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Abstract Soil labile organic carbon (C) oxidation drives
the flux of carbon dioxide (CO2) between soils and the
atmosphere. However, the impact of grazing management
and the contribution soil aggregate size classes (ASCs) to
labile organic C from grassland soils is unclear. We
evaluated the effects of grazing intensity and soil ASC on
the soil labile organic C, including CO2 production,
microbial biomass C, and dissolved organic C and nitrogen
(N) mineralization in topsoils (0–10 cm) in Inner Mongolia,
Northern China. Soil samples were separated into ASCs of
0–630 μm [fine ASC (fASC)], 630–2000 μm [medium
ASC (mASC)] and >2000 μm [coarse ASC (cASC)]. The
results showed that heavy grazing (HG) and continuous
grazing (CG) increased soil labile organic C significantly
compared to an ungrazed site since 1999 (UG99) and an
ungrazed site since 1979 (UG79). For winter grazing site

(WG), no significant differences were found. CO2 produc-
tion was highest in cASC, while lowest in fASC. Microbial
biomass C and dissolved organic C showed the highest
values in mASC and were significantly lower in fASC.
Grazing increased N mineralization in bulk soils, while it
exhibited complex effects in the three ASCs. The results
suggest that the rate of C mineralization was related to the
rate of N accumulation. To reduce CO2 emission and
nutrient loss, and to improve soil quality and productivity, a
grazing system with moderate intensity is suggested.
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Introduction

Soil labile organic C is a soil fraction with turnover time of
less than a few years (even less than weeks) as compared to
recalcitrant C with a turnover time of several thousand
years (Parton et al. 1987; Schimel et al. 1985). Soil labile
organic C as the most active fraction of soil organic C can
be readily influenced by disturbance and management
(Harison et al. 1993). Therefore, soil labile organic carbon
oxidation drives the flux of carbon dioxide (CO2) between
soils and the atmosphere (Zou et al. 2005) and makes a
greater contribution to nutrient cycling than stable soil
organic C (Whalen et al. 2000). As most studies are
focusing on total organic C storage and sequestration,
mineralization of soil labile organic C is not well
understood, particularly for typical grassland soils.

The Inner Mongolian grasslands in North China, covering
approximately 110×106 ha, are of denotative ecological and
economical importance (He et al. 2011). Most grasslands in
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China have undergone some degree of degradation or
desertification, following the rapid expansion of the livestock
industry after 1980 (Tong et al. 2003). Grazing is one of the
most important factors that could change the soil C stock in
grassland ecosystems (Cui et al. 2005), which influences
organic matter input and associated soil properties (Steffens
et al. 2009; Wiesmeier et al. 2009). Previous studies have
shown that heavy grazing (HG) could reduce soil organic C
contents and stocks associated with higher bulk densities in
topsoil in semiarid steppes in Inner Mongolia (Cui et al.
2005; He et al. 2011; Steffens et al. 2008; Wiesmeier et al.
2011). However, light grazing pressure for 20 years caused
no significant decrease of soil organic C contents (Cui et al.
2005). The influence of grazing on soil C turnover in
grasslands is complex and difficult to predict. Until now,
only few studies have been conducted on the impact of
grazing on soil labile organic C.

Soil organic carbon protection mechanisms are inti-
mately tied to the processes of aggregate turnover and
stabilization at multiple scales (Steffens et al. 2009). The
deposition and transformation of organic matter plays a
major role in aggregate stabilization, and there are strong
feedbacks between aggregate turnover and soil organic C
dynamics (Jastrow et al. 2007; Lützow et al. 2006).
Differences in turnover rates of soil organic matter
fractions may be due to physical protection of organic
matter within soil aggregates as well as chemical protec-
tion from humification (Cambardella and Elliott 1993).
The fractions of soil organic matter that turn over rapidly
are believed to make a greater contribution to nutrient
cycling than fractions that turn over slowly because they
provide a more readily accessible source of energy for the
saprotrophic soil organisms responsible for nutrient
cycling (Janzen et al. 1992). It is becoming increasingly
important to determine not only how land management
practices affect the retention or loss of these fractions of
SOM but also how they affect nutrient cycling from soil
organic matter fractions. Improved understanding of these
processes will provide valuable information for maintain-
ing or implementing environmentally sustainable land
management practices in agricultural and forest soils
(Whalen et al. 2000).

