
ORIGINAL PAPER

Responses of soil nitrous oxide production and abundances
and composition of associated microbial communities to nitrogen
and water amendment

Qing Wang1,2 & Yu-Rong Liu1,2
& Cui-Jing Zhang1,2 & Li-Mei Zhang1,2 & Li-Li Han1,2

&

Ju-Pei Shen1,2
& Ji-Zheng He1,2,3

Received: 4 January 2017 /Revised: 31 March 2017 /Accepted: 4 April 2017 /Published online: 17 April 2017
# Springer-Verlag Berlin Heidelberg 2017

Abstract Soil moisture and nitrogen (N) are two important
factors influencing N2O emissions and the growth of micro-
organisms. Here, we carried out a microcosm experiment to
evaluate effects of soil moisture level and N fertilizer type on
N2O emissions and abundances and composition of associated
microbial communities in the two typical arable soils. The
abundances and community composition of functional mi-
crobes involved in nitrification and denitrification were deter-
mined via quantitative PCR (qPCR) and terminal restriction
length fragment polymorphism (T-RFLP), respectively.
Results showed that N2O production was higher at 90%
water-filled pore (WFPS) than at 50%WFPS. The N2O emis-
sions in the two soils amended with ammonium were higher
than those amended with nitrate, especially at relatively high
moisture level. In both soils, increased soil moisture stimulat-
ed the growth of ammonia-oxidizing bacteria (AOB) and ni-
trite reducer (nirK). Ammonium fertilizer treatment increased
the population size of AOB and nirK genes in the alluvial soil,
while reduced the abundances of ammonia-oxidizing archaea
(AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate
addition had a negative effect on AOA abundance in the red

soil. Total N2O emissions were positively correlated to AOB
abundance, but not to other functional genes in the two soils.
Changed soil moisture significantly affected AOA rather than
AOB community composition in both soils. The way and
extent of N fertilizers impacted on nitrifier and denitrifier
community composition varied with N form and soil type.
These results indicate that N2O emissions and the succession
of nitrifying and denitrifying communities are selectively af-
fected by soil moisture and N fertilizer form in the two con-
trasting types of soil.
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Introduction

Nitrous oxide (N2O) is one of the most important greenhouse
gases that contribute to global warming and ozone destruction
in the stratosphere (Ravishankara et al. 2009). Globally, soils
a re major sources of N2O emiss ions , and 60%
(3.5 Tg N year−1) of N2O emissions are derived from arable
soils (Goldberg and Gebauer 2009; IPCC 2013). There is little
doubt that increasing atmospheric concentration of N2O is
primarily caused by the excessive use of nitrogen (N) fertilizer
(Davidson 2009; Shcherbak et al. 2014; Zhu et al. 2015).
However, N2O production from N fertilizer depends mainly
on soil properties but also by soil moisture and the type of N
fertilizer (Zhu et al. 2013b; Cheng et al. 2014; Wang et al.
2016a; Zhang et al. 2016).

N2O emissions in soils mainly occur through microbial-
mediated nitrification and denitrification (Wrage et al. 2001;
Liu et al. 2016). Nitrification-associated pathways are per-
formed by ammonia oxidizers through oxidizing ammonium

Electronic supplementary material The online version of this article
(doi:10.1007/s00374-017-1203-3) contains supplementary material,
which is available to authorized users.

* Yu-Rong Liu
yrliu@rcees.ac.cn

1 State Key Laboratory of Urban and Regional Ecology, Research
Center for Eco-Environmental Sciences, Chinese Academy of
Sciences, Beijing 100085, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Faculty of Veterinary and Agricultural Sciences, The University of

Melbourne, Parkville, Victoria 3010, Australia

Biol Fertil Soils (2017) 53:601–611
DOI 10.1007/s00374-017-1203-3

http://dx.doi.org/10.1007/s00374-017-1203-3
http://crossmark.crossref.org/dialog/?doi=10.1007/s00374-017-1203-3&domain=pdf


(NH4
+) to nitrite (NO2

−) and emit N2O under aerobic condi-
tions, but this can happen via the reduction of NO2

− by
ammonia-oxidizing bacteria (AOB) (Shaw et al. 2006; Kim
et al. 2010; Hu et al. 2015a). Under anaerobic conditions, N2O
is the intermediate product of denitrification where denitrifiers
reduce nitrate (NO3

