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Abstract Phylogenetic analysis of cloned 16S rRNA gene
fragments from Cornitermes cumulans (T) and its termite
mound soil (TM) from the Brazilian Cerrado (Brazilian Sa-
vannah) revealed a great diversity of sequences. The bacteria
detected in T and TM samples were associated with the fol-
lowing major lineages: Spirochaetes (T), Firmicutes (T), Syn-
ergistetes (T), Cyanobacteria (T), Fibrobacteres (T),
Elusimicrobia (T), Chloroflexi (TM), Verrucomicrobia (TM),
Gemmatimonadetes (TM), Armatimonas (TM), Proteobacte-
ria (T and TM), Actinobacteria (T and TM), Bacteroidetes (T
and TM), Planctomycetes (T and TM), and Acidobacteria (T
and TM). All archaeal sequences only obtained from TM
sample were associated with uncharacterized Crenarchaeota.
The high values that were obtained for the diversity indices and
evenness are indicative of high bacterial diversity from T and
TM libraries, whereas the TM archaeal library exhibited low
diversity. Therefore, our findings revealed differences between
the bacterial communities from termite mounds and those from
C. cumulans, the latter of which represents a specific bacterial
composition when compared to other termite species.

Keywords Cornitermes cumulans - Termite mound - 16S
rRNA - Prokaryote
Introduction

Soil contains a diverse and vast biota, and the microorgan-
isms that make up this biota perform an essential role within
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the environment by participating in the cycling and flux of
various nutrients and by influencing structure formation and
the maintenance of soil quality (Martins 2010). In addition
to microorganisms, termites also have a large influence on
soil characteristics and are known as “soil engineers”.

Termites are a group of insects that have an ecological
impact on carbon turnover through cellulose degradation
and the cycling of nutrients, which is of the utmost impor-
tance to the environment. Different species of termites build
unique types of nests, such as galleries and simple cham-
bers, underground nests, arboreal nests, or mounds. The
mounds built by these insects are usually made of a mineral
matrix that is mixed with feces or saliva, depending on the
species of termite. These structures are the leading cause of
soil physical changes, including the ability to hold water,
density and structural stability, soil chemical modifications,
and organic matter content (Fall et al. 2007). These changes
can affect the activity and diversity of bacteria, which in
agricultural systems are directly influenced by changes in
soil (Jangid et al. 2008).

Cornitermes cumulans (Kollar 1932) is a termite species
that belongs to the family Termitidae, and only some mem-
bers construct a nest mound, known as “mound termites,”
because of the huge nest they build and because of their high
prevalence in grazing land. This species is unique to the
Neotropics, and their nests are the most abundant in Brazil,
especially in the Cerrado (Brazilian Savannah); thus, this
termite is an important species for the ecosystem. Using a
mineral matrix and saliva, C. cumulans can construct
mounds that range in height from 50 to 100 cm. The feeding
habits of this termite species are based on litter that includes
mostly leaves and the dead roots of grasses.

Despite of the known impact of termite activity on the
soil affecting the diversity and microbial rhizosphere com-
munities, the prokaryotic composition of these organisms
and of their nests has been scarcely explored. Therefore, in
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this study, we sought to illuminate the prokaryotic commu-
nity diversity associated with C. cumulans and its termite
mound soil by means of 16S rRNA clone libraries.

Material and methods
Sample collection

C. cumulans workers were collected under aseptic condi-
tions from a nest at the Ecological Station of the Universi-
dade Federal de Minas Gerais (19°52'36" S - 43°58'16" W),
a region that has been characterized as dry grassland (a type
of Brazilian Cerrado), in November 2009. Their termite
mound soil (height 1.3 m, TM) and neighbor soil (NS),
which was 60 cm from the mound, were also sampled.
The opening created in the wall of the mound to collect
the soil was 40 cm deep. After 48 h, this gap was refilled,
indicating intense termite activity.

Soil samples, abiotic parameters, and the taxonomic
identification of the termites

The quantitative mineral composition of TM and NS sam-
ples were determined through the quantification of P, Fe, Zn,
Mn, and Cu using Mehlich 1 as an extractant; the quantifi-
cation of Ca, Mg, and Al using KCl (1 mol/L) as an extrac-
tant; and the quantification of H+Al using calcium acetate
(0.5 mol/L) as an extractant (EMBRAPA 1997). pH and
granulometry analyses of the TM and NS samples were also
performed (Ruiz 2005). The termite taxonomy (Constantino
1999) was performed at Unidade Laboratorial de Referéncia
em Pragas Urbanas, Instituto Bioldgico, Sdo Paulo.