Moreover, the rate of changes in soil C over time in the
processes of biotic community development is tightly coupled
with soil N mechanisms (Knops and Tilman 2000). The
effects on soil N mineralization have been intensively
studied. However, variable grazing effects have been
reported with both increasing (Groffman et al. 1993; Le
Roux et al. 2003) and decreasing (Bardgett and Wardle 2003;
Biondini et al. 1998) N mineralization. Furthermore, N
mineralization of soil aggregate size classes (ASCs) is not
well understood, especially under the influence of grazing
(He et al. 2011). Estimating N mineralization would be

helpful to understand C mineralization of ASCs in semiarid
grasslands affected by grazing management.

The objectives of this research were: (1) to evaluate the
influence of different grazing intensities on soil labile
organic C and N mineralization, (2) to estimate the effect of
different ASCs on soil labile organic C and N mineraliza-
tion, (3) to evaluate the interactions of soil labile organic C
and N mineralization.

Materials and methods

Study area

The study was performed near the Inner Mongolia Grassland
Ecosystem Research Station (IMGERS, administered by the
Chinese Academy of Sciences; 43°38′N, 116°42′E), which is
located in the Xilin River Area, Inner Mongolia Autonomous
Region, north China, with 78.8 million hectares of natural
grasslands, a typical steppe ecosystem biogeographically
belonging to the Eurasia Steppe region. The growing season
runs from early April to late September. The mean annual
temperature in the study area is 0.3°C with mean monthly
temperatures ranging from −21.6°C in January to 19.0°C in
July. Themean annual precipitation is 346.1 mmwith 60–80%
falling during the growing season from May to August and
approximately 10% of which falls as snow. The soil is
classified as Calcic Chernozem (IUSS Working Group WRB,
2006).

Plot description and sampling design

Five experimental sites with different grazing intensities
were chosen in this study. The whole area is grazed by
herds that are composed of 70–90% sheep and 10–30%
goats. In 1979, one plot (24 ha) was fenced and
excluded from grazing [ungrazed site since 1979
(UG79)]. The whole experimental area was grazed
before with low intensity. After 20 years of moderate
grazing, two plots were fenced; one was completely
excluded from grazing [25 ha; ungrazed site since 1999
(UG99)], the other is still grazed during winter [34 ha;
winter grazing (WG)], equivalent to a grazing intensity
of 0.5 sheep units ha-1 year-1 (1 sheep unit=1 ewe and 1
lamb). Another site (24 ha) was grazed during the whole
year [continuous grazing (CG)], equivalent to a grazing
intensity of 1.2 sheep units ha-1 year-1. An unfenced site
was grazed with approximately 5–6 sheep units ha-1 (HG)
during the vegetation period that is located approximately
2 km away from the other sites. At all experimental sites,
three randomly located soil pits were sampled at the upper
10 cm of the topsoil using a steel cylinder with a volume
of 100 cm³ to determine soil properties.
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Physical fractionation

The upper 10 cm of one pit in each of the five plots were
used for physical fractionation (4 kg for each sample). The
air-dried soil was dry-sieved gently by hand to three ASCs:
2,000–6,300 mm, 630–2,000 mm, and<630 mm (referred
to as coarse ASC (cASC), medium ASC (mASC), and
fASC; Steffens et al. 2009).

Soil incubations

C and N mineralization of the ASCs were determined after
soil incubation at 25±0.5°C for 30 days. Dry soil (50 g)
was adjusted to 60% field moisture capacity in100 ml glass
bottle with an open mouth, which was put in 1 l glass jars
with a septum to keep it gas-tight. ASCs were inoculated
with 1 ml dilute suspensions (soil to solution ratio 1:10) of
the corresponding fresh whole soil. A thin film of water
was put into the bottom of the jars to prevent the soil
drying.

