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Abstract This study tests the hypothesis that microbial bio-
mass phosphorus (P) makes a significant contribution to P
solubility in riparian buffer strip soils. In 36 soils collected
from buffer strips within three UK soil associations, water-
extractable inorganic P solubility was most strongly related to
NaHCO3 extractable inorganic P. However, within individual
soil associations where soil pedological properties and man-
agement were similar, water-extractable inorganic P was most
strongly related to microbial biomass P. These results high-
light the difficulty in predicting dissolved P leaching risk
based on agronomic soil P tests alone and the dissolved P
leaching risk presented by having soils high in organic matter
and microbial biomass P in close proximity to surface waters.
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Introduction

Laboratory scale studies have demonstrated that turnover of
microbial biomass phosphorus (P) can increase soil P solubility
and leaching therefore increasing the potential for dissolved P
delivery to surface waters (Seeling and Zasoski 1993;
Blackwell et al. 2013). It is much less clear that the microbial
biomass contributes to soil P solubility at larger spatial scales
because under natural field conditions many additional factors
affect P solubility, for example geochemical solubility controls.
Riparian vegetated buffer strips present an opportunity to study
P solubility in soils of increased organic matter contents but
otherwise similar pedological properties compared with adja-
cent upslope arable field soils. Because microbial concentra-
tions of P have been shown to be strongly correlated with soil
organic matter (Joergensen et al. 1995), studying otherwise
similar soils but with varying concentrations of organic matter
may give insight into the contribution of microbial biomass P
to P solubility. The aim of this study was to test the hypothesis
that microbial biomass P makes a significant contribution to P
solubility in riparian buffer strip soils.

Material and methods

Soil samples were collected from existing buffer strips
established on three UK soil associations of differing charac-
teristics within the national Demonstration Test Catchments
(Table 1). The buffer strips were established on arable land
under either Countryside Stewardship or Environmental
Stewardship agri-environment schemes. At four buffer strips
on each soil, five soil cores (0–7 cm depth) were collected and
bulked from positions within the upslope arable field and 2
and 4 m within the buffer strip from the upslope edge during
January 2011.
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With the exception of soil total P, sample analyses were
carried out in triplicate on field moist soils that were sieved
to <2 mm. Soil samples were assayed for basal soil respiration
to infer microbial activity and glucose substrate induced soil
respiration to approximate microbial biomass size (Campbell et
al. 2003). Microbial biomass P was determined to quantify
concentrations of P held within the soil microbial biomass
(Brookes et al. 1982). Total soil P was measured using
an Accuris inductively coupled plasma optical emission
spectrometer (ARL/Fisons, Eclubens, Switzerland) after
aqua regia acid digestion of air dried soils that were sieved
to <2 mm. An agronomic soil test, NaHCO3 extractable
inorganic P, originally designed to estimate plant available
P but commonly used for determining P leaching risk, was
conducted on samples according to the methods of Olsen
and Sommers (1982). Phosphorus solubility was determined
by extracting 5 g (dry weight equivalent) of soil with 25ml
of deionised water and shaking end-over-end for 1 h before
filtration through a 0.45-μmmembrane. The concentrations of
total P in potassium persulphate-digested filtrates and the
concentrations of inorganic P in undigested filtrates were
determined by ammonium molybdate colourimetry. Organic
P was calculated as the difference between inorganic P and
total P concentration.

The variance of transformed data was analysed by linear
modelling to determine significant differences between
group means and significant relationships between variables
(R statistical software version 2.14.1). Sample populations
were analysed on the basis of a ‘position’ factor indicating
whether samples were from the arable field or positions
within the buffer strip and a ‘soil’ factor indicating signifi-
cance between different soil associations.

Results and discussion

Mean concentrations of determinants within groups and
significant differences in means between groups are
presented in Table 2. Organic matter and microbial biomass
P concentrations were significantly related (R2=0.80,
p≤0.001) and means were significantly higher in the
2- and 4-m position groups compared with the field group
(Table 2). Mean concentration of water-extractable inorgan-
ic P was significantly higher in the 2-m position group
compared to the field group and was also increased in the
4-m group (Table 2). In the data as a whole, incorporating
variation in soil pedological properties and management
caused by the soil factor, water-extractable inorganic P
concentration was most strongly related to NaHCO3 extract-
able inorganic P (R2=0.58, p≤0.001). Within individual
position groups, the slopes of this relationship were greater
in the two buffer strip position groups compared to the field
group (Fig. 1) which confirmed that other factors wereT
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Table 2 Means and standard errors of determinants measured within soil and position factor groups with overall factor significance

Soil Position Overall
significance

Ardington
(n=12)

Clifton
(n=12)

Burlingham
(n=12)

Field
(n=12)

2-m (n=12) 4-m (n=12) Soil Position

pH 5.97a 5.89ab 5.46a 5.88 5.7 5.61 p=0.009 p=0.759

Soil moisture (g kg−1) 308±14a 278±16ab 238±30b 230±18a 289±24ab 304±20b p=0.011 p=0.019

Organic matter (g kg−1) 55±4 66±5 67±15 41±4a 73±10b 75±9b p=0.338 p≤0.001

Basal soil respiration (μg C g−1 h−1) 0.32±0.05 0.27±0.03 0.40±0.07 0.20±0.03a 0.35±0.06b 0.43±0.05b p=0.199 p=0.002

Glucose SIR (μg C g−1 h−1) 1.55±0.36 1.53±0.34 1.27±0.35 0.27±0.09a 1.35±0.21b 2.73±0.21c p=0.174 p≤0.001