DNA extraction

Total DNA from the TM sample was extracted using the
UltraClean Mega Soil DNA Isolation® kit (MoBio Labora-
tories, USA) according to the manufacturer’s instructions.
Isolated DNA was stored at —20 °C until further processing.
The extraction of total DNA from termites was performed
according to Corby-Harris et al. (2007). Prior to DNA
extraction, the exterior of termites was washed with the
following (in order): sterile distilled water (five times),
70 % ethanol (five times), 6 % sodium hypochlorite (five
times), and sterile distilled water (five times). The termites
were then macerated in liquid nitrogen.

PCR amplification of the 16S rRNA gene, cloning,
and sequencing

Fragments of the 16S rRNA gene were amplified from C.
cumulans (T) and TM genomic DNA for the construction of
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bacterial and archaeal clone libraries. The bacterial 16S
rRNA gene fragment was amplified by touchdown PCR
according to Freitas et al. (2008), using the conserved
primer set 8f (5’AGAGTTTGATCMTGGCTCAG 3')
and 907r (5’ACGGHTACCTTGTTACGACTT 3') (Lane
1991). The sequences of the archaeal primers were
16SAf (5'TTATTGGGCCTAAAGCRTC3') and 1400Ar
(5'"CGGCGAATTCGTGCAAGGAGCAGGGAC3)
(Clementino et al. 2007). The 16S rRNA gene was
amplified by PCR according to Clementino et al.
(2007). The amplicons were confirmed using agarose
gel electrophoresis. Five separate PCR amplifications
were pooled before cloning. The PCR products were
purified using a DNA extraction kit (Fermentas, Can-
ada) for cloning.

Clone libraries were constructed for bacterial and archae-
al communities present in the TM and bacteria present in the
T by cloning the PCR products that were obtained with the
different primer sets. These purified PCR products were
cloned into the pJET1.2/blunt cloning vector using the Clo-
neJET ™ PCR Cloning Kit (Fermentas) according to the
manufacturer’s instructions. Electrocompetent Escherichia
coli XL1 Blue were transformed with the ligations accord-
ing to the manufacturer’s instructions. Plasmid DNA was
extracted using the GeneJET™ Plasmid Miniprep Kit
(Fermentas).

DNA sequencing reactions were performed with the
DYEnamic ET Dye Terminator Cycle Sequencing Kit,
and the products were run on a MegaBACE 1000 cap-
illary sequencer (GE Healthcare, UK) according to the
manufacturers’ instructions. Partial 16S rRNA gene
sequences were checked for quality, aligned, and edited
to produce a consensus using the programs Phred v.
0.020425 (Erwing and Green 1998), Phrap v. 0.990319
(Green 1994), and Consed 12.0 (Gordon et al. 1998).
Chimeras were checked using Bellerophon software
(http://comp-bio.anu.edu.au/bellerophon/bellerophon.pl).
The sequences were compared with the Silva database
(release 108) (Pruesse et al. 2007) and the approximate
phylogenetic affiliations were conducted with ARB soft-
ware (Ludwig et al. 2004) using the neighbor-joining
method (Saitou and Nei 1987).

Operational taxonomic units (OTUs) were determined
by using DOTUR software (Schloss and Handelsman
2005); similarity levels between sequences of at least
97 % have been proposed for classifying a microorgan-
ism at the species level (Drancourt et al. 2000). Coverage
of the clone libraries was calculated using the equation
C=1-(n/N) x 100, where n is the number of unique
OTUs and N is the number of sequences analyzed in the
library (Good 1953). The nucleotide sequences from
OTUs were deposited in the GenBank database with
accession numbers JN830961-JN831088.
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Results and discussion
Physicochemical properties of the samples

