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Abstract No-tillage systems contribute to physical, chemi-
cal and biological changes in the soil. The effects of differ-
ent tillage practices and phosphorus (P) fertilization on soil
microbial biomass, activity, and community structure were
studied during the maize growing season in a maize–soy-
bean rotation established for 18 years in eastern Canada.
Soil samples were collected at two depths (0–10 and 10–
20 cm) under mouldboard plow (MP) and no-till (NT)
management and fertilized with 0, 17.5, and 35 kg P ha−1.
Results show that the duration of the growing season had a
greater effect on soil microbiota properties than soil tillage
or P fertilization at both soil depths. Seasonal fluctuations in
soil microbial biomass carbon (SMB-C) and nitrogen
(SMB-N), in dehydrogenase and alkaline phosphomonoes-
terase activities, and in total phospholipids fatty acid (PLFA)
level, were greater under NT than MP management. The
PLFA biomarkers separated treatments primarily by sampling
date and secondly by tillage management, but were not signif-
icantly affected by P fertilization. The abundance of arbuscular
mycorrhizal fungi (AMF; C16:1ω5) and fungi (C18:2ω6,9)
was lower under NT than MP at the 10–20-cm soil depth in
July. Phosphorus fertilization increased soil microbial biomass
phosphorus (SMB-P) and Mehlich-3 extractable P, but had a

limited impact on the other soil properties. In conclusion, soil
environmental factors and tillage had a greater effect on micro-
organisms (biomass and activity) and community structure
than P fertilization.

Keywords Maize–soybean rotation . Microbial biomass .

Microbial community structure . P fertilization . Soil
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Abbreviations
AMF arbuscular mycorrhizal fungi
MP moldboard plow
NT no till
PCA principal component analysis
PLFA phospholipids fatty acid
SMB-C soil microbial biomass carbon
SMB-N soil microbial biomass nitrogen
SMB-P soil microbial biomass phosphorus

Introduction

Soil microbiota is a major driver of soil formation, nutrient
cycling, and organic matter turnover (Sotomayor-Ramίrez et
al. 2009), and is a key factor to consider when designing
sustainable cropping systems (Yeates et al. 1999). Enrich-
ment of soil quality, in the long-term, will affect the size,
composition, and activity of soil microbiota because they
are sensitive to environmental factors (Nazih et al. 2001)
and agricultural practices, including tillage (Drijber et al.
2000) and fertilization (Beauregard et al. 2010; Bossio et al.
1998; Lalande et al. 2005).

The choice of agricultural practices may lend themselves to
different processes or steps to achieve a more diverse and even
microbiome (Chaparro et al. 2012). Several studies report that
NT increased soil microbial biomass C (SMB-C), N (SMB-N),
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P (SMB-P), and enzymatic activity, which favors soil micro-
bial richness and biodiversity in the surface layers (Aslam et al.
1999; Doran and Linn 1994; González-Chávez et al. 2010; Liu
et al. 2008). Moreover, NT was shown to promote fungal
growth and slow-growing bacteria (Gram positive (G+)). Un-
der MP, microbial communities were dominated mostly by
aerobic microorganisms with a high metabolism rate (Gram
negative (G−) bacteria) (Feng et al. 2003; Frey et al. 1999;
Pankhurst et al. 2002).

Reports on how P fertilization affects soil microbial prop-
erties are contradictory. Zhong and Cai (2007) reports that
mineral P fertilizer increased microbial biomass and diversity
while others found they had no significant effect on the
composition of soil microbial communities (Bünemann et al.
2004; Hamel et al. 2006). Cruz et al. (2009) reports differences
in microbial community structures for soils fertilized with or
without P. The negative impact of P fertilization on the
development of arbuscular mycorrhizal fungi (AMF) is well
documented (Bilalis and Karamanos 2010; Hu et al. 2009;
Shukla et al. 2012). Despite research on how soil microbial
properties are affected by tillage and P fertilization, the
interactive effect of tillage and P fertilization has not yet
been evaluated for their effect on soil microbiota, particu-
larly in terms of microbial biomass, activities and the
composition of microbial communities.

Long-term studies are needed to fully understand how
agricultural practices affect the evolution of soil ecosystem
processes over time (Mitchell et al. 1991). In 1992, a long-
term experiment was established at the experimental farm of
Agriculture and Agri-Food Canada at L’Acadie, in south-
western Quebec, Canada, to evaluate the effects of tillage
and mineral fertilization practices on the soil ecosystem
processes and nutrient dynamics under a rotation of soybean
(Glycine max (L.) Merrill) and maize (Zea mays L.).

Over the growing season, developing crops can affect
soil microbial dynamics by altering the spatial distribution
and quality of organic materials from rhizodeposition and
decomposing residues (Franzluebbers et al. 1995). Concur-
rently, soil microorganisms respond to varying climatic con-
ditions, soil moisture content, porosity, and particularly
organic matter content, all of which are interrelated and
dependent, in part, on soil management (Bardgett et al.
1999; Hamel et al. 2006; Spedding et al. 2004). By assess-
ing specific soil microbial properties at several intervals
over the growing season, soil microbial biomass, activities,
and the composition of microbial communities can be mon-
itored to determine their seasonal fluctuations, and the in-
teraction of tillage with P fertilization.