−) to dinitrogen (N2) through NO2
−, nitric

oxide (NO), and N2O (Baggs 2011). Soil moisture, usually
measured by the water-filled pore space (WFPS), regulates
oxygen (O2) concentration and controls the aerobic and anaer-
obic conditions in the soil, which can affect the relative con-
tribution of nitrification and denitrification to N2O emissions
(Stevens et al. 1997; Bateman and Baggs 2005; Kool et al.
2011; Cheng et al. 2014; Liu et al. 2017). Nitrification is
believed to be the primary pathway of N2O production in
well-aerated soils with 30% < WFPS < 60%, while denitrifi-
cation is the major source in wet soils with WFPS of >60%
(Bateman and Baggs 2005; Kool et al. 2011). Besides, soil
moisture is a key factor influencing diffusion and transport of
nutrients, such as dissolved organic C and N availability,
which in turn affects microbial community composition and
activities in soils (Gleeson et al. 2010; Hu et al. 2015b;
Banerjee et al. 2016). Although efforts have been devoted to
revealing the impact of soil moisture on N2O emission path-
ways, it is still unclear how soil moisture affects the growth of
nitrifiers and denitrifiers and their roles in N2O emissions from
the contrasting arable soils.

N fertilizer application (ammonium and nitrate fertilizers)
has been recognized as another important factor influencing
N2O emissions from arable soils (Zhu et al. 2013a; Rosa et al.
2016; Zhang et al. 2016; Krauss et al. 2017) because it pro-
vides substrates for driving soil nitrification and denitrification
processes. Application of ammonium fertilizer can produce
N2O by nitrification, be converted to NO3

−, while NO3
− in

soils can produce N2O by denitrification (Del Prado et al.
2006). However, the effects of different forms of N addition
on nitrifier and denitrifier communities and subsequent N2O
emissions in response to altered soil moisture conditions have
not been well explored.

Beyond the significant impact of soil moisture and N fer-
tilizer type, soil type determines soil physicochemical charac-
teristics (e.g., soil texture and pH), which is important in shap-
ing microbial community composition and regulating N2O
production (Wang et al. 2015). Soil texture regulates soil
N2O emissions through influencing O2 availability (Corre
et al. 1999), because soil texture can affect the size and distri-
bution of soil pores and therefore influence soil aeration and
water content (Singurindy et al. 2006; Chen et al. 2013a).
Soil pH has been identified as another key regulator of soil
N2O emissions (Butterbach-Bahl et al. 2013), and product
ratios of N2O/(N2 + N2O) have a significantly negative rela-
tionship with soil pH within the normal range from pH 5 to 8
in agricultural soils (Chapuis-lardy et al. 2007). Further, the
activity of AMO, NIRK, or NOS is impacted by pH and O2

availability (Giles et al. 2012; Banerjee et al. 2016). Thus, the
effects of water and N fertilizer amendment on N2O emissions
and community composition of functional guilds might de-
pend on soil type.

The mechanisms of global change (e.g., water and N
amendment) impact on N2O emissions remain not well
completely understood. Therefore, we explored the role of
associated functional guilds in N2O emissions from the two
typical arable soils. Therefore, two typical arable soils with
different physicochemical properties were collected from
northeast and southern China, respectively. Soils were
amended with different types of N fertilizer under two differ-
ent soil moisture levels, and the abundances and community
composition of nitrifiers and denitrifiers were measured to
investigate their responses to short-term changes in soil N
amendment at different soil moisture levels. We hypothesized
that (1) N fertilizer type and soil water content determined
N2O emissions and predominant N cycling processes in the
arable soils and (2) the responses of N2O emissions and the
abundances and composition of associated microbial commu-
nity to water and N amendment depended on distinct soil
characteristics.

Materials and methods

Soil sampling and basic properties

Soil samples were collected from two upland fields in the
summer of 2014. The first site is located in Luancheng City,
Hebei Province, China (40° 7′ 34″ N, 119° 11′ 27″ E), and the
second one is in Qiyang County, Hunan Province, China (26°
24′ 26″N, 112° 00′ 45″ E). The soil in Luancheng is classified
as Ustochrept (alluvial soil) according to the USDA Soil
Taxonomy (USDA 1994), and the soil in Qiyang belongs to
Paleudults (red soil). Soil samples were taken from the upper
15 cm depth, and sieved (<2 mm) and stored. Soil pH was
determined in a 1:2.5 dilution with deionized water using a pH
meter (Mettler-Toledo Instruments Co., Shanghai, China).
Total N was determined using an Element Analyzer
(Elementar, Germany). Soil organic C (SOC) was determined
by wet digestion using H2SO4 and K2Cr2O7. Exchangeable
NH4