The TM and NS samples had different physicochemical com-
positions (Table 1). All minerals, except for Al, were enriched
in the TM compared to the NS sample. The lower concentra-
tion of Al found in the TM can be explained by the complexes
formed by this ion with soil organic matter (Sarcinelli et al.
2009) because it is known that termite mounds contain more
organic matter than soil. The granulometry analysis revealed
that the TM and NS samples contained 50 and 41 % clay
content, respectively; a characteristic property of the Cerrado
soil. Therefore, the data are consistent with studies from other
research groups that have revealed an increased richness in
clay and minerals from termite mounds with respect to the
neighboring soil (Holt and Lepage 2000; Ndiaye et al. 2004).
According to Holt and Lepage (2000), this enrichment occurs
because the termites select neighboring soil particles that are
rich in minerals to build their nests. Previous study showed that
lower clay and organic matter content of soils around mounds
suggest that termite activity can reduce the bioavailability of
soil nutrients for plants (Adekayode and Ogunkoya 2009).

The physicochemical differences between TM and NS
may influence the composition of their microbial communi-
ties. Indeed, the dendrogram generated from the ARDRA
fingerprint revealed that the TM and NS environments har-
bored distinct bacterial communities (data not shown). It is
well known that the plant species are the dominant factors
influencing the composition of the rhizosphere microbial
communities (Barret et al. 2011). However, it should be
noted that the termite activity leads to nutrient depletion of
soil possibly disturbing this microbial community, which
has a plant growth-promoting effect.

General features of the libraries

To obtain information on the composition and structure of
the TM and T prokaryotic communities, three clone libraries
of 16S rRNA genes were constructed, and 328 randomly
selected clones from the three libraries were sequenced
(Table 2). Of the 328 sequences, 286 were used for further

analyses after quality control and the removal of chimeric
sequences.

The clone libraries constructed from the T and TM sam-
ples were evaluated by rarefaction analysis, when the OTUs
were defined at >97 % sequence identity (data not shown).
The rarefaction curves of bacteria were far from saturation,
and the coverage values of clone libraries were 63 and 68 %,
for T and TM, respectively, indicating that further sequenc-
ing of more clone libraries would have revealed additional
diversity. In contrast, the rarefaction curve of archaea (TM
library) reached an asymptote, indicating that most of the
diversity of archaca was detected in the sample (Good’s
coverage 95 %).

Diversity indices are a valuable tool with which to
quantify diversity in a community and describe its nu-
merical structure (Hill et al. 2003). They reflect the
richness and the relative abundance of OTUs in each
environment. Values from the Shannon and Simpson
indices demonstrated a high diversity of bacteria in the
TM and T libraries compared to the archaeal TM library
(Table 2). These data indicated a relatively even OTU
distribution, whereas the low Shannon and high Simp-
son diversity indices in the archaea from the TM library
are due to the presence of a few dominant OTUs.
Additionally, both the Chaol and ACE values indicated
a greater diversity of bacterial species in the TM and T
libraries.

Phylogenetic composition of bacterial clone libraries

Soil habitats contain a great diversity of macro- and micro-
organisms, and bacteria are the largest group with respect to
species richness and community size (Neher 1999). The
phylogenetic analysis of 16S rRNA gene sequences consti-
tutes an important tool for the assessment of complex mi-
crobial diversity. The phylogenetic diversity of the 16S
rRNA gene clones from the TM and T libraries is shown
in Fig. 1. The two libraries showed that OTUs belong to
several bacterial phyla. Furthermore, five (one OTU from T
library and four OTUs from TM library) of the 127 bacterial
OTUs detected were considered to be unclassified at the
phylum level and, thus, may represent new bacterial taxa.

Table 1 Quantification of the physical and chemical parameters of the termite mound and the neighboring soil

Soil samples  Parameters
pH P K Ca®* Mg** NG H+Al Zn Fe Mn Cu
(mg/Kg) (mg/Kg) (cmol/Kg) (cmol/Kg) (cmol/Kg) (cmol/Kg) (mg/Kg) (mg/Kg) (mg/Kg) (mg/Kg)
NS 5.23 1.6 40 0.98 0.28 0.67 4.9 1.21 274 53 0.32
™ 5.7 1.5 138 3.64 0.89 0.2 6.1 4.61 128.2 49.5 1.27

NS neighboring, TM termite mound
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Table 2 Analysis of the sequence diversity and coverage of the
bacterial and archaea libraries of the termite mounds and the termite