This study sought to discern how soil microbial dynamics
are affected by two different tillage management practices
and three P fertilization treatments by determining seasonal
changes in the soil surface layer of microbial biomass (C, N,
and P), specific enzyme activity (dehydrogenase, alkaline

phosphomonoesterase), and microbial community structure
(phospholipids fatty acid [PLFA]) during the maize growing
season of a long-term maize–soybean rotation.

Materials and methods

Description of the experimental site

The experiment was established in 1992 at the L’Acadie
Experimental Farm of Agriculture and Agri-Food Canada
in southwestern Quebec, Canada (45°18′ N, 73°21′ W). The
soil was a clay to clay loam (Humic orthic gleysol, typic
haplaquept) with 364 g clay kg−1 and 204 g sand kg−1 in the
Ap horizon (Messiga et al. 2011).

This long-term experimental site consisted of a completely
randomized split-plot design with two tillage practices: mold-
board plow (MP) and no-till (NT) as main plots, and mineral
N (0, 80, and 160 kgN ha−1) and P (0, 17.5, and 35 kg P ha−1)
fertilizers set out in a factorial as subplots. From the onset of
the experiment, crop residues were left on the soil surface after
harvest. The treatments were replicated 4 times for a total of
72 subplots, each measuring 25×4.6 m. Details on treatment
management practices are described in Shi et al. (2012). In
2010, maize (Pioneer 38M58; 2800 corn heat units) was sown
at 74×103 plants ha−1 on May 12. Each plot comprised of six
rows with 0.76 m between rows. Nitrogen treatments, as urea,
were first band-applied (5 cm from the seeding row) at plant-
ing with 0, 48, and 48 kgN ha−1, and completed at sidedress
(June 20) with 0, 32, and 112 kgN ha−1. The P treatments, as
triple super-phosphate, were band-applied as a single applica-
tion at planting. Glyphosphate (0.89 kg ae ha−1) was used to
control weeds. Air temperature and daily precipitation data
were obtained from a weather station less than 1 km from the
experimental site (Environment Canada 2012).

Soil sampling and chemical analysis

Soil samples (composite of five cores, 2.0 cm diameter)
were collected at pre-planting (April 30), in mid-season
(July 5), and prior to maize harvest (October 12) at 0–10
and 10–20 cm depths from the experimental plots that
received 0, 17.5, and 35 kg P ha−1 and 160 kgN ha−1 for a
total of 48 samples. The soil samples were stored at 4 °C
until analysis finished; all analyses were completed within
4 weeks.

Soils for chemical analysis were air-dried and sieved
to<2 mm. Soils were extracted with the Mehlich-3 solution
(Mehlich 1984), a method recommended for eastern Canada
(CRAAQ 2003), and P in the extracts was determined by
colorimetry using the ascorbic acid–molybdate reaction
(Murphy and Riley 1962). Soil pH was measured in distilled
water with a 1:2 soil to water ratio (Hendershot et al. 2007).
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Total C and N were determined by dry combustion on
0.20 mm ground soils with a LECO CNS-1000 analyzer
(LECO Corp., St. Joseph, MI). Soil bulk density deter-
minations were made in triplicate per plot as described
by Lamontagne et al. (2001).

Soil microbial biomass C, N, and P

The SMB-C and SMB-N were determined using the chloro-
form fumigation-K2SO4 soil extraction method of Voroney et
al. (1993) with minor modifications (Shi et al. 2012). The
K2SO4-extracts were quantified for SMB-C by an automated
combustion total organic C (TOC) analyzer (Model Formacs,
Skalar Analytical, De Breda, The Netherlands). The differ-
ence in C content between fumigated and non-fumigated
samples was corrected using a KEC factor (the percentage of
total microbial C extracted by K2SO4) of 0.45 to estimate
SMB-C (Wu et al. 1990). The SMB-N was determined by
autoclaving the K2SO4-extracts at 121 °C for 30 min to
oxidize NH4

+ to NO3
− (Cabrera and Beare 1993), which was

then quantified with an automated continuous-flow injection
colorimeter using (Model QuickChem 8000 FIA+, Lachat
Instruments, Loveland, CO) following the cadmium-copper
reduction procedure (method 12-107-04-1B). The SMB-N
was calculated as the difference in total N content between
fumigated and non-fumigated samples using an extraction
efficiency factor (KEN) of 0.54 (Brookes et al. 1985).

The SMB-P was determined according to Brookes et al.
(1982) as detailed in Shi et al. (2012). Three sets of soil
including non-fumigated, fumigated, and P-spiked were
extracted with NaHCO3 and the inorganic P content in
all extracts was determined by spectrophotometry at
882 nm wavelength on a U-1000 spectrophotometer
(Hitachi Ltd., Tokyo, Japan) using the ascorbic acid–molyb-
date reaction (Murphy and Riley 1962). The SMB-P concen-
tration (mg P kg−1 dry soil) was calculated as described in Shi
et al. (2012).