Determination of soil properties

In order to characterize soil labile organic C mineralization,
CO2 production after incubation, microbial biomass C, and
dissolved organic C were determined which were related to
soil organic C contents of the samples. Additionally,
ammonium (NH4

+) and nitrate (NO3
-) contents were

analyzed which were related to total N contents of the
samples. All the analyses were performed in triplicate.

Soil organic C and total N were determined in duplicate by
dry combustion on a Vario Max CNS elemental analyser
(Elementar, Hanau, Germany). The measured C concentra-
tions of the samples that were free of carbonate represent the
soil organic C concentration. Samples that contained CaCO3

were heated to 500°C for 4 h to remove organic C, and the
concentration of inorganic C of the residual material was
determined by dry combustion. The content of inorganic C
was subtracted from the C concentration of the untreated
material and represents the soil organic C content.

CO2 production after incubation was determined by
incubating the soil fractions in 1 l airtight jars with a vial
of 20 ml 0.1 M NaOH. The NaOH solution was removed
and replaced with fresh solution during sampling. The
NaOH solution was sampled on 2th, 5th, 8th, 11th, 14th,
17th, 23th, 30th day after the incubation started. At the
sampling dates, the captured CO2 was determined by
titration with 0.1 MHCl (Zibilske 1994) after precipitation
of the carbonate with excess BaCI2. The CO2 produced
after the incubation was used to calculate the C mineral-
ization rate.

Microbial biomass C was determined using the fumigation–
extraction (FE) method (Vance et al. 1987; Dannenmann et al.

2006). The sample (10 g) was immediately extracted with
30 ml 0.5 M K2SO4 for 60 min on a rotary shaker at
150 rpm. The second sample was fumigated under chloro-
form vapor for 24 h in a desiccator and then extracted as
described above. Extracts were frozen under −20°C and
analyzed within 1 month for dissolved organic C (Dimatec
Analysentechnik, Essen, Germany). Correction factors (0.379

Fig. 1 CO2 production (a), microbial biomass C (MBC, b), and
dissolved organic C (c) influenced by soil aggregate size and grazing
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for microbial biomass C, Vance et al. 1987) were applied to
the difference in total dissolved organic C between untreated
and fumigated subsamples to estimate microbial biomass C.

After rewetting the soil fractions, 10 g subsample was
immediately (t1) extracted as described above in order to
analyze NH4

+ and NO3
- concentrations. The other subsample

were incubated in the glass jar for 1 month and thereafter
extracted with 0.5 M K2SO (t2). The extract solution was
immediately frozen until the colorimetrical determination of
NH4

+ and NO3
– concentrations (FIAstar 5000 Analyzer,

Foss Tecator, Denmark). The difference of NH4
+, NO3

-, and
inorganic N between t2 and t1 were the net ammonification,
nitrification, and mineralization, respectively.

Statistical methods

All statistical analyses were carried out using SPSS 15.0
(SPSS, Chicago, IL). To test the significance of grazing and

soil aggregate size effects on the examined parameters, a
two-way analysis of variance (ANOVA) was applied.

Results

Labile organic C

CO2 production after incubation ranged from 1 to 12 mg g-1

between all grazing intensities and ASCs (Fig. 1). HG and
CG showed a much higher CO2 production than WG,
UG99, and UG79. HG was significantly (P<0.05) higher
than CG, while there were no differences among WG,
UG99, and UG79. Grazing intensity had a consistent effect
on CO2 production across all ASCs. CO2 production was
highest for cASC, while fine ASC (fASC) showed the
lowest value (P<0.05). CO2 production of the bulk soil was
3.75±1.60 mg g-1, which was between mASC and fASC.