+-N and NO3
−-N concentration was determined using a

continuous flow analyzer (SAN++, Skalar, Breda, Holland)
after extraction with 0.01 M CaCl2. Particle size analysis
was measured using the sieve and hydrometer procedures.
The main soil properties were for alluvial soil: pH, 7.8;
SOC, 9.5 g kg−1; TN, 0.89 g kg−1; exchangeable NH4

+-N,
2.4 mg kg−1; NO3

−-N, 117.8 mg kg−1; and particle size,
58.0% sand, 28.1% silt, and 13.9% clay and for the red soil:
pH, 6.2; SOC, 22.4 g kg−1; TN, 1.51 g kg−1; exchangeable
NH4

+-N, 3.0 mg kg−1; NO3
−-N, 27.8 mg kg−1; and particle

size, 4.3% sand, 53.2% silt, and 42.5% clay.
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Soil microcosm incubation

Soil microcosm experiment was conducted in 250-ml glass
bottles containing 30 g of fresh soil. Soils for the experiment
were pre-conditioned at 25 °C in the dark for 1 week. Two
different types of N fertilizer were applied, (NH4)2SO4 (NH4

+)
and KNO3 (NO3

−), and then, no fertilizer addition was set up
as a control. N fertilizer treatments received a dose of
200 mg N kg−1 dry soil. In order to assure uniform distribu-
tion, N fertilizer was added as N solution. Soil moisture was
adjusted to either 50 or 90% WFPS with sterile deionized
water. The control received deionized water to reproduce the
moisture contents of the treatment samples. Each bottle was
covered with Parafilm which was poked with three or four
small holes to facilitate gas exchange. Three replicates were
set up for each treatment. All samples were incubated for
20 days in the dark at 25 °C.

N2O emission measurement and soil sampling

Gas samples were collected at different time intervals (1, 2, 4,
7, 10, and 20 days) of 20-day incubation. Before gas collec-
tion, bottles were closed with a rubber stopper for 12 h. Gas
samples were taken from the headspace by a 20-ml syringe.
N2O concentration was determined using a Shimadzu GC14B
gas chromatograph (Shimadzu GC 14B, Tokyo, Japan). The
total N2O emissions were evaluated using the following equa-
tion according to Ma et al. (2009):

TN2O ¼ ∑n
i¼1 Ri� Dið Þ

where Ri is the N2O emission rate in the ith sampling interval,
Di is the number of days, and n is the number of sampling
intervals.

Soil moisture was checked every 3–4 days and water was
supplemented if necessary. Soil samples were collected for the
measurement of soil pH and inorganic N (exchangeable
NH4

+-N and NO3
−-N) concentration at the end of incubation.

The remaining soil samples were stored at −20 °C for molec-
ular analysis.

DNA extraction and real-time PCR (qPCR) analysis

Total genomic DNAwas extracted from 0.5 g fresh soil using
MoBio Powersoil™ DNA Isolation Kit (Mobio Laboratories,
USA). DNA extraction yields were in the range of 20.5–
40.0 ng/μl and an A260/280 ratio of 1.75–1.90.

The abundance of ammonia oxidizers (AOA and AOB
amoA) and denitrifiers (nirK and nosZ) was estimated on
iQ5 Real-Time PCR Detection System (Bio-Rad, USA). The
PCR primers and thermal cycling conditions of all functional
genes were listed in Table S1. The 20 μl PCR mixture includ-
ed 10 μl of 2× SYBR Premix Ex Taq™, 0.5 μM of each

primer, and 1–10 ng of template DNA. Melting curve analysis
(65–95 °C) was conducted to assess the qPCR product spec-
ificity at the end of each amplification process. The amplifi-
cation efficiencies of all qPCR reactions were 90–100% and
R2 was between 0.993 and 0.999.

Community profiling of the nitrifiers and denitrifiers
by T-RFLP assay

The community structure of AOA amoA, AOB amoA, nirK,
and nosZ was determined by T-RFLP analysis using the fluo-
rescently labeled (6-FAM) forward primers. PCR procedure
for each gene was the same as described above. PCR products
were purified (QiAGEN Gel Extraction Kit, Hilden,
Germany) firstly and then were digested with the restriction
enzyme listed in Table S1. Terminal restriction fragments
(TRFs) were determined with an ABI 3730XL DNA
Analyzer and analyzed using Peak Scanner software v1.0
(Applied Biosystems).