Enzyme activity

To study the enzyme activity, we measured the dehydroge-
nase activity as an index of microbial activity and the
alkaline phosphomonoesterase activity as an index of organ-
ic P mineralization (Dick 1997; Nannipieri et al. 2011).
Dehydrogenase activity was determined by the reduction
of 2,3,5 triphenyl tetrazolium chloride (TTC) to triphenyl
formazan (TPF) using the method of Casida et al. (1964) as
reported in Shi et al. (2012). Briefly, field-moist soil was
incubated in the dark with TTC for 24 h at 25 °C without
shaking. The TPF was extracted with methanol by filtration
through a Whatman 934-AH glass microfiber filter and
quantified by spectrophotometry (U-2010, Hitachi Ltd.,
Tokyo, Japan) at 485 nm, and expressed as μg TPF g−1

dry soil h−1 using the standard calibration curve of TPF
(Sigma-Aldrich, Oakville, ON).

Alkaline phosphomonoesterase activity was determined
as described by Shi et al. (2012). Briefly, soil samples
were incubated with p-nitrophenol phosphate (Sigma 104)
at 25 °C for 1 h, and the p-nitrophenol released by the
enzyme was filtered through a Whatman #5 filter paper
and then measured by spectrophotometry at 420 nm. Data
were expressed as μg p-nitrophenol g−1 dry soil h−1 using
the standard calibration curve of p-nitrophenol (Sigma-
Aldrich, Oakville, ON).

Phospholipids fatty acid analysis

The PLFA profile analysis was carried out as described by
Shi et al. (2012). Briefly, total lipids were extracted from
fresh soil samples using methanol:chloroform (70:30 vol/vol),
according to Bligh and Dyer (1956) and Kolarovic and
Fournier (1986). Dried filtrate was fractionated into neu-
tral, glyco, and polar fractions using chromatography on
silicic acid (Zelles and Bai 1993). The fatty acid methyl
esters were got from the polar lipid fraction (White et al.
1979). Each sample received methyl nonadecanoate fatty
acid (Sigma Aldrich, Oakville, ON) as an internal standard
and samples were dried and stored until analysis at −18 °C.
Gas chromatography analysis was conducted using a Var-
ian 3900 equipped with a flame ionization detector (FID)
and a CP-8400 auto-sampler, according to Beauregard et
al. (2010).

Peaks were identified and quantified as reported in Shi et
al. (2012). Bacterial and fungal fatty acids were identified
according to the Supelco standard based on the International
Union of Pure and Applied Chemistry system as reported in
Lalande et al. (2005), while the AMF (C16:1ω5) and fungal
(C18:2ω6,9) markers were named as follows: total number
of C followed by a colon, the number of double bonds, the
symbolω, and the position of the first double bond from the
methyl end of the molecule.

Individual fatty acids have been used as signatures for
various functional groups of microorganisms (Zelles et al.
1995). Biomarkers 2OH-C12:0, 2OH-C14:0, 3OH-C14:0,
2OH-C16:0, C14:0, a-C15:0, i-C15:0, C15:0, C16:0, i-
C17:0, C17:0Δ, C17:0, C18:0, C18:1c, and C18:1t were
chosen to represent bacteria (Bardgett et al. 1999; Bossio
et al. 1998; Grayston et al. 2001). The biomarkers
C18:2ω6,9 and C16:1ω5 were chosen to identify fungus
(Frostegård and Bååth 1996) and AMF, respectively. The
latter marker was successfully used in several studies
(Balser et al. 2005; Beauregard et al. 2010; Helgason et
al. 2010) in spite of its presence in some gram negative
(G−) bacteria (Olsson 1999). Total PLFA represents all
the bacterial biomarkers plus the fungal and mycorrhizal
markers.
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Statistical analysis

All data were converted to area unit by bulk density except
pH and moisture content. All the converted data were sub-
jected to Bartlett’s test for homogeneity of variance of
residuals and were log transformed to achieve normality of
distribution for the analysis of variance. The analysis of
variance was performed with the PROC Mixed Procedure
of SAS (SAS Institute 2004) to evaluate the effects of
sampling date, tillage, P fertilization, and their interactions
for the properties at each soil depth. When treatment effects
were significant (P≤0.05), the LSD procedure was used to
identify differences among treatment means. The PLFA
(relative abundance) as affected by sampling date, tillage,
and P fertilization in each soil depth, was analyzed further
with SAS software using principal component analysis
(PCA) after standardizing the data (SAS Institute 2004).
Correlations between soil chemical (pH, Mehlich-3 P, total
C and N, moisture content) and microbial (biomass, activity,
and community) properties were determined in MP and NT
by a redundancy analysis using the library vegan (Oksanen
et al. 2010) in R (2012).

Results

Climatic conditions

The growing season of 2010 was warmer and generally wetter
than the long-term 16-yr (1995–2010) average, although July
was slightly drier with 80 mm of precipitation compared with
105 mm for the long-term average. Maximum air temperature
at time of sampling was 19 °C on April 30, 34 °C on July 5,
and 12 °C on October 12.

