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Abstract We conducted a field-manipulated experiment
to assess whether changes in precipitation and nitrogen
(N) deposition alter ecosystem carbon (C) and N storage.
Both C and N pools of plant and soil were monitored
when urea-N (17.5 g N m−2) and water (increasing mean
annual precipitation by 50%) were added to a temperate
steppe. After 2 years of treatments, both N and water
addition significantly increased soil inorganic N availabil-
ity by 125% and 62% during the growing season. While
water addition significantly increased ecosystem C storage
by 6% and N storage by 8%, N addition showed
significant effects on neither of them. There were no
interactions between N and water addition to affect both
total C and N storage in this ecosystem, though they did
interact to affect several individual pools (e.g., above-
ground biomass N pool, litter C, and N pool). Results
from the present study indicate that water availability is
more important than N availability for C sequestration and
that increasing precipitation will favor C sequestration in
this semi-arid grassland.

Keywords Carbon stock . Nitrogen deposition .

Precipitation regimes . Soil moisture . Soil nitrogen
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Introduction

Anthropogenic-driven global change has caused dramatic
changes in ecosystem structure and function by affecting
resource availability and disturbance for plants (Weltzin
et al. 2003), and thus may adversely affect global C and N
cycles (Falkowski et al. 2000; Gruber and Galloway
2008). One of the major challenges for ecologists today
is to predict how ecosystems will respond to predicted
environmental changes (Knapp et al. 2008). In the past
few decades, extensive works have been conducted to
understand the distribution of global C and N stocks
(Schimel 1995) and the effects of global change factors on
C and N storage in various ecosystems (Mack et al. 2004;
Xu et al. 2004; Shi et al. 2010). Moreover, it has been
realized that global change factors can interact to affect
several ecosystem properties and processes (Zavaleta et al.
2003; Harpole et al. 2007), which potentially can
influence ecosystem C and N inputs and outputs. Thus,
global change factors may interact to affect ecosystem C
and N storage, especially in an ecosystem that is co-
limited by N and water availability, such as the semi-arid
grassland.

Human activities have dramatically altered the cycling of
nitrogen on Earth, doubling the N input into terrestrial
ecosystems over the past century (Gruber and Galloway
2008). Elevated N inputs into terrestrial ecosystems are
causing major changes in ecosystem functioning. Nitrogen
deposition or addition has been reported to have variable
influences over ecosystem C and N pools. Although
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increased N availability has been shown to enhance plant
growth and net primary productivity (Bai et al. 2008),
varying responses of soil C and N stocks to N addition have
been reported. For example, results from a prairie ecosys-
tem showed soil C and N stocks are significantly higher
under N fertilization treatment (10 g m−2 year−1), and can
be explained by the higher arbuscular mycorrhizal (AM) fungi
abundance (Wilson et al. 2009). In a dry meadow community
of alpine tundra in Colorado, Neff et al. (2002) observed no
significant changes in soil C stocks in response to N
addition. Moreover, N addition may have different effects
on C and N stocks in various pools of a certain ecosystem,
such as plant, organic and mineral soil pools (Mack et al.
2004). Therefore, the effects of N deposition/addition on
ecosystem C and N storage remain controversial.

Global climate models predict that precipitation will be
increased at the midlatitude regions (IPCC 2007). In water-
limited ecosystems, altered precipitation regime will impact
ecosystems to an even greater degree than increases in
atmospheric CO2 and temperature (Weltzin et al. 2003).
Altered precipitation regimes can influence ecosystem C
and N storage through several pathways. Aboveground net
primary productivity is positively related with annual
precipitation in grasslands (Bai et al. 2008). Water addition
stimulates gross ecosystem productivity, ecosystem respira-
tion and net ecosystem exchange (Niu et al. 2009). Increased
soil water availability can enhance the nutrient concentra-
tions of senesced leaves (Lü and Han 2010) and soil N
availability (Wang et al. 2006), which have great implica-
tions for litter decomposition and consequently for C and N
cycling. Furthermore, an altered precipitation regime can
change plant community composition and diversity (Weltzin
et al. 2003), which are important controls for ecosystem C
sequestration and N storage (Oelmann et al. 2007).