Statistical analyses

The amoA gene copy numbers were log-transformed to meet
normality assumptions. Two-way ANOVA was conducted to
evaluate effects of soil moisture, N amendment and their inter-
actions on pH; inorganic N concentration; total N2O emissions;
and amoA, nirK, and nosZ gene abundance in SPSS 17.0 (IBM,
USA).P value <0.05was believed to be statistically significant.
Best of fit modeling of regression between total N2O emissions
and the abundance of AOB amoAwere performed in Sigmaplot
(Version 10) using exponential growth equation. Principal co-
ordinate analysis (PCoA) was used to visualize the Bray-Curtis
dissimilarity matrices based on the T-RFLP data from soils
collected on day 20 of the incubation. Per-mutational multivar-
iate ANOVA (PERMANOVA) was conducted to test the ef-
fects of factors and their interactions on the abundances and
composition of associated microbial communities, by using the
adonis function of the vegan package in R 3.3 software.

Results

The effects of water and N amendment on soil properties
and total N2O emissions

We observed different impacts of water and N amendment on
soil properties in the two soils (Table 1, Fig. 1). In the alluvial
soil, pH remained unchanged around 7.8 after the incubation
across all the treatments (Fig. 1a), whereas it was significantly
influenced by the addition of water, nitrogen, and their inter-
actions in the red soil (Table 1). In the red soil, pH at 90%
WFPS was higher than that at 50% WFPS under ammonium
treatment (P < 0.001). Ammonium amendment significantly
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Fig. 1 Effects of soil moisture and N amendment on soil pH and
exchangeable NH4

+-N and NO3
−-N content in the alluvial soil (a–c)

and the red soil (d–f). Error bars are standard errors (n = 3).

Statistically significant differences among treatments are represented by
different lowercase letters (P < 0.05)

Table 1 Summary for the two-
way ANOVA on the soil pH,
exchangeable NH4

+-N and NO3
−-

N, and total N2O emissions for the
two factors (soil moisture and N
amendment) and their interactions

pH Exchangeable NH4
+-N NO3

−-N Total N2O emissions

Alluvial soil

Water 0.951 0.498 0.741 <0.001

Nitrogen 0.413 0.18 <0.001 <0.001

Water × nitrogen 0.376 0.523 0.563 <0.001

Red soil

Water <0.001 <0.001 <0.001 <0.001

Nitrogen <0.001 <0.001 <0.001 <0.001

Water × nitrogen <0.001 <0.001 0.028 <0.001

P values (P < 0.05) are indicated in italics
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reduced pH (P < 0.001), which was much lower than that in
the NO3

−-treated soils (P < 0.001) (Fig. 1d).
Soil moisture showed different effects on exchangeable

NH4
+-N and NO3

−-N concentration in the two soils (Table 1,
Fig. 1). In the alluvial soil, soil moisture change did not affect
exchangeable NH4

+-N and NO3
−-N concentration (Fig. 1b, c).

However, NO3
−-N concentration was markedly influenced by

N amendment (P < 0.001) (Table 1, Fig. 1c). In the red soil,
high soil moisture (90% WFPS) led to higher exchangeable
NH4

+-N concentration compared to low moisture level (50%
WFPS) (Fig. 1e), while NO3

−-N concentration was lower at
90% WFPS than at 50% WFPS (Fig. 1f).

Total N2O emissions were significantly affected by soil
moisture, N fertilization, and their interactions (Table 1). In
Fig. 2, we found that N2O emissions were higher at 90%
WFPS than that at 50% WFPS in the two soils. There were
also significant differences in total N2O production in the two
soils under N treatments though soil moisture was kept for the
same, with higher values in NH4

+-treated soils than in NO3
−-

treated soils.