Samples TMB TB TMA
Clones 151 137 40
Chimeras® 25 15 2
OTUs 67 58 2
Libraries coverage (%) 65 68 95
Shannon — Weaver 3.94 3.39 0.12
Simpson 0.014 0.080 0.94
Chao 1 409.5 128.9 2
ACE 271.5 154.8 0

TMB termite mound bacteria, 7B termite bacteria, TMA termite mound
archaea

# Chimeric sequences were included in the total number of clones, but
excluded from phylogenetic analysis

Actinobacteria and Acidobacteria comprised the largest
fractions of the TM clone library, whereas Verrucomicrobia,
Gemmatimonadetes, and Armatimonadetes were minor
members. Members of Proteobacteria, Actinobacteria, and
Acidobacteria have been reported to constitute the largest
groups of bacterial communities derived from a variety of
soils, including Cerrado soil. Thus, for the most part, our
findings corresponded to the results from the studies of
Hugenholtz et al. (1998), Kent and Triplett (2002), Zhang
and Xu (2008), and Quirino et al. (2009).

Previous studies on bacterial diversity in termite nests
have been reported (Fall et al. 2007, Long et al. 2010). In
our sample, the bacteria found in TM library were associat-
ed with nine phyla (Fig. 1). In other studies, using DGGE
(Fall et al. 2007) to analyze the variation of the internal
transcribed spacer region, coupled with the construction of

Verrucomicrobia
Armatimonadetes 1% Gemmatimonadetes
1%
Chlorofiexi
13%

Actinobacteria
32%

Unclassified
Bacteria
6%

Acidobacteria
16%

Proteobacteria

Planctomycetes 15%

T™MB ",

Bacteroidetes
6%

16S rRNA gene clone libraries and subsequent sequencing
(Long et al. 2010), the bacteria were associated with six and
four phyla, respectively. Verrucomicrobia, Planctomycetes,
and Gemmatimonadetes were detected in our analysis, al-
though they were not observed in the analyses by Long et al.
(2010) and Fall et al. (2007). In contrast to our work, the
phylum Firmicutes was dominant in the study by Long et al.
(2010).

Thirty percent of all classified sequences from the T clone
library corresponded to Spirochaetes (which were repre-
sented exclusively by Treponema genus), Firmicutes, and
Actinobacteria. Other important minor bacterial phyla in-
cluded Planctomycetes, Cyanobacteria, Fibrobacteres,
Acidobacteria, and Elusimicrobia, the latter being a typical
phylum from termites gut (Ikeda-Ohtsubo et al. 2010). Most
OTUs (67.2 %) from the T clone library were associated
with other sequences that had previously been obtained
from other termite species, and the remaining OTUs from
soil and gut of other insects. Furthermore, all bacterial phyla
found in T library were previously reported as symbionts of
other species of termites (Hongoh 2010). The phyla Spiro-
chaetes and Fibrobacteres are known to act in the hydroly-
sis of lignocellulose and are considered essential symbionts
of the termites gut (Hongoh 2011).

Previous cultivation-independent studies have been per-
formed on the bacterial diversity of the lower and higher
termite gut with different feeding habits. Among these,
Macrotermes michaelseni (Mackenzie et al. 2007) and Mac-
rotermes gilvus (Hongoh et al. 2006) have been reported to
feed on litter and are found in savannah regions, similar to
C. cumulans. Despite eating habits and habitat similarities
between these two species and C. cumulans, the bacterial
communities among them were very distinct. The bacteria
found in the gut of M. michaelseni were less diverse, and

Synergistetes  Cyanobacteria
7% 4%

Actinobacteria

Elusimicrobia 21%
2%

Fibrobacteres

4%

Proteobacteria

11%
Spirochaetes Bacteroidetes
36% 7%
Planctomycetes

Acidobacteria 4%

2%

TB

Unclassified Bacteria
2%

Fig. 1 Phylogenetic distribution of bacterial 16S rDNA sequences generated from T and TM samples
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Bacteroidetes (formally referred to as Cytophaga-Flexi-
bacter-Bacteroides) was the dominant group (Mackenzie
et al. 2007), whereas Bacteroidetes and Firmicutes were
the phyla predominant in M. gilvus (Hongoh et al. 2006).
Most OTUs affiliated with the phyla outlined in Figs. 2
and 3 were phylogenetically related to uncultured bacteria
from other termite species and from the soil. Nevertheless,
some OTUs related to the Actinobacteria, Proteobacteria,
Bacteroidetes, and Acidobacteria could be classified at
the genus level, i.e., Marmoricola, Nocardioides,