Effect of sampling date

Sampling date had a greater influence on soil properties than
tillage and P fertilization at both soil depths (0–10 and 10–
20 cm; Table 1). Overall, the July samples differed from the
two others; in particular, warm and dry weather conditions
combined with an actively growing crop to substantially
decrease the soil moisture content (Fig. 1).

All three microbial biomasses (SMB-C, SMB-N, and
SMB-P) were significantly affected by date at both soil
depths (Table 1, Fig. 2). The interaction of sampling date
with tillage significantly affected SMB-C and SMB-N at the
0–10-cm soil depth, with values the greatest in April and
least in July for NT; little variation was observed for MP.
The content of SMB-P was generally greater in October and
April than in July at the 0–10-cm soil depth. At the 10–20-
cm soil depth, SMB-C significantly decreased from April to
July and kept constant until October with no P or 35 kg P

ha−1 and kept constant all the time with 17.5 kg P ha−1 under
MP, but was least in July under NT with all P application
rates; whereas the amounts of SMB-N were least in July in
NT, and no significant seasonal fluctuation was observed in
MP. At the same soil depth, there was a marked increase in
the content of SMB-P at the end of the season for the 35 kg
P ha−1 treatment under MP; lower values were observed for
the other P treatments. Under NT, slight increases were
obtained over time but only for the P0 and P17.5 treatments.

Dehydrogenase and alkaline phosphomonoesterase activ-
ity varied over the growing season at both soil depths, and
increased without tillage (Table 1; Fig. 3). Both enzyme
activities were more negatively affected by the low soil
moisture condition in July under NT than MP, particularly
at the 0–10-cm soil depth.

All phospholipids data (AMF, bacterial, fungal, and total
PLFA) were significantly affected by sampling date at both
soil depths (Tables 1 and 2). Bacterial, fungal (C18:2ω6,9),
and total PLFA levels were least in July for both tillage
systems (MP and NT) and depths. The level of AMF bio-
mass (C16:1ω5) was also least in July for both tillage
systems at the 0–10-cm depth, but it did not vary signifi-
cantly during the season under MP at the 10–20-cm depth.
No significant variation of the fungal to bacterial (F/B) ratio
was observed at the 0–10-cm depth. The interaction of
sampling date with P fertilization significantly affected the
F/B ratio at the 10–20-cm depth, which was least in July
with no P, kept constant with 17.5 kg P ha−1, and was least
in April with 35 kg P ha−1.

Sampling date significantly affected soil pH, moisture
content, and total C at both soil depths (Tables 1 and 2;
Fig. 1). However, fluctuations of these properties were more
apparent under NT than MP at the 0–10-cm depth. Seasonal
variations in soil Mehlich-3 P were also observed under MP
and NT at both soil depths. Sampling time in interaction
with P fertilization showed that concentrations of Mehlich-3
P substantially increased in October with P treatments,
compared with July, especially under NT at the 10–20-cm
depth.

Effect of tillage

Tillage had a greater effect on soil microbial and chemical
properties at the 0–10-cm soil depth than at the 10–20-cm
depth (Table 1). Tillage significantly affected all properties,
except for F/B ratio, pH and total N at the 0–10-cm depth,
but only significantly affected SMB-C, F/B ratio and
Mehlich-3 P at the 10–20-cm depth.

At the 0–10-cm depth, when compared with MP, NT
generally increased soil pH, moisture content, Mehlich-3 P,
SMB-C, SMB-N, SMB-P, both enzyme activities, AMF, and
bacterial, fungal, and total PLFA in April and October, but
not significantly in July (Figs. 1, 2, and 3; Table 2). For
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Mehlich-3 P and SMB-P, the increase with NT was only in
combination with P applications of 17.5 and 35 kg P ha−1.

At the 10–20-cm soil depth, NT increased SMB-C, SMB-
N, and enzyme activities in April and October, and Mehlich-
3 P in October, relative to MP (Figs. 1, 2, and 3). Tillage had
a complex relationship with SMB-P, which depended on
date and P application. In April, NT tended to produce a
higher SMB-P with 35 kg P ha−1 than MP, whereas in
October the same P application under MP increased the
concentration of SMB-P (Fig. 2). On the other hand, AMF
and fungal PFLA were significantly greater with MP than
with NT in July (Table 2). The F/B ratio was significantly
greater under MP than NT for all sampling dates at the
10–20-cm depth.

Effect of P fertilization

Phosphorus fertilization had a limited impact on the mea-
sured soil properties (Table 1). Soil Mehlich-3 P increased
with increasing P additions at both the 0–10- and 10–20-cm
soil depths, especially under NT in April and October
(Fig. 1). At the 0–10-cm soil depth, P fertilization increased
SMB-P from 18 to 21 mgkg−1 without P to an average of 26
and 39 mgkg−1 with 35 kg P ha−1 under MP and NT, which
represents an increase of 41 % and 79 %, respectively
(Fig. 2). At the 10–20-cm soil depth, P fertilization in-
creased SMB-P from 20 to 21 mgkg−1 without P to an
average of 31 and 29 mgkg−1 with 35 kg P ha−1 under MP
and NT, which represents an increase of 57 % and 41 %,
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respectively. Phosphorus fertilization combined with tillage
and sampling date influenced SMB-N and dehydrogenase
activity at the 10–20-cm soil depth. Under NT, SMB-C,
SMB-N, and dehydrogenase activity were significantly
greater for the 17.5 kg P ha−1 application than for 35 kg P
ha−1 in April; the opposite effect was found in October
(Figs. 2 and 3). Alkaline phosphomonoesterase activity
was not significantly affected by P fertilization at both soil
depths.