The effects of water and N amendment on abundance
of nitrifiers and denitrifiers

For nitrifiers in the two soils, AOA amoA abundance was not
affected by the changed soil water content (Table 2, Fig. 3a).
Soil moisture significantly affected AOB amoA abundance
with 90% WFPS soil containing 1.5–2 times as many AOB
amoA copies as 50% WFPS in both soils (Fig. 3b, f). AOA
amoA abundance was not strongly altered by N addition in the
alluvial soil, whereas N amendment reduced it in both NH4

+

and NO3
− treatments in red soil (Fig. 3e). The population size

of AOB was higher in the NH4
+ treatment than in other treat-

ments in the two soils (Fig. 3b, f).
For denitrifiers, enhanced soil moisture markedly increased

nirK abundance but not nosZ abundance in the alluvial soil

(Fig. 3c, d). Ammonium addition significantly increased the
nirK abundance while NO3

− amendment did not influence it
compared to the control (Fig. 3c). NosZ abundance did not
respond to NH4

+ or NO3
− fertilizers in this soil (Fig. 3d). In

the red soil, nirK abundance greatly increased with the soil
moisture increased from 50 to 90% WFPS (Fig. 3g). The
application of NH4

+ significantly reduced nirK and nosZ
abundance, which was unchanged in the NO3

−-related treat-
ments (Fig. 3g, h).

The regression analysis revealed that total N2O emissions
were significantly correlated with AOB amoA abundance in
the alluvial soil (R2 = 0.98, P < 0.001) (Fig. 4a) and red soil
(R2 = 0.65, P < 0.001) (Fig. 4b). However, other functional
genes were not correlated with total N2O emissions in the two
soils.

The effects of water and N amendment on nitrifier
and denitrifier community composition

Soil moisture affected AOA amoA community composition in
the alluvial soil, whereas there was no effect of N treatment on
AOA amoA community composition (Table 3, Fig. 5a). In the
red soil, PERMANOVA analysis revealed that AOA amoA
community composition was influenced by soil moisture, N
amendment, and their interactions (Table 3), which was fur-
ther supported by PCoA (Fig. 5e). AOB amoA community
composition was significantly affected by NH4

+ addition and
a pair-wise comparison revealed a significant difference be-
tween control and NH4

+ treatment in both soils (Table 3;
Fig. 5b, f). A pair-wise PERMANOVA test, however, deliv-
ered no significant difference between control and NO3

−-treat-
ed AOB amoA community composition in both soils
(Table 3).

Soil moisture and N amendment did not influence denitri-
fier (nirK and nosZ) community composition in the alluvial
soil (Table 3; Fig. 5c, d). In contrary, soil moisture and N
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addition and their interactions significantly affected nirK and
nosZ community composition in the red soil and a pair-wise
comparison showed obvious difference among the treatments
(Table 3; Fig. 5g, h).

Discussion

Our results showed that soil moisture was a key factor for N2O
emissions from N-treated soils, and higher N2O emissions
were observed at high soil moisture than at low soil moisture
in both soils. Normally, the soil becomes more anaerobic as
soil water content increased, leading to high N2O emissions
from denitrification. Obviously, the higher N2O production at
90% WFPS indicated that both soils did not become
completely anaerobic at high soil water content because com-
plete denitrification can lead to the conversion of N2O to N2,
decreasing N2O production (Smith et al. 1998; Zhu et al.
2013a). We observed higher N2O emissions in soils treated
with ammonium than in soils treated with nitrate, especially
under high soil water content level (90% WFPS). These re-
sults indicate that N2O emission process is regulated by soil
moisture and N fertilizer type (Zhu et al. 2013b; Minick et al.
2016). In addition, we also observed AOB abundance was
significantly correlated to total N2O emissions (Fig. 4).
These findings together emphasized that ammonia oxidation
(nitrifier nitrification and nitrifier denitrification) was the pre-
dominant pathway for N2O emissions in this study. In accor-
dance, Zhu et al. (2013a, b) demonstrated that nitrifier deni-
trification is a significant source of N2O at high soil moisture
or low O2 availability in soils. The nitrifier denitrification is
conducted by AOB, which used NO2

− rather than O2 as a
terminal electron acceptor, reducing NO2

− to N2O (Wrage
et al. 2001). Nitrification and denitrification have optima un-
der different environmental conditions, and they can appear
simultaneously in different microsites (Butterbach-Bahl et al.
2013). The sandy loam in the alluvial soil, being well aerated,
poor in SOC content, and with relatively high pH, is likely to
provide more favorable conditions for nitrification (Wan et al.

2009; Huang et al. 2014a). However, the silty clay loam in the
red soil might become more anoxic at higher soil water con-
tent than sandy loam soil in the alluvial soil (Szukics et al.
2010). Therefore, higher N2O emissions in high soil moisture
that depended on ammonium addition in the red soil might
derive from nitrification and denitrification because ammonia
oxidation could produce large amount of nitrate, which could
be used as substrate for denitrification.