Table 1 Two-way ANOVA
results for the effects of soil
aggregate size (SAZ) and graz-
ing intensity (GI) on CO2 pro-
duction, microbial biomass C
(MBC), and dissolved organic C
(DOC)

Different superscript letters rep-
resent statistically significant
difference between treatments at
P<0.05. Values are expressed
by mean ± SD

***P<0.0001

CO2 production MBC DOC

CG 5.12±2.14B 0.073±0.033A 10.91±2.61A

HG 7.67±2.99A 0.053±0.026B 9.56±1.94B

WG 3.15±0.59C 0.020±0.006C 5.01±0.74C

UG99 3.52±1.37C 0.022±0.005C 5.66±0.68C

UG79 2.83±1.40C 0.012±0.007D 4.94±0.75C

Bulk soil 3.75±1.60c 0.311±0.014c 6.42±1.96c

cASC 6.60±2.93a 0.038±0.025b 7.41±2.78b

mASC 4.96±2.43b 0.056±0.044a 8.81±3.99a

fASC 2.53±0.92d 0.020±0.015d 6,23±2.14c

GI F=120.7*** F=410.77*** F=128.92***

SAZ F=113.81*** F=176.5*** F=28.55***

GI*SAZ F=8.87*** F=40.28*** F=4.72***

Table 2 Two-way ANOVA
results for the effects of soil
aggregate size (SAZ) and graz-
ing intensity (GI) on ammonifi-
cation, nitrification, and
mineralization

Different superscript letters rep-
resent statistically significant
difference between treatments at
P<0.05. Values are expressed
by mean ± SD

***P<0.0001

Ammonification Nitrification Mineralization

CG −0.13±0.18B 0.68±0.29B 0.54±0.25B

HG −0.13±0.16B 1.05±0.58A 0.93±0.44A

WG 0.09±0.30A 0.48±0.56C 0.57±0.30B

UG99 −0.18±0.10B 0.65±0.26B 0.46±0.22BC

UG79 0.11±0.26A 0.29±0.20D 0.39±0.17C

Bulk soil −0.23±0.12c 1.04±0.50a 0.81±0.46a

cASC 0.00±0.20ab 0.47±0.28bc 0.47±0.13b

mASC 0.06±0.15a 0.42±0.19c 0.48±0.18b

fASC −0.03±0.33b 0.59±0.56b 0.56±0.37b

GI F=26.10*** F=29.99*** F=17.72***

SAZ F=28.05*** F=37.93*** F=13.59***

GI*SAZ F=13.45*** F=10.96*** F=6.88***
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Microbial biomass C and dissolved organic C showed
similar patterns after incubation. Both microbial biomass
C and dissolved organic C in CG and HG were
considerably higher compared to WG, UG99, and UG79
(Fig. 1). CG showed significantly (P<0.01) higher value
than HG both for microbial biomass C and dissolved
organic C. No differences were found between WG, UG99,
and UG79. Grazing intensities had a consistent effect on
microbial biomass C and dissolved organic C across all
ASCs (Fig. 1). Among the three ASCs, microbial biomass
C and dissolved organic C of mASC showed the highest
values, microbial biomass C of fASC was the lowest (P<
0.05), microbial biomass C of cASC was the lowest.
Aggregate size, grazing, and their interaction effect all
influenced CO2 production, microbial biomass C, and
dissolved organic C significantly (Table 1 and Fig. 1, two-
way ANOVA, P<0.0001).

N mineralization

Land-use styles, soil aggregate sizes, and their interaction
effect had significant effects on ammonification, nitrifica-
tion, and mineralization (Table 2, P<0.0001). However,
there were no consistent patterns across all land-use styles
and aggregate sizes.

For bulk soil, net ammonification (Fig. 2) of all
experimental sites was negative. Net ammonification of
CG was significantly lower (P<0.05) compared to all other
grazing intensities. Furthermore, net ammonification of HG
and WG was significantly higher (P<0.05) than that of
UG99 and UG79. For mASC, all net ammonification rates
were positive. For cASC and fASC, net ammonification of
WG and UG79 was positive while that of UG99, CG, and
HG was negative.

Net nitrification revealed the highest values for HG
(Fig. 2). Net nitrification in UG79 was the lowest between
all experimental sites. Winter grazing showed a high net
nitrification for bulk soil, but for three ASCs, WG had the
lowest nitrification. In general, bulk soil showed higher
nitrification rates than the ASCs. fASC was significantly
higher than mASC, but cASC had no difference with
them.