Soil PLFA profiles

Principal component analysis of all PLFA biomarkers indi-
cates that the composition of soil microbial community

structure was affected by sampling date and tillage, while
P fertilization had no significant effect at either soil depth
(Table 3). Results indicate that the first and second principal
components (PC1 and PC2) explain 67 % and 61 % of total
variation at the 0–10-cm soil depth and 10–20-cm soil
depth, respectively (Figs. 4 and 5). For PC1, all treatments
were separated by sampling date at both soil depths, and for
PC2 only at the first depth; PC2 was separated only at the
10–20-cm depth by tillage system. The overall loadings for
PC1 show that most bacterial biomarkers (i-C15:0, a-C15:0,
C15:0, 2OH-C14:0, 3OH-C14:0, i-C17:0+C17:0Δ, C17:0,
2OH-C16:0, and C18:1c) and AMF biomarker (C16:1ω5)
primarily drove the separation of groups at the 0–10-cm
depth. The bacterial biomarkers (3OH-C14:0, C16:0, i17:0
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+C17:0Δ, and C18:0) and the AMF biomarker (C16:1ω5)
were important contributors to PC2 at the first soil depth
(Table 3; Fig. 4b). A similar trend was observed at the
second soil depth, except for AMF and fungal (C18:2ω
6,9) markers (Table 3; Fig. 4b). At the 10–20-cm soil depth,
the AMF marker was not the significant driving factor for
PC1 and PC2, but the fungal marker was a major contributor
to PC2.

Relationship between soil microbial and chemical properties

Redundancy analysis using microbial (biomass, activity, and
community) and chemical properties indicates a different
relational pattern that depended on tillage system (Fig. 6a,
b). Under MP, SMB-C and -N were positively correlated to

total C and N contents, and SMB-P and alkaline phospho-
monoesterase activities were positively correlated to pH and
Mehlich-3 (Fig. 6a). Soil microbial community components
were positively correlated with each other and to C/N ratio,
moisture content, and total C. Under NT, all microbial prop-
erties were positively correlated to soil chemical properties,
especially pH, total C, and moisture content (Fig. 6b).

Discussion

Seasonal variation

Our results confirm that sampling date was the dominant
factor since all measured soil microbial and physicochemical
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properties showed significant variability at both soil depths
over the growing season. These seasonal variations are charac-
terized by the low values for most microbial properties in July.

In the present study, soil moisture, microbial biomass (C,
N, and P), and enzyme activities were lowest in July. In
2010, July was particularly dry, below the long-term aver-
age, and usually drier than spring and fall. This result shows
how microbial properties can be affected by fluctuations in
their microenvironment. It is well documented that moisture
and temperature are major environmental factors controlling
microbial abundance and distribution (Díaz-Ravoña et al.
1995; McGill et al. 1986). Our results show a positive, and
more clearly defined relationship between soil moisture
content and SMB-C and -N under NT than MP (Fig. 6).
This result indicates that environmental conditions, such as
moisture, played a major role in the seasonal variation of
SMB-C and SMB-N under NT. Soils under NT are known to
have a higher organic matter and moisture content in the
surface layer than those under MP (Feng et al. 2003). In
addition, Jin et al. (2011) report that soil porosity was
greater under NT than MP after 11 years of no-tillage
farming, largely due to an increase in macro- and meso-
soil porosity. This increase in porosity coupled with a higher
organic matter content could be partly responsible for the
greater moisture under NT.

Analysis of PLFA profiles reveals a higher variability
due to sampling date than to tillage but without signif-
icant correlation with P fertilization. This result agrees
with other studies reporting changes in community
structure over the growing season, and which show a
greater variability than that associated with crop man-
agement, such as fertilization, rotation, drainage, tillage,
or residues left on soil (Bardgett et al. 1999; Spedding
et al. 2004). Regardless of tillage and P fertilization,
total PLFA and bacterial, fungal, and AMF biomass
were greatest in spring or fall than in summer at both
soil depths. Moreover, this enriched microbial commu-
nity composition was closely related to soil moisture
content under NT and MP (Fig. 6a, b). From our anal-
ysis of the PCA loadings, we observe that the fungal
biomarker (C18:2ω6,9) was enriched in the April sam-
pling (Figs. 4 and 5). It has been previously reported
that fungi are important contributors to the decomposi-
tion of plant residues, particularly within the spring
subsurface layer (Durrieu 1993; Schutter and Dick 2001).
On the other hand, at both soil depths, the October
sampling was characterized by markers of G+ bacteria,
predominantly composed of branched fatty acids and
with G− bacteria associated with hydroxyl fatty acids
(Wilkinson 1988).