The abundances of nitrifiers in the alluvial soil and red soil
responded distinctively to soil moisture and N addition, sug-
gesting N transformation processes varied with different soil
types. In both soils, increased soil moisture obviously stimu-
lated the growth of AOB rather than AOA, indicating that soil
moisture was an important factor influencing AOB abun-
dance. Similarly, Chen et al. (2013b) showed that precipi-
tation significantly increased the abundance of AOB, while
AOA abundance kept stable in the Inner Mongolia grassland.
Di et al. (2014) also observed that the population size of AOB
increased with increasing soil water content (from 60 to 130%
WHC) in a grassland soil. We speculated that increased soil
moisture could promote diffusion and transport of nutrients in
soils, providing microorganisms with key substrates such as
NH3, NO3

−, and soluble organic C (Blagodatsky and Smith
2012). In the N treatments, ammonium amendment signifi-
cantly enhanced AOB abundance in the alluvial soil and red
soil. However, ammonium addition did not have obvious ef-
fect on the abundance of AOA in the alluvial soil, but reduced
it in the red soil. The AOA abundance might have been re-
duced by low pH caused by the application of ammonium
fertilizer in the red soil, since it was reported previously that
AOA abundance was positively correlated with soil pH (3.7–
8.7) at 47 sites across the UK (Gubry-Rangin et al. 2011).
Although the negative effect of N fertilization on the AOA
abundance has been frequently reported before (Di et al. 2014;
Wang et al. 2016b), the effect of N form on it is still equivocal
and has rarely been attributed to nitrate application. In the
study, the strongly negative effect of nitrate addition on
AOA abundance in the red soil indicated that nitrate was also
the effective N form that inhibited the growth of AOA in this

Table 2 Summary for the two-
way ANOVA on AOA amoA,
AOB amoA, nirK, and nosZ gene
abundance for the two factors
(soil moisture and N amendment)
and their interactions

Abundance of AOA
amoA

Abundance of
AOB amoA

Abundance
of nirK

Abundance of nosZ

Alluvial soil

Water 0.751 <0.001 <0.001 0.529

Nitrogen 0.793 <0.001 0.007 0.918

Water × nitrogen 0.554 0.059 0.016 0.698

Red soil

Water 0.354 <0.001 <0.001 0.076

Nitrogen <0.001 <0.001 <0.001 <0.001

Water × nitrogen 0.692 0.751 0.002 0.822

P values (P < 0.05) are indicated in italics
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soil. Similar result was reported recently in Inner Mongolia
grassland soil (Ying et al. 2017). Further study needs to be

carried out to unravel inhibitive mechanisms of nitrate on
AOA growth.
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Fig. 3 Effects of soil moisture and N amendment on the abundance of
AOA amoA, AOB amoA, nirK, and nosZ genes in the alluvial soil (a–d)
and the red soil (e–h). Error bars are standard errors (n = 3). Statistically

significant differences among treatments are represented by different
lowercase letters (P < 0.05)
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In the present study, soil moisture significantly changed
AOA community composition in the alluvial soil and red soil,
while no similar effect was observed on AOB community
composition, showing that soil moisture was a crucial deter-
minant of AOA community composition. The significant

response in AOA community composition to soil moisture
was similar as other studies (Gleeson et al. 2010; Szukics
et al. 2012). Both groups of AOA and AOB have distinct
physiological characteristics and ecological niches in response
to soil water availability. There appeared to be two dissimilar
populations of AOA in the soils, one grew under oxic condi-
tions and the other grew under sub-oxic conditions. In the N
treatment, the AOB community composition was significantly
altered by ammonium addition in both soils. However, our
result was inconsistent with previous study of Avrahami
et al. (2002) who reported that agricultural soils did not show
any AOB community shifts under ammonium treatment with
4–6 weeks of incubation. This inconsistency might be attrib-
uted to higher ammonium level in our study, which could
promote the growth of AOB in soils (Jia and Conrad 2009;
Cui et al. 2013). AOA community composition remained un-
changed after N amendment in the alluvial soil, while was
altered by it in the red soil. AOB is more sensitive than
AOA in response to N fertilization in alkaline soil while
AOA is more sensitive to N fertilization than AOB in acidic
red soil. This is in agreement with Chen et al. (2010) suggest-
ing that soil type is most likely another key factor in affecting
ammonia oxidizer community composition under the N
treatment.