Microbial biomass P (mg P kg−1) 50.6±7.8 51.4±7.9 64.2±20.0 23.6±2.4a 73.8±16.1b 68.7±11.5b p=0.857 p≤0.001

Total P (mg P kg−1) 683±83ab 806±89a 550±31b 559±73 730±77 751±74 p=0.048 p=0.119

NaHCO3 extractable inorganic P
(mg P kg−1)

54.4±10.7a 24.8±2.6b 22.5±3.6b 23.1±3.1 36.0±8.0 42.7±10.0 p=0.002 p=0.111

Water-extractable total P (mg P kg−1) 4.47±0.65a 1.07±0.16b 1.14±0.32b 1.18±0.27a 2.87±0.63b 2.64±0.78ab p≤0.001 p=0.008

Water-extractable inorganic P (mg P kg−1) 3.41±0.54a 0.57±0.08b 0.57±0.15b 0.84±0.23a 1.89±0.57b 1.82±0.62ab p≤0.001 p=0.022

Water-extractable organic P (mg P kg−1) 1.01±0.28 0.58±0.09 0.58±0.17 0.38±0.10a 0.97±0.20b 0.81±0.25ab p=0.426 p=0.026

Different letters between groups within factors denote groups are significantly different at the p<0.05 significance level as determined by linear modelling

SIR substrate-induced respiration
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Fig. 1 Relationships between water-extractable P fractions and
NaHCO3 extractable inorganic P within individual position groups
and relationships between water-extractable P fractions and micro-
bial biomass P within individual soil groups. Shapes indicate that
groups are from within the soil factor where squares, circles and

triangles denote samples from the Ardington, Burlingham and
Clifton soil association groups, respectively. Shading within shapes
indicates that groups are from within the position factor where
transparency, hatching and opacity denote samples from field, 2-
and 4-m position groups, respectively
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contributing to P solubility within the buffer strip soils.
Inclusion of microbial biomass P and water-extractable organic
P in the statistical model increased R2 to 0.65. The variation
caused by the soil factor was removed by investigating relation-
ships within individual soil groups where water-extractable
inorganic P was found to be most strongly related to microbial
biomass P (Fig. 1). Therefore, by incorporating soil as a factor
in the statistical model for the data as a whole, microbial
biomass P was responsible for a significant (p=0.01) amount
of variation in water-extractable inorganic P.

The significant relationships between NaHCO3 extractable
inorganic P and water-extractable inorganic P concurs with the
findings of previous studies on the relationship between such
agronomic soil P tests and P concentrations in more soluble
fractions (Pote et al. 1996) and suggests saturation and subse-
quent desorption of P. However, the combination of NaHCO3

extractable inorganic P, microbial biomass P and water-
extractable organic P explained a greater amount of variation
in inorganic P solubility. As well as desorption, inorganic P
released from the microbial biomass and mineralisation of
soluble organic P both also contribute to the soluble inorganic
P pool. The significant relationships between water-extractable
inorganic P and microbial biomass P within the soil groups
shows how, when soil pedological properties and management
are held relatively constant, variations in microbial biomass P
concentrations can be directly responsible for significant vari-
ations in soil P solubility. Both of these findings suggest that the
soluble inorganic P pool is partially independent of soil P
determined by agronomic soil P tests which may not be sensi-
tive to small but environmentally significant changes in P
solubility. Mobilisation of P from the microbial biomass could
therefore be responsible for previously reported variations in P
solubility and leaching from soils with similar agronomic soil P
concentrations but different concentrations of organic matter
(Stutter et al. 2009; McDowell and Sharpley 2001). Elucidating
the exact mobilisation mechanisms by which microbial bio-
mass P contributes to P solubility will require targeted ap-
proaches and the novel experimental design will guide these
future studies. Given the stable temperatures and soil moisture
conditions during the period of sampling, the increased solu-
bility is most likely due to microbial turnover of P during basal
mineralisation at stable respiration rates. Under stable soil
conditions, the soluble organic and inorganic P pools would
be constantly maintained by microbial turnover as a conse-
quence of microbial death and P mobilisation coupled with
simultaneous multiplication and P immobilisation (Oberson
and Joner 2005). Subsequent biological or biochemical
mineralisation of soluble organic P would also contribute to
the soluble inorganic P pool. Phosphorus turnover would also
be enhanced during unstable soil conditions such as soil
drying or freezing where large quantities of P could be
mobilised in riparian buffer strip soils, due to microbial cell
lysis and subsequent release of P (Blackwell et al. 2010).

Microbial biomass P contributed to variation in P solu-
bility within the data as a whole and within data for the
individual soil associations tested. Phosphorus solubility is
therefore partially independent of agronomic soil P concen-
trations and depends on a range of processes which suggests
that agronomic soil P testing alone will not accurately pre-
dict dissolved P leaching risk. Combining these soil tests
with simple analyses for example, organic matter, clay min-
eral contents and water-extractable P, would greatly aid the
prediction of P leaching risk at appropriate catchment man-
agement scales. While the variation in organic matter pro-
vided by the experimental system served well to study the
microbial driver of P solubility, this variation also has im-
plications for P delivery to surface waters. Riparian buffer
strip and other riparian agricultural soils showing increased
organic matter and microbial turnover of P may bring a
dissolved P leaching risk at a critical landscape location
due to increased soil P solubility. In order to reduce this
risk, management of P mobilisation may be required and
in the case of riparian vegetated buffer strips, occasional
vegetation removal and/or tillage could help to slow
organic matter build up. A better understanding of these
processes and their contribution to P solubility and deliv-
ery at larger spatial scales will facilitate the development of
these management strategies.
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