Grassland, one of the most widespread vegetation types
worldwide, accounts for 40% of the national land area in
China (Kang et al. 2007). Aboveground biomass C stocks
for China’s grasslands averaged 145.5 Tg C and with an
annual increase of 0.7% during 1982–1999 (Piao et al.
2007). The temperate steppe in northern China is a typical
vegetation type in the Eurasian continent. In this ecosystem,
primary production is tightly linked to both long-term
average and inter-annual precipitation patterns (Bai et al.
2004, 2008; Xia et al. 2009), suggesting that future climate
changes may have significant consequences for ecosystem
function. Moreover, many grassland ecosystems all over the
world are experiencing simultaneous increase in both N and
water availability (Harpole et al. 2007). However, changes
in C and N content and storage in both plant and soil
components of grasslands, and their relations with N and
water availability are not well known. In grassland
ecosystems, less than 10% of organic C is stored in the
aboveground biomass while the remainder is in belowground.

Thus, it is important to consider not only aboveground storage
but also belowground (Kitchen et al. 2009).

In order to examine the effects of N and water addition
and their interactions on ecosystem C and N storage, we
conducted a manipulative experiment in a temperate steppe
of northern China. In general, this area is both N and water
deficient as indicated by the strong stimulation of ecosys-
tem primary productivity in response to N addition (Bai
et al. 2010; Niu et al. 2010) and higher precipitation in the
wet years (Bai et al. 2004, 2008; Xia et al. 2009). The
specific questions addressed in this study are (1) how do
ecosystem C and N storage and soil N availability respond
to N and water amendments in this semi-arid grassland? (2)
Are there any interactive effects between N and water
addition on ecosystem total C and N storage and individual
pools (aboveground biomass, root, litter, and soil) in this
ecosystem?

Materials and methods

Study site

Our study was conducted in a typical steppe ecosystem
(43º33′00″ N, 116º40′20″ E, 1,250 m asl) located in
proximity to the Inner Mongolia Grassland Ecosystem
Research Station. The study area is located in a gently
rolling landscape. Topographic relief exhibits little varia-
tion, with elevation ranging from 1,250 to 1,260 m in the
studied site. The long-term mean annual, minimum and
maximum air temperatures for this area are 1.1°C, −20.8°C,
and 16.4°C. Mean annual precipitation is 345 mm with 90%
distributed from May to September. Soil in the top 40-cm
layer is classified as calcic-orthic aridisol according to the US
soil classification (He et al. 2008), below 40 cm a mixture of
sandy soil and gravels. The study site had been fenced to
exclude grazing disturbance from large mammals since
1999. The community is characterized by the dominance of
perennial species Leymus chinensis Tzvel., Stipa grandis
Smirn., Achnatherum sibiricum (Linn.) Keng., Cleistogenes
squarrosa (Trin.) Keng., and Agropyron cristatum (L.)
Gaertn.

Experimental design

The experiment consisted of four treatments (control (C), N
addition (N), water addition (W), and both N and water
addition (NW)) replicated five times, resulting in twenty 4×
4-m plots, with a 1-m buffer between each plot. Treatments
were randomly assigned to plots within each block. The
distance between the experimental setup and the next fence
was more than 50 m. On 10 May 2006, we compared litter
biomass (within a quadrat of 0.5×0.5 m in each plot), root
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biomass (four cores with the diameter of 8 cm in each 0.5×
0.5-m quadrat, 0–40 cm) and soil total N and inorganic N in
the plots and found no significant difference (P>0.05). We
added N (urea in dry form) during the rainy days of mid-May
and early July 2007 and 2008, totaling 17.5 g N m−2 year−1.
This amount was selected because it is in the range found to
have a significant effect on primary productivity in this area
(Bai et al. 2008). For water addition treatments, 10 mm of
tap water was manually applied with a sprayer every week
throughout the growing season (May–September) in 2007
and 2008. The aim of the water-addition treatment was to
reduce water stress and to increase long-term mean annual
precipitation by approximately 50%. Water was always
applied after 16:00 p.m. to prevent rapid loss by evaporation.
In total, water was added 18 times each year, amounting to
180-mm water year−1. The annual precipitation was 240 mm
(192 mm for May–September) in 2007 and 362 mm
(295 mm for May–September) in 2008.