Table 2 The interaction effect
of tillage and sampling date
on soil total C and N, and phos-
pholipid fatty acids (bacterial,
fungal, AMF, and total PLFA) at
0–10 and 10–20 cm soil depths

MP moldboard plow, NT no till,
AMF arbuscular mycorrhizal
fungi, PLFA phospholipids fatty
acids, F/B ratio ratio of fungal to
bacterial PLFA, SEM standard
error of mean
aMeans followed by the same
letter in each column within
a depth category are not
significantly different at P=0.05

Source of
variation

pH Moisture
content

Bacterial
PLFA

Fungal
PLFA

AMF
PLFA

Total
PLFA

% gha−1 gha−1 gha−1 gha−1

0–10 cm

April

MP 6.1ba 21.1c 2394b 135b 76bc 2604b

NT 6.6a 24.1a 4402a 238a 155a 4795a

July

MP 5.7c 15.7e 986d 60c 25e 1071d

NT 5.7c 16.3e 1326cd 57c 36de 1419cd

Oct

MP 5.9bc 21.8d 1555c 86b 50cd 1691c

NT 6.1b 22.6b 2465b 131b 83b 2679b

SEM (n=6) 0.14 1.4 504 27.7 19.1 550

10–20 cm

April

MP 6.1a 22.3a 1788a 92a 58ab 1938a

NT 6.3a 22.1a 2016a 75a 73a 2164a

July

MP 5.7bc 17.5b 734b 40b 48b 822b

NT 5.6c 16.7b 794b 28c 23c 845b

Oct

MP 5.9b 21.9a 1714a 102a 58ab 1874a

NT 5.8b 22.2a 2050a 96a 68a 2214a

SEM (n=6) 0.27 2.6 244 12.8 7.3 261
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Effect of tillage

Variation in SMB-C, SMB-N, SMB-P, dehydrogenase and
alkaline phosphomonoesterase activities, and AMF, bacteri-
al, fungal, and total PLFA biomass confirm the positive
effect of NT, especially at the soil surface (0–10-cm depth),
as reported previously (Aslam et al. 1999; Doran and Linn
1994; González-Chávez et al. 2010; Liu et al. 2008). This
result also corroborates Needelman et al. (1999) who found
that tillage largely impacted the topsoil constituents of agri-
cultural systems. Drijber et al. (2000) detected a significant
decline in the mycorrhizal marker from no-till to plowed
soil, while Pankhurst et al. (2002) observed a higher F/B
ratio at the 0–5-cm soil layer with direct drilling (NT) versus
conventional cultivation (MP). In our study, we observed
higher values in total PLFA under NT at both soil depths,
indicating that many bacteria, either G+ or G− in association
with fungi, were able to degrade complex substrates, such as
lignin and humic acid, that are often found in the surface
layer of no-till soils (Burke et al. 2003; Durrieu 1993; Schutter
and Dick 2001).

In our study, the soil at the 0–10-cm depth of NT contained
more microbial biomass and microbial activities (dehydroge-
nase, alkaline phosphomonoesterase activities) than the soil
under MP, which agrees with other reports (Balota et al. 2004;
Doran 1980; Doran et al. 1998; González-Chávez et al. 2010;
Liu et al. 2008; Spedding et al. 2004). Paul and van Veen
(1978) report that microbial biomass C, N, and P decreased
with an increase in tillage disturbance because of lower

organic matter inputs to the soil. Soils under NT have more
crop residues on the surface, and therefore a greater organic
matter content (Dick and Durkalski 1998; Feng et al. 2003),
which in turn increases the soil microbial biomass due to
higher substrates for microbial growth (Kandeler et al.
1999). Regardless of tillage, our study shows a strong corre-
lation between SMB-C and -N and total C, which indicates
that soil organic matter was an important factor affecting
microbial biomass and its activities (Aciego Pietri and
Brookes 2008). Other factors, such as soil temperature, pH,
moisture, and clay content, also reportedly affect microbial
biomass in soil (Carter 1986; Gestel et al. 1993; Nicojardot
et al. 1994). Our results from the redundancy analysis show
that with the higher organic matter content under NT thanMP,
all microbial properties were positively affected.

Soil depth is an important factor in microbial community
distribution (Acosta-Martinez et al. 2007; Bausenwein et al.
2008; Hansel et al. 2008), which explains some of the
effects from management practices (Sun et al. 2011). Typi-
cally, NT promotes C storage in the surface soil layer. When
soil is mouldboard plowed, the layer near the bottom of the
plow, usually at a 20–30-cm depth, becomes richer in or-
ganic matter over cropping years (Angers et al. 1997; Poirier
et al. 2009), which we also observed. This accumulation of
total C beyond the 20-cm depth is due to long-term MP
tillage; however, in our study the 0–10-cm depth had a
higher total C content under NT than MP. This accumulation
of total C near the soil surface in NT explains how a high
level of soil microbial biomass (SMB-C and SMB-N) and