Grazing increased net N mineralization significantly
(Fig. 2 and Table 2), especially in bulk soils. Net N
mineralization of bulk soil was the highest among all ASCs,
but no difference was found among cASC, mASC, and
fASC.

Inorganic N

Both grazing intensities and ASC significantly influ-
enced NH4

+, NO3
-, and inorganic N concentrations

Table 3. For bulk soils, only CG exhibited a significant

effect on NH4
+ concentration. There was no significant

difference among HG, WG, UG99, and UG79 (Fig. 3a).
There were also no clear patterns of grazing intensity
effects across the three ASCs. However, the NH4

+

concentrations in cASC, mASC, and fASC were much
higher than that in bulk soil across all grazing intensities
(Fig. 3a), while NO3

- and inorganic N concentrations in
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Fig. 2 Ammonification (a), nitrification (b), and mineralization (c)
affected by soil aggregate size and grazing
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cASC, mASC, and fASC was much lower than that in
bulk soil (Fig. 3b and c). Grazing significantly increased
NO3

- and inorganic N in bulk soil (Fig. 3b and c).

Discussion

Effect of grazing on labile organic C

The results showed that CG and HG increased CO2

production, microbial biomass C, and dissolved organic C
significantly across all ASCs and bulk soil, indicating
overgrazing increased soil labile organic C in Inner
Mongolia grassland. Our results correspond well with the
fact that overgrazing increased C loss and decreased C
storage (He et al. 2008, 2011; Ingram et al. 2008).
However, the results also showed that WG exhibited no
significant effect on soil labile organic C compared to
UG99 and UG79, suggesting that moderately grazing
would not increase C loss or even increased C storage
and bacterial diversities (Milchunas and Lauenroth 1993;
Schuman et al. 1999; Han et al. 2008; Zhou et al. 2010).
Our results are inconsistent with the finding of a higher
CO2 production in UG99 compared to WG during
freezing–thawing cycles (Holst et al. 2008) and greater
microbial and enzyme activities in ungrazed compared to
grazed plots in semiarid Australia (Holt 1997). They
attributed their findings to greater soil moisture and greater
input of organic matter in ungrazed plots. Thus, the effects
of grazing are complex because of the variations in climate,
soil, landscape location, plant community type, and grazing
management practices (Milchunas and Lauenroth 1993;
Reeder and Schuman 2002).

Labile organic C of different soil aggregate sizes

Soil ASC had a consistent effect on CO2 production of all
grazing intensities. CO2 production of cASC was highest,
while fASC was lowest among the three ASCs, suggesting
that C in cASC was most labile while it was stable in fASC.
This is consistent with the findings that coarse aggregates
are less stable and have faster turnover times than small
aggregates (Six et al. 2004; Steffens et al. 2009). The CO2

release of cASC is high, because it contains more labile soil
organic matter, and it is less protected against mineraliza-
tion (Steffens et al. 2009).

For mASC, high values of microbial biomass C and
dissolved organic C were found, whereas fASC revealed
much lower amounts. This can be explained by a high
microbial biomass in mASC due to a high efficient usage of
SOM within this fraction (Sainju et al. 2009). Carbon
mineralization of fASC was low, suggesting that aggregates
protect the mineralization of soil organic C by reducing
microbial access to the substrates that bind them (Elliott
1986; Six et al. 2000). Coarse aggregates had higher C and
N concentrations than small aggregates because coarse
aggregates are composed of microaggregates and organic
binding agents (Elliott 1986), while aggregate-protected C
and N pools are less labile than unprotected pools because
protected pools are less exposed to microbial decay (Beare
et al. 1994; Cambardella and Elliott 1993).