Planosporangium, Conexibacter, Microlunatus, and Actino-
madura (Actinobacteria of the TM clone library);
Rhodococcus, Luteococcus, and Propionibacterium (Actino-
bacteria of the T clone library); Caulobacter, Phenylobac-
terium, Altererythrobacter, Pedomicrobium, and
Burkholderia (Proteobacteria of the TM clone library);
Chromobacterium, Paracoccus, Pantoea, and Novosphin-
gobium (Proteobacteria of the T clone library); Flavisoli-
bacter (Bacteroidetes of the TM clone library); and
Edaphorobacter (Acidobacteria of the TM library). Some
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Fig. 2 Phylogenetic tree showing the affiliation of bacterial OTUs from TM library. Phylogenetic relationships were inferred with ARB software

with Silva database (release 108) using the neighbor-joining method
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<« Fig. 3 Phylogenetic tree showing the affiliation of bacterial OTUs
from T library. Phylogenetic relationships were inferred with ARB
software with Silva database (release 108) using the neighbor-joining
method

of these genera, such as Burkholderia and Bradyrhizobium,
are important for soil nitrogen fixation and the stimulation
of plant growth, respectively (Hennecke 1990; Preisig et al.
1996; Pandey et al. 2005).

Archaeal community composition in termite mounds

The construction of the archacal 16S rRNA gene clone
library was successfully obtained only for the sample TM,
despite 10 attempts to do with the sample T. In an endeavor
to obtain the amplification of the 16S RNA gene fragment
(T sample), different archaeal primers set were used namely:
16SAf and 1400Ar (Clementino et al. 2007); 25 F and
1492R (Lane 1991); 21 F and 958R; (DeLong 1992); and
mcrA-F and mcrA -R (Luton et al. 2002). According to
Hongoh (2010), the abundance of archaea in the gut of
termite species that have already been studied ranged from
0 to 10 %. Therefore, our results can be explained by the
absence or low abundance of archaea in the gut of C.
cumulans. Moreover, according to Brune (2006), the abun-
dance of archaea in the gut of termites is apparently related
to diet. In termites that feed on litter, such as C. cumulans,
the abundance of archaea is lower (0.1-1.7 %) than in
termites feeding soil (1.4-3.1 % archaea).

The phylogenetic analysis of the TM archaeal 16S rRNA
gene revealed a total of two OTUs, indicating that the
archaeal community was poorly diverse. Both OTUs were
affiliated with the phylum Crenarchaeota. In addition, one
OTU gathered 37 clones, whereas another OTU contained
only one clone. It should be mentioned that all OTUs were
uncharacterized archaea.

The identification of archaea from non-extreme environ-
ments is important for understanding their ecological role in
different environments. The incidence of archaea inhabiting
the soil is extremely low, ranging from 0.5 to 3.8 % of all
prokaryotes that inhabit this environment (Ochsenreiter et
al. 2003; Timonen and Bomberg 2009). Although members
of the phylum Crenarchaeota have previously been isolated
from extreme environments, they are often found in many
less-extreme environments, including different soil types,
such as that of the Cerrado (Bintrim et al. 1997; Ochsenreiter
et al. 2003; Clementino et al. 2007; Timonen and Bomberg
2009). Our results are in agreement with the work of
Tagliaferro (2005) which only detected clones belonging to
the phylum Crenarchaeota.

Similar to previous studies of termite species, this survey
detected a wide variety of phylogenetic taxa. The analysis of
16S rRNA gene sequences revealed that a specific

microbiota is associated with the termite species and not
with the feeding habits or habitats of the termites. These data
support the hypothesis of Hongoh et al. (2006) that micro-
organisms in the intestinal tracts of termites have coevolved
with their hosts. The survey also detected a broader phylo-
genetic breadth of taxa than any previous study of termite
mounds, including several taxa that had not been previously
detected in termite mounds. The results of this study provide
the first insights into the bacterial diversity in the gut of a
member of the mandibulate nasute grass-feeding termite, a
group unique to the Neotropics and its nest.
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