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Abstract
DNA-based stable isotope probing (DNA-SIP) was employed to establish direct link between methane oxidation activity and the
taxonomic identity of active methanotrophs in three rice field soils from Jian-San-Jiang (one baijiang origin soil, JB and one
meadow origin soil, JM) and Qing-An (meadow origin soil, QA) districts in Northeastern China. Following microcosm incuba-
tion under 1% v/v 13CH4 condition, soil organic

13C atom percent significantly increased from background 1.08 to 1.21% in
average, indicating the biomass synthesis supported by methanotrophy. Real-time PCR analysis of methanotroph-specific
biomarker pmoA genes of the buoyant density for DNA gradient, following the ultracentrifugation of the total DNA extracted
from SIP microcosms, indicated an enrichment of methanotroph genomes in 13C-labeled DNA. It suggested propagation of
microbial methane oxidizers in soils. High-throughput sequencing of 16S rRNA and pmoA genes from 13C-labeled DNA further
revealed a diverse guild of both type I and II methanotrophs in all three soils. Specifically, Methylobacter-affiliated type I
methanotrophs dominated the methanotrophic activity in JB and JM soils, whereasMethylocystis-affiliated type II methanotrophs
dominated QA soil. This implied the physiological diversification of soil methanotrophs that might be due to constant environ-
mental fluctuations in paddies.
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Introduction

The submerged wetlands are considered as a major source for
methane emission, which contribute approximately 40% of
the global methane emission (IPCC 2013). Remarkably, esti-
mates have indicated that more than 80% of the methane gas
produced from wetlands could have already been consumed
by active methanotrophy at the aerobic-anaerobic interfaces

into the same environment (Conrad and Rothfuss 1991;
Frenzel et al. 1992). Therefore, the wetlands can also be seen
as a dynamic system for vast methane consumption and sup-
port microbial guilds with high methanotrophic activities.
Rice fields represent one of the most important anthropogenic
wetland ecosystems which usually experience more frequent
fluctuations in environmental conditions due to agricultural
management, including periodic flooding, crop plantations,
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and intensive fertilization. In view of these, it provides a
unique model system differing from natural wetlands for
studying many important biogeochemical processes, includ-
ing methanotrophy, and the responsible microorganisms.
China is the largest producer of rice worldwide, and the rice
yield accounts for 43.7% of the total national grain production
(Zhang et al. 2014). The increasing demand for rice produc-
tion has accelerated the expansion of rice paddy fields in the
cold northeastern area. As methane production is a
temperature-sensitive process, the relatively long period of
off-rice winter would potentially lead to higher CH4 produc-
tion in warm rice-growing seasons in this area than subtropical
and tropical areas (Huang et al. 2015; Tang et al. 2016). Yet,
the methane fluxes and responsible organisms in these cold-
temperate regions have long escaped the scientific attention.

Methanotrophs (also known as methane-oxidizing bacteria
(MOB)) are a unique group of bacteria growing onmethane as
the sole source of carbon and energy through the enzyme
methane monooxygenase (MMO). They can be broadly divid-
ed into type I (Gamma-Proteobacteria) and type II (Alpha-
Proteobacteria) groups, which display a distant phylogenetic
relationship and distinct physiologies (Hanson and Hanson
1996). In natural wetland and lake systems, the methane oxi-
dation can be predominated by either type I or type II
methanotrophs, or co-dominated by both types (Chen et al.
2008a, 2008b; Dedysh 2009; Esson et al. 2016; Gupta et al.
2012). In paddy soils, the methane in the oxic-anoxic interface
of the soil can reach as high as 50,000 ppmv (Eller and Frenzel
2001; Nouchi et al. 1990, 1994), which can support strong
methanotrophic activity and growth. However, the composi-
tions of active methanotrophs appeared less diverse, as accu-
mulating evidence has inclined that the major contributors
were type I rather than type II methanotrophs to oxidize meth-
ane at high concentrations in most paddy soils tested (Ma et al.
2013; Qiu et al. 2008; Reim et al. 2012; Shrestha et al. 2008).
Nevertheless, this was only generated recently from a few
numbers of studies on subtropical areas, and an extended in-
vestigation into microbes in less studied geographic regions is
requisite to better understand the niche differentiation of ac-
tive methanotrophs in the rice field wetland habitats. The rice
fields in Northeast China face a relatively long period of fro-
zen state and were derived from various origins, which poten-
tially favor community compositions and population dynam-
ics differing from those in the subtropical soils.