Table 3 Soil microbial commu-
nity structure as affected by
sampling date, tillage, and P
fertilization, and PLFAs scores
on the first two principal
components at 0–10 and
10–20 cm soil depths

ns not significant at P=0.05
aMeans of biomarker on
the principal components was
not significant at P=0.05
and the scores are not shown
in the table

0–10 cm 10–20 cm

PC1 PC2 PC1 PC2

Sampling date <0.001 0.007 <0.001 ns

Tillage ns ns ns 0.022

P fertilization ns ns ns ns

PLFAs (P<0.05) receiving scores on the first two principal components

Fatty acid Scores - PC1 Fatty acid Scores - PC2

0–10 cm 10–20 cm 0–10 cm 10–20 cm

i-C15:0 0.34 0.34 C15:0 – 0.27

a-C15:0 0.39 0.32 3OH-C14:0 0.41 0.28

C15:0 0.30 0.26 C16:0 0.48 0.18

2OH-C14:0 0.38 0.33 C16:1ω5 −0.40 –

3OH-C14:0 0.20 0.30 i-C17:0+C17:0Δ −0.26 −0.20

C16:0 –a 0.31 C17:0 – 0.28

C16:1ω5 0.23 – 2OH-C16:0 – −0.44

i-C17:0+C17:0Δ −0.33 −0.34 C18:0 0.51 0.42

C17:0 −0.33 −0.32 C18:2ω6,9 – −0.38

2OH-C16:0 0.27 –

C18:0 – 0.22

C18:1c 0.31 0.31
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enzyme activities can be obtained. More fungal and AMF
biomass was observed at the 10–20-cm soil depth under MP,
thanNT, particularly in July. This predominance of fungi is also
evident in the F/B ratio (Fig. 3). This observation confirms that
the total C accumulation in the bottom of the plow layer might
have set conditions for the establishment of some microorgan-
isms, in particular fungi that are known to be fundamentally
different in terms of decomposer groups (Mille-Lindblom and
Tranvik 2003; Rousk and Bååth 2007; Six et al. 2006).

Effect of P fertilization

The effect of P fertilization on soil microbial properties was
less than that attributed to sampling date and tillage. In the

present study, P fertilization affected SMB-P at both depths,
similar to the effect from Mehlich-3 P. The SMB-P can
play an important role in P cycling, and its availability
to plants, by acting as a source (mineralization), or as a
sink (immobilization), of phosphate ions (Achat et al. 2009a,
b; Oberson and Joner 2005). Regardless of tillage system, we
found a positive correlation between SMB-P and soil
Mehlich-3 P, in agreement with Gosai et al. (2010). In fact,
P fertilizer additions increased soil available P and also en-
hanced SMB-P, which indicates that SMB-P was primarily
acting as a source for recovering available P in the minerali-
zation process. However, P fertilization had no significant
effect on alkaline phosphomonoesterase activity. This enzyme
activity is mainly of microbial origin (Juma and Tabatabai

Fig. 5 Ordination plots of the microbial community composition
(based on phospholipids fatty acids) as determined by principal com-
ponent analysis (PCA) at a 10–20-cm soil depth under long-term
management. PCA shows 61 % of the variation explained by two main
axes. a Tillage and P fertilization treatments in three sampling dates. b
Position of the signature fatty acids in the axes referring to the loading
values of the principal component analysis. MP moldboard plow, NT
no-till, P0 0 kg P ha−1, P17.5 17.5 kg P ha−1, P35 35 kg P ha−1

Fig. 4 Ordination plots of the microbial community composition
(based on phospholipids fatty acids) as determined by principal com-
ponent analysis (PCA) at a 0–10-cm soil depth under long-term man-
agement. PCA shows 67 % of the variation explained by two main
axes. a Tillage and P fertilization treatments for three sampling dates. b
Position of the signature fatty acids in the axes referring to the loading
values of the principal component analysis. MP moldboard plow, NT
no-till, P0 0 kg P ha−1, P17.5 17.5 kg P ha−1, P35 35 kg P ha−1

Biol Fertil Soils (2013) 49:803–818 813



1978), unlike acid phosphomonoesterase which originates
from plants and microbes (Tabatabai 1994), and is strongly
correlated to labile organic P but not to labile inorganic P
(Turner and Haygarth 2005). This result could explain the lack
of response in our study.

Results of the present study show that P fertilization had
no significant effect on soil microbial community structure
and its specific PLFA biomarkers. This result contrasts with
Cruz et al. (2009) who report that soil microbial community
structure was influenced by 37 years of P fertilization in a
Brown Chernozem. However, Hamel et al. (2006) found
that variations in P did not influence the composition of
microbial communities in a wheat-based rotation, while

Bünemann et al. (2004) observed that P fertilization did
not significantly affect total amount of PLFAs, bacterial
and fungal biomasses under a maize–crotalaria fallow rota-
tion. Redundancy analysis shows that soil microbial com-
munity structure components were more closely related to
total C and C/N ratio of soil than Mehlich-3 P, for both
tillage managements. This result indicates that soil organic
matter is the key factor affecting the biomass and composi-
tion of soil microbial community. Even in soils with low
plant-available P, the growth of soil microorganisms are
more limited by C and N than by P (Bünemann et al.
2004; Ehlers et al. 2010). According to resource-ratio theo-
ry, the microbial community structure composition and total
hydrocarbon-degrader biomass vary in response to changes
in the supply and the ratios of potentially growth-limiting
resources within a system (Smith et al. 1998). Because P
fertilization did not affect total C and N, even though
Mehlich-3 P was increased, the composition of soil micro-
bial communities could not adapt to changes in soil-
available P. In other words, with unchanged values in total
C, SMB-C and SMB-N, P could not be the limiting factor
for soil microbial communities.