Water and N amendment have a significant impact on the
abundances of denitrifiers (nirK and nosZ) in the tested soils.
Increasing soil water content reduces gaseous diffusion rates,
limiting oxygen which is favorable for the growth of denitri-
fiers (Blagodatsky and Smith 2012), as the nirK abundance
increased with enhanced soil moisture. However, the nosZ
abundance remained stable between the soil water treatments
which implied that the soil condition was less anaerobic be-
cause N2O reductase (NOS) was the most sensitive to O2

inhibition (Knowles 1982; Morley et al. 2008). The increased
nirK abundance in the alluvial soil after the addition of am-
monium was in line with earlier reports suggesting that appli-
cation of urine increased the population size of nirK (Hamonts
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Fig. 4 Relationships of total N2O emissions with AOB amoA abundance in the alluvial soil (a) and the red soil (b)

Table 3 Results of PERMANOVA for testing the effects of soil
moisture, N amendment, and their interactions on ammonia oxidizer
and denitrifier community composition in the alluvial soil and red soil

AOA amoA AOB amoA nirK nosZ

Alluvial soil

Water <0.001 0.144 0.103 0.254

Nitrogen 0.477 <0.001 0.544 0.114

Water × nitrogen 0.243 0.404 0.058 0.329

50% WFPS

Control × NH4
+ 0.451 <0.001 0.403 0.531

Control × NO3
− 0.226 0.129 0.676 0.244

NH4
+ × NO3

− 0.821 <0.001 0.658 0.561

90% WFPS

Control × NH4
+ 0.601 0.004 0.062 0.852

Control × NO3
− 0.221 0.297 0.182 0.632

NH4
+ × NO3

− 0.168 0.005 0.83 0.302

Red soil

Water <0.001 0.124 <0.001 <0.001

Nitrogen <0.001 <0.001 <0.001 <0.001

Water × nitrogen <0.001 0.113 <0.001 <0.001

50%WFPS

Control × NH4
+ <0.001 <0.001 0.002 0.003

Control × NO3
− <0.001 0.335 <0.001 0.004

NH4
+ × NO3

− 0.003 <0.001 0.004 0.004

90%WFPS

Control × NH4
+ <0.001 <0.001 0.005 0.005

Control × NO3
− 0.009 0.405 0.012 0.003

NH4
+ × NO3

− <0.001 <0.001 0.004 0.007

P values (P < 0.05) are indicated in italics
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et al. 2013; Di et al. 2014). Overall, the changes of the nirK
abundance were similar to that of AOB in the alluvial soil
(Fig. 3b, c). Genome analysis suggested that most of AOB

communities contained the nirK gene which was related to
the pathway known as nitrifier denitrification (Shaw et al.
2006; Kim et al. 2010). However, in the red soil, the
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abundances of nirK and nosZ genes decreased under the am-
monium treatment, implying the response of denitrifying
genes to ammonium addition varied depending on soil prop-
erties. Soil pH was obviously reduced in the ammonium-
treated soils in comparison with the control after incubation
which could significantly inhibit the growth of denitrifiers
(Čuhel et al. 2010; Bakken et al. 2012; Huang et al. 2014b).
A notable discovery was that the community composition of
nirK and nosZ responded differently to the water and N
amendment in the two soils. Denitrifier community composi-
tion was less affected in response to water and N treatments in
the alluvial soil, whereas clearly changed in the red soil. The
distinct responses of denitrifier community composition to
water and N amendment in the alluvial soil and red soil could
be ascribed to soil type.

Conclusion

In conclusion, our study demonstrates dissimilar responses of
N2O emissions and associated microbes to N addition at al-
tered soil moisture levels in the two soils. Total N2O emissions
induced by increased soil water content and N addition in the
red soil were much higher than that in the alluvial soil.
Increased soil moisture increased AOB and nirK abundance
in the two soils. Soil NH4

+ addition increased AOB and nirK
abundance in the alluvial soil, but decreased nirK and nosZ
abundance in the red soil. Different soil types could result in
differences in soil SOC, soil texture, and pH, which may in-
fluence N2O emissions and the growth of associated function-
al guilds in soils. Our results suggest that caution should be
taken when applying N fertilization into high-moisture soils
for mitigating N2O emissions in the agricultural management.
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