In this study, DNA-based stable isotope probing (DNA-SIP)
technique was applied to establish a direct link between methane
oxidation and the taxonomic identity of active methanotrophs in
response to a simulated high methane content (10,000 ppmv)
from rice field soil samples. By feeding soils with 13C-labeled
methane, we aimed to compare the methane oxidization and C
assimilation potentials in three differently originated rice fields in
Northeast China, and to further reveal the community assembly
of active methanotrophs.

Materials and methods

Site description and soil sampling

Three soil samples were collected from three rice fields in
Northeastern China. Two were from Jian-San-Jiang city, one
classified as Bbaijiang^ soil (JB, 133° 1′ 3″ E, 47° 2′ 48″ N)
with white subsurface layer and the other one derived from
meadow soil (JM, 127° 1′ 39″ E, 47° 2′ 29″ N). The third
sample came from Qing-An (QA, 127° 40′ 45″ E, 46° 57′
28″N) which was also derived from meadow soil. These field
sites have a cold-temperate continental monsoon climate, with
average annual temperature of 1–2 °C. These rice fields usu-
ally experience a relatively long period of frozen state from
early October till early April. During growing season, the
fields usually received urea fertilization at approximately
150 kg N ha−1. The soil samples were collected in harvest
season from 0 to 20-cm depth by mixing three random cores.
Soil samples were homogenized by passing through a 2-mm
meshed sieve and stored at 4 °C before construction of micro-
cosms. Soil properties were determined as previously de-
scribed (Wang et al. 2015), including soil pH, organic matter,
organic C, total N, and exchangeable NH4

+-N and NO2
− +

NO3
−-N. Soil methane production rates were measured as

described in supplementary materials.

DNA-SIP microcosm

Microcosms were performedwith three treatments in triplicate
including Bcontrol^ (under atmosphere condition), Bhigh
12CH4^ (incubated with 1% v/v 12CH4), and Bhigh 13CH4^
(1% v/v 13CH4). For each microcosm, 6.0 g dry weight soil
was incubated at approximately 60% maximum water-
holding capacity and 28 °C in the dark in a 120-ml serum
bottle sealed with a butyl stopper (Zhao et al. 2015). For high
12CH4 and high

13CH4 treatments, 1.2 ml of the headspace air
in the bottles was replaced by the same volume of 12CH4 and
13CH4 gas, respectively, to make an initial methane mixing
ratio at approximately 1% (equivalent to 10,000 ppmv) in
the headspace (Cai et al. 2016; Esson et al. 2016). The
13CH4 was > 99% 13C-atom pure (Cambridge Isotope
Laboratories, USA). The headspace CH4 concentrations were
measured on a daily basis by gas chromatography (Shimadzu
GC12-A, Japan). Soil incubation ended when more than 90%
of CH4 was consumed (when the concentration dropped be-
low 1000 ppmv), and soil samples were immediately collected
and frozen at − 20 °C. The relative 13C-atom abundance and
total organic C of soil samples after microcosm incubation
were then assessed by a Flash 2000 elemental analyzer
coupled to a Delta VAdvantage isotope ratio mass spectrom-
eter (Thermo Scientific, USA) using approximately 1 g of
vacuum freeze-dried soil.
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DNA extraction and SIP gradient fractionation

DNAwas extracted from 0.5 g soil of each microcosm using
the FastDNA spin kit for soil (MP Biomedicals, USA), ac-
cording to the manufacturer’s instructions. Quality and quan-
tity of soil DNA were assayed using a NanoDrop ND-1000
UV-visible light spectrophotometer (NanoDrop Technologies,
USA). For high 12CH4 and high 13CH4 treatments, density
gradient centrifugation of total DNA was performed to sepa-
rate the 13C-labeled DNA from 12C DNA as previously de-
scribed (Jia and Conrad 2009; Xia et al. 2011). The fraction-
ated DNA in the CsCl medium was precipitated by polyeth-
ylene glycol 6000 (PEG 6000) and dissolved in 30 μl sterile
water for downstream analyses.

Real-time quantitative PCR of pmoA genes

Real-time quantitative PCR (qPCR) analysis of the
methanotrophic biomarker pmoA genes was performed with
total DNA to determine the abundances of MOB stimulated
by the methane amendment on a CFX96 Optical Real-Time
Detection System (Bio-Rad, USA). In addition, qPCR was
also conducted across fractionated DNA gradients (fraction
no. 2-14) to assess the efficiency of 13C incorporation into
the genomic DNA of MOB communities. The primer pair
and thermal condition are detailed in supplementary
Table S1. PCR reaction mixtures and the standards were used
as previously described (Zheng et al. 2014). Amplification
efficiencies ranged from 92 to 105%, with R2 values of
0.996 to 0.999.