In WG, UG99, and UG79, ASC exhibited no significant
effect on microbial biomass C and dissolved organic C,
while there is a significant effect on CG and HG, indicating
that overgrazing increased microbial biomass C and
dissolved organic C in ASCs more than those in bulk soil.
It also supports the findings that small aggregates are more

Table 3 Two-way ANOVA
results for the effects of soil
aggregate size (SAZ) and
grazing intensity (GI) on
inorganic N

Different superscript letters rep-
resent statistically significant
difference between treatments at
P<0.05. Values are expressed
by mean ± SD

***P<0.0001

NH4
+ NO3

- DIN

CG 7.5±4.52B 24.94±10BC 32.44±9.04C

HG 8.13±6.13B 39.32±20.56A 47.44±15.36A

WG 16.14±8.51A 21.4±20.04C 37.53±12.04BC

UG99 7.18 ±5.74B 27.62±8.75BC 34.80±7.39BC

UG79 15.73±9.64A 24.03±14.25BC 39.76±15.97BC

Bulk soil 3.82±2.66c 43.83±14.63a 47.64±13.88a

cASC 15.39±7.59a 23.09±7.94b 38.48±8.24b

mASC 16.29±4.82a 19.8±7.77b 36.09±9.99b

fASC 8.24±8.44b 23.13±19.67b 31.36±14.50c

GI F=37.23*** F=15.15*** F=10.85***

SAZ F=78.76*** F=47.05*** F=19.09***

GI*SAZ F=11.73*** F=13.43*** F=11.16***
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stable, while coarse aggregates are more likely to be
influenced by grazing (Cambardella and Elliott 1993; Six
et al. 2004). To reduce CO2 emission, soil erosion, and
nutrient loss, and to improve soil quality and productivity,
the management practices should adopt moderate grazing to
promote the fASC aggregation size (Sainju et al. 2009).

N mineralization and inorganic N of soil ASCs affected
by grazing and its interaction with C mineralization

The effects of grazing intensity and soil ASC on net
ammonification, nitrification, and N mineralization were
complex. Grazing increased N mineralization significantly
in bulk soils, which is consistent with other studies
(Groffman et al. 1993; Le Roux et al. 2003; Wu et al.
2011a). However, grazing exhibited indefinite effects in the
three soil ASCs. Most of them were not significant with the
exceptions that net nitrification and mineralization of fASC
in CG increased significantly compared to UG99 and
UG79, and net nitrification in WG decreased significantly
for the three ASCs. The inconsistent effect of bulk soil and
soil ASC on N mineralization suggests the interactions of
soil ASCs in bulk soil. Further research is needed in terms
of N mineralization in soil ASCs, especially under the
effect of grazing.

Generally, HG increased C and N mineralization in bulk
soils that is consistent with the finding that HG decreases C
and N sequestration (He et al. 2011), suggesting that the rate
of C mineralization was related to the rate of N accumulation
(Knops and Tilman 2000). Based on a 16 year grazing
experiment, Zhou et al. (2010) found that intermediate
grazing intensities by sheep increase soil bacterial diversities
in an Inner Mongolian steppe, suggesting that microbial
activities and their diversities may play an important role in
moderating the effects of grazing on C and N turnover. As
net rates of N mineralization do not at all reflect the dynamic
of gross rates of N mineralization (Wu et al. 2011a, b), future
studies should foucus on the linkage between gross N
mineralization and C mineralization.

Conclusion

This study showed that heavy grazing (i.e., HG and CG)
increased soil labile organic C significantly as compared to
ungrazed sites, while moderate grazing (i.e., WG) exhibited
no significant effect. CO2 production was highest in cASC
while lowest in fASC. Microbial biomass C and dissolved
organic C showed the highest values in mASC and were
significantly lower in fASC. Grazing increased N mineral-
ization in bulk soils while exhibited complex effects in the
three ASCs. Moderate grazing exhibited no significant
negative effects on C and N mineralization in bulk soils,
which is consistent with the finding that moderate grazing
increases C and N sequestration (He et al. 2011) and
bacterial diversities (Zhou et al. 2010). Thus, we recom-
mend moderate grazing as a proper way to protect C and N
losses in semiarid grasslands.

Fig. 3 Ammonium-N (a), NO3
- (b), and inorganic N (c) affected by

soil aggregate size and grazing
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