed sites. This is highly beneficial in this N
and P co-limited environment because K. pygmaea can real-
locate N stored in remnant leaves or roots to support re-growth
after grazing (Freschet et al. 2015). In agreement with this, a
linear correlation between RGR of shoots and root 15N recov-
ery was observed for the grazed sites, but not for ungrazed
sites (Fig. 4), which is consistent with our second hypothesis.
Overall, our findings support the concept of very efficient
above-belowground interaction of K. pygmaea in response
to grazing (Schleuss et al. 2015). Grazing stimulates a higher
N uptake rate for compensatory growth of photosynthetic
shoots, to cover the high plant C costs. Simultaneously, K.
pygmaea develops a dense root network with efficient N up-
take mechanisms to meet the high nutrient demands for con-
tinually replacing lost shoots.

Conclusions

The soil N stock, N mineralization, and N availability in
Kobresia pasture were decreased under intensive grazing.
The decrease in Nmineralization was attributed to the reduced
belowground inputs of labile C due to decreased photosynthe-
sis. This aggravated the prevailing N limitation, challenging
plant N acquisition. Nevertheless, plant N uptake was higher
at grazed site compared to that at ungrazed site, mainly due to
the compensatory growth of lost photosynthetic organs. K.
pygmaea has evolved specific traits (efficient above-
belowground interactions) to cope with nutrient limitations
and simultaneous grazing pressure. However, intensive graz-
ing disturbs the critical balance between plant C input and
microbial N mineralization (Fig. 6). This might establish a
negative feedback to plant productivity over the long term.
Therefore, a reduction of grazing pressure (moderate grazing
or short-term grazing exclusion) benefits soil fertility, C se-
questration, and overall ecosystem stability.

Several previous studies have reported positive effects of
moderate grazing on N cycles. From this perspective, the tra-
ditional migratory grazing system of the Tibetan nomads
seems to be well adapted to maintain grassland stability, de-
spite low levels of ecosystem productivity. The increase in
stocking numbers due to sedentarization programs on the
one hand and the long-term complete grazing exclusion by
fencing programs on the other might both have contributed
to the vast changes in pasture conditions (i.e., changing veg-
etation composition, intensified degradation). This study,
therefore, provides mechanistic knowledge to understand the
existence, resilience, functioning, and future development of

this sensitive and vulnerable ecosystem against the back-
ground of land use and climate changes. Further research that
compensates the mechanisms of ecosystem vulnerability (e.g.,
the roles of plant-microbial interactions, microbial communi-
ties, and soil fauna) is required, focusing on the tipping point
regarding ecosystem resilience under variable degree of graz-
ing intensity and pasture management to avoid serious degra-
dation of these unique alpine ecosystems.
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