MiSeq sequencing of 16S rRNA genes

MiSeq sequencing of 16S rRNA genes were performed for the
total DNA extracts, as well as DNA of the Bheavy^ CsCl
fractions (buoyant density around 1.735 g ml−1) retrieved
from 13CH4-amended microcosms as previously described
(Cai et al. 2016). And the fractions with the same buoyant
density from 12CH4 microcosms were used to provide back-
ground information. The generated reads were then applied to
key quality control steps to remove low-quality sequences
(Vestergaard et al. 2017) using QIIME pipeline (Caporaso
et al. 2010). A total of 1,123,367 sequences with quality score
> 20 without mismatched primers and ambiguous bases were
obtained (supplementary Tables S2 and S3) and subjected to
taxonomic assignment by RDP MultiClassifier (Wang et al.
2007). The relative abundance of type Ia methanotrophs was
calculated as the sum of sequences affiliated toMethylobacter
andMethylosarcina. And type Ib and type II were represented
byMethylocaldum andMethylocystis sequences, respectively.
All MOB-affiliated 16S rRNA gene sequences were further
recollected and clustered into OTU at 97% sequence similarity
cutoff (Schloss et al. 2009). For 13C-labeled 16S rRNA genes,

representative sequences of dominant OTUs (containing ≥ 2%
of MOB-like 16S rRNA gene sequences in at least one of the
samples) were applied to phylogenetic analysis using the
neighbor-joining method in MEGA 4.0 with bootstrapping
of 1000 replicates (Tamura et al. 2007).

MiSeq sequencing of pmoA genes

The pmoA genes in the 13C-DNA fractions were applied to
MiSeq sequencing (Cai et al. 2016). The bioinformatic pro-
cessing followed the key steps described previously (Schöler
et al. 2017). The raw sequences were clustered and classified
following quality control by multiple software programs as
detailed previously (Cai et al. 2016). A total of 19,626 high-
quality sequences were included for molecular analyses
(supplementary Table S3). For the major pmoA OTUs (con-
taining ≥ 4% of pmoA gene sequences in at least one of the
samples), a representative sequence was selected for phyloge-
netic analysis by comparing with known sequences from
GenBank. All the high-throughput sequencing reads of the
pmoA and 16S rRNA genes were deposited in NCBI
Sequence Read Archive (SRA) under the project accession
number PRJNA482071.

Results

Physicochemical properties

The basic physicochemical properties tested were listed in
supplementary Table S4. In brief, QA soil had the highest
pH, organic matter, organic C, total N, and exchangeable
NH4

+ concentration compared to JB and JM soils. In addition,
QA soil had the lowest methane production rate among all
three soils under flooded condition (supplementary Fig. S1).

Methane oxidation and assimilation

All the paddy soils displayed strong activities of methane ox-
idation and consumed more than 90% of amended methane in
10, 15, and 18 days of incubations for JB, JM, and QA soils,
respectively. Assuming linear kinetics, the methane oxidation
rate was the highest in JB soil, followed by JM and QA soils
(Fig. 1a). No significant difference was observed between
12CH4 and 13CH4 treatments (supplementary Fig. S2). The
methanotrophy-supported assimilation of methane-derived C
by microorganisms in all soils, as the soil 13C-atom abun-
dances were significantly increased from background 1.08%
to an average value of 1.21% after 13CH4-amended micro-
cosm incubation (Fig. 1b). The average C conversion efficien-
cy from methane to soil organic matter was estimated to be
36.9% during microcosm incubations, with a range between
14.3 and 58.3% (calculated in supplementary Table S5).
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Methanotrophic abundances

Soil absolute methanotrophic abundances were assessed by
real-time quantitative PCR of pmoA genes, which presented
2.81-, 5.72-, and 10.5-fold increases following the CH4-
amended microcosms in JB, JM, and QA soils, respectively
(Fig. 1c). According to high-throughput sequencing of 16S
rRNA genes, the percents of type I and type II MOB in the
whole microbial community were calculated to estimate their
relative abundances. The relative abundances of type I MOB
increased by 14.4-, 14.6-, and 8.55-fold following the CH4

amendment in JB, JM, and QA soils, respectively (Fig. 1d).
And type II in JB, JM, and QA soils increased by 1.84-, 3.97-,
and 7.41-fold, respectively (Fig. 1e). This led to increase in the
relative abundance of total MOB-like genes (Fig. 1f).