Interactive effects of sampling date, tillage, and P
fertilization

We found a large interactive effect between tillage and
sampling date. The NT system usually had a positive effect
on soil microbial properties in April and October, but not in
July. This result indicates that environmental factors, such as
dry summer conditions, can change the effect of tillage on
soil microorganisms; also, effects of the tillage system may
differ during the growing season. Under NT, both enzyme
activities and SMB-C and -N followed a similar seasonal
pattern that could be attributed to soil moisture content. In
MP, a different trend was observed with limited fluctuation
during the growing season. According to the redundancy
analysis, correlations between soil microbial and chemical
properties differed with tillage system. This result shows
that changes in soil microbial biomass and enzyme activities
are influenced by a combination of factors including soil
environmental conditions and organic matter content, which
are important in controlling overall nutrient cycling and
availability (Chen et al. 2003; He et al. 1997). However,
the contribution of individual factors affecting soil enzyme
activities and SMB-C and -N depended on tillage system.
Usually these response variables were mainly regulated by
organic matter between tillage systems, but when soil envi-
ronmental factors changed, the growth of soil microorgan-
isms were limited more under NT than MP.

The trends in SMB-P are difficult to be interpreted.
Seasonal variation in SMB-P was already observed for
tillage, P fertilization, and also with soil depth; the lowest

Fig. 6 Significant correlations between soil microbial (biomass, activ-
ity, and community) and chemical properties as tested by redundancy
analysis at P<0.05. a MP moldboard plow. b NT no-till
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values were not always in July. This result contrasts with
Liu et al. (2008) who found that regardless of tillage or P
fertilization, SMB-P increased from seeding to the middle
of the growing season, peaking either in June or July and
then decreasing in October. The difference between the
two studies indicates that SMB-P is not mainly con-
strained by environmental factors, which differs from
the other microbial aspects. With a similar pattern as
Mehlich-3 P, SMB-P was also affected by tillage×P
fertilization; the increase under NT was only found with
P applications of 17.5 and 35 kg P ha−1 in April and
October. High correlations were obtained between SMB-
P and Mehlich-3 P and pH both under NT and MP based
on RDA analysis. This result indicates that the temporal
variation of SMB-P could be affected by a combination
of P availability, pH, and environmental conditions.
Moreover, results also show that Mehlich-3 P was posi-
tively correlated with all microbial properties under NT
but only with SMB-P and alkaline phosphomonoesterase
under MP. In the present study, the absence of a response
of alkaline phosphomonoesterase to P addition was ob-
served, which disagrees with the point that the synthesis
of phosphomonoesterases in soil is depressed by the
application of inorganic P (Nannipieri et al. 2011). The
fact that Mehlich-3 P was correlated with alkaline phos-
phomonoesterase both under NT and MP may mean that
there were other factors affecting enzyme activity. Indeed,
soil texture (clay to clay loam) particularly clay particles
may stabilise extracellular phosphomonoesterase, which
will become active and mask the real effect of inorganic
P on enzyme synthesis. Thus, the observed relationship
between Mehlich-3 P and microbial properties under our
two tillage systems indicates that there was a greater
microbial role in P availability through SMB-P turnover
under NT thanMP. Therefore, for maize grown in a long-term
rotation, NT combined with P fertilization could help to sus-
tain soil-available P through the soil P biological cycle during
the growing season.

Conclusion

This study found that in addition to seasonal conditions
affecting the variability of microbial and soil physico-
chemical properties throughout the growing season for
maize, soil microbial biomass, activity, and composition
of microbial communities responded to changes in soil
conditions, with tillage having a greater effect than P
fertilization. Phosphorus fertilization increased SMB-P
and soil Mehlich-3 P, with soil microbial biomass and
activity being more predominant under NT than MP;
these effects were mostly related to soil moisture con-
ditions and organic matter content. The PLFA analysis

emphasizes that soil microbial community structure was
primarily affected by environmental factors, minimally
affected by tillage practice, and not significantly affect-
ed by P fertilization. Soil microbial properties varied
less over time under MP than NT. This result indicates
that soil microbial biomass, activities, and microbial
community composition depend more on soil organic
matter for their growth and were not limited by soil P
status. However, we also found that NT combined with P
fertilization could help to sustain a supply of soil avail-
able P by improving the soil P biological cycle. Further
studies should be conducted to determine how environ-
mental variations (i.e., winter conditions) will affect soil P
dynamic associated to microbial change.
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