SIP of methanotrophs

Following the isopycnic centrifugation of the DNA extracts,
qPCR of pmoA genes indicated active cell propagation stim-
ulated by 13C assimilation in all three soils during methane
oxidation. A peak shift of relative pmoA gene abundances
toward heavy fract ions (buoyant densi ty around
1.735 gml−1) was clearly observed in all soil microcosmswith
13CH4 amendment, compared to corresponding 12CH4 treat-
ment in which the gene abundance peaked only in the Blight^

fractions (1.715 g ml−1) (Fig. 2). The enrichment of 13C-la-
beled MOB was further demonstrated by MiSeq sequencing
of 16S rRNA genes, as the relative abundances of total MOB-
like genes in heavy DNA fractions (1.735 gml−1) were greatly
increased compared to the background values from the same
fractions in 12CH4 treatment (Fig. 2).

Composition of methanotrophs

The methane oxidation led to changes in compositions of
methanotrophs by selection of distinct phylotypes in different
soils (supplementary Fig. S3). Taxonomic analysis of 13C-la-
beled methanotrophic 16S rRNA genes further revealed dis-
tinct proportions of active type I and II methane oxidizers
(Fig. 3a). Specifically, in JB and JM soils,Methylobacter-like
type Ia MOB were the most abundant methanotrophic phylo-
types accounting for approximately 87.1% and 70.2% of the
MOB-affiliated 16S rRNA genes, respectively (Fig. 3b). On
the contrary, type II dominated the active methanotrophs in
QA soil accounting for 99.3% of the MOB sequences (Fig.
3b). These were further confirmed by the 13C-labeled pmoA
genes. About 74.4% and 76.7% of 13C-pmoA genes were re-
lated to Methylobacter tundripaludum in JB and JM soils,
respectively, while in QA soil, Methylocystis parvus-like
MOB comprised 51.8% of pmoA genes (Fig. 3b).

Fig. 1 Methane oxidation potentials, soil 13C-atom abundances,
community sizes, and relative abundances of methanotrophs following
soil microcosms. a Methane oxidation potential was estimated as the
linear rate of methane consumption by soils. b Soil 13C-atom
abundance was measured to assess methane assimilation in soil
microcosms treated with 1% 13CH4. c The pmoA gene copy numbers
were estimated using real-time quantitative PCR. Illumina sequencing

was performed at the whole microbial community level in microcosms
targeting 16S rRNA genes, and the relative abundances of type I (d), type
II (e), and total (f) methanotrophs are expressed as the ratio of affiliated
gene reads to the total 16S rRNA gene reads in each microcosm.
BControl^ indicates a soil under natural atmosphere condition. BHigh
13CH4^ refers to soil microcosms incubated with 1% v/v 13CH4. The
error bars represent the standard errors of the triplicate microcosms
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Discussion

It is a well-known technical challenge to detect in situ activity
of microbes. The constantly fluctuating environment in rice
paddy fields such as temperature (Huang et al. 2015), moisture
(oxygen) (Walkiewicz et al. 2018), and N level (Bodelier and
Laanbroek 2004; Hahn et al. 2018) are all important factors
that might influence the metabolic activities of methanotrophs.
In this context, our lab microcosm cannot always reflect in situ
field environments. However, our relatively favorable incuba-
tion condition indeed led to distinct compositions of active
methanotrophs across different soils (two soils dominated by
type I and one dominated by type II), indicating that soil intrin-
sic biotic and abiotic factors could have been a primary force in
shaping active methanotrophic communities. In addition, the
community composition of total bacteria was not disturbed by
the microcosm condition (supplementary Fig. S4). Therefore,
SIP microcosm might to some extent reveal the different po-
tential activities by distinct methanotrophic groups, and our
result might reflect what is largely occurring under in situ con-
dition, particularly in regard to the relative activities of type I
versus type II methanotrophs that should have been controlled
by soil intrinsic factors.

The temperature variation from our soil collecting sites of
Jian-San-Jiang and Qing-An can exceed more than 60 °C
within 1 year, with lowest temperature below − 30 °C in the
winter and highest temperature above 30 °C in the summer.
Different thermal conditions might influence the relative

activity of different phylotypes. Especially, we revealed the
active contribution of Methylobacter tundripaludum-related
type I lineages to the methane oxidation in all three soils.
This strain was first isolated in permanently cold wetland en-
vironment (Wartiainen et al. 2006), and since then, the related
lineages were found in many cold ecosystems (Graef et al.
2011; He et al. 2012). We speculate that this lineage could
have played a more important role in methane oxidation under
lower temperatures, although a further study should be con-
ducted to monitor the community dynamics of this lineage in
soils under varied thermal conditions.

The revelation of active type II methanotrophs from all
three of our soils indicated that the actual methane oxida-
tion activity in paddy fields was not restricted to type I
methanotrophic groups as previous studies inclined.
Methylocystis-like type II phylotypes even dominated the
active methanotrophs in one of our soils. The dominance
of methanotrophic activity by type II MOB at high meth-
ane concentration has been rarely reported in paddy soils
(Shiau et al. 2018), although this group was often found
to be numerically abundant under in situ conditions (Luke
et al. 2014; Macalady et al. 2002; Mayumi et al. 2010;
Zheng et al. 2014; Zheng et al. 2008). Methylocystis
members of type II methanotrophs are capable of forming
resting cells, surviving on multicarbon compounds, and
using CH4 at both high and low concentrations, which
should make them especially important under frequent
disturbances or unfavorable conditions (Ho et al. 2013).

Fig. 2 The enrichment of 13C-
labeled methanotrophs based on
qPCR of pmoA and sequencing of
16S rRNAgenes followingDNA-
SIP microcosms. The relative
gene abundance is the proportion
of pmoA gene copy number in
each fraction to the total abun-
dance across the gradient. The
columns beneath display the per-
cent of methanotroph-affiliated
reads in all 16S rRNA genes in
the Bheavy^ fractions (buoyant
density 1.735 g ml−1) from
12CH4- and

13CH4-amended soil
microcosms, respectively
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Type II methanotrophs dominated the methane oxidation
only in QA soil. It is noteworthy that compared to the JM and
JB soils, QA has the lowest methane production rate under our
lab-simulated flooding condition (supplementary Fig. S1) de-
spite its highest content of organic matter. This indicated that
the methane production in this soil should be limited by the
methanogenic potentials. The greater stimulation of type II
than type I methanotrophs following our microcosm incuba-
tion could be a consequence of long-term adaptation to the
relatively low methane availability in QA soil, which con-
forms to the previous finding that type II strains can grow
under oligotrophic (low methane level) conditions (Knief
and Dunfield 2005). Additionally, it is interesting that QA soil

also had the highest N availability and pH value compared to
the other two soils, which was inconsistent with previous ob-
servations that type II methanotrophs were commonly more
competitive in N-limited conditions (Bodelier et al. 2000;
Mohanty et al. 2006; Noll et al. 2008) and low pH environ-
ments (Chen et al. 2008a, 2008b; Dedysh 2009; Gupta et al.
2012; Kip et al. 2012). Therefore, these results from our study
displayed physiological versatilities of methanotrophic phylo-
types, implying that the life strategy of soil methane oxidizing
communities might be more complex than previously
appreciated.

In conclusion, the stable isotope probing suggested that the
genomes of phylogenetically distinct methanotrophs were

Fig. 3 The community compositions of 13C-labeled methanotrophs
based on phylogenetic analyses of 16S rRNA and pmoA genes from
high-throughput sequencing. a The percentages of type Ia, Ib, and II
methanotrophs were calculated from the 13C-labeled genes following
13CH4-amended microcosm incubation. b The neighbor-joining phyloge-
netic tree illustrates the phylogenetic relations of dominant OTU

sequences with the known methanotrophic sequences from GenBank.
The percentage number indicates the relative sequence abundance of each
OTU to the total methanotroph-affiliated 16S rRNA or pmoA genes.
Bootstrap values higher than 60% are indicated at the branch nodes
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labeled to different extents. Domination by type I or type II
methanotrophic activities was revealed in the rice field soils
from cold regions, which might be largely determined by soil
intrinsic biotic and abiotic characteristics. Diverse phylotypes
were demonstrated active in our soils including type I lineages
closely related to the strainMethylobacter tundripaludum iso-
lated from cold environment andMethylocystis parvus-related
type II methanotrophs. This implied diversification of soil
methanotrophs that might be important in coping with con-
stantly changing environments in paddies.
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