Field sampling and laboratory analysis

Field sampling was conducted in mid-August 2008, which
is the typical period when aboveground biomass attains its
peak value in this ecosystem (Bai et al. 2010). Above-
ground vegetation was sampled by clipping all plants at the
soil surface using a 1×1-m quadrat, which was placed at
least 50 cm inside each plot to avoid edge effects. This
quantity could be considered approximately equal to the
aboveground net primary productivity of the current year
(He et al. 2008; Bai et al. 2010). Litter samples were
collected subsequently from each 1×1-m quadrat. The plant
tissues were oven-dried at 70°C for 48 h.

Root biomass was determined by soil coring method.
Soil cores from four random locations were collected within
each 1×1-m quadrat established for aboveground biomass
sampling by using an 8-cm diameter soil core sampler. The
samples were separately collected from four layers at the
depths of 0–10, 10–20, 20–30, and 30–40 cm. Root
material from each layer of one quadrat were separated
from soil using a 1-mm sieve followed by wet sieving using
a 0.3-mm sieve. Dry mass of roots was determined by
oven-drying at 70°C for 48 h. Soil sampling was conducted
using a 4-cm diameter soil sampler, and the samples were
separately collected from four layers (10 cm for each layer).
All soil samples were air-dried in a ventilation room, and
cleared of roots and plant debris before being prepared for
chemical analysis. Soil bulk density was measured within
each quadrate for the four layers.

The top 10 cm of soil from each plot were sampled with
a soil corer (5 cm in diameter) and analyzed for gravimetric
water moisture and inorganic N (NHþ

4 � N and NO�
3 � N)

every month from June to October 2008. Gravimetric water
moisture was determined by drying at 105°C for 24 h. To

analyze inorganic N, 50 ml of 2 M KCl solution was added
to a 10 g soil sample. The mixture of soil and extractant
was shaken for 1 h on a reciprocal shaker, and then the soil
suspension was filtered (Whatman No. 1 filter paper). Soil
solutions were kept frozen prior to analysis for NHþ

4 � N
and NO�

3 � N on a FIAstar 5000 Analyzer (Foss Tecator,
Denmark).

Organic C contents of plant and soil samples were
determined by a modified Mebius method (Nelson and
Sommers 1982). Total plant and soil N were measured
using the modified Kjeldahl wet digestion procedure
(Gallaher et al. 1976) with NHþ

4 � N analyzed colorimet-
rically by the alkali method with a 2300 Kjeldahl Analyzer
Unit (FOSS, Sweden).

We calculated the total soil organic C density (TSOC;
g C m−2) and total soil N density (TSN; g N m−2) on a
ground area basis as follows:

TSOC ¼
X

Di � Pi � OMi � S � R

TSN ¼
X

Di � Pi � TNi � S � R

where Di, Pi, OMi, TNi, and S represent the soil layer
thickness (cm), bulk density (g cm−3), organic C concen-
tration (%), total N concentration (%), and cross section
area (cm−2) of soil core of the ith layer, respectively; and i=
1, 2, 3, and 4; R=(1−weight of rocks/weight of soil)×
100%, as the soils contained no rocks, here R=1.

Statistical analysis

All data were expressed as mean±1 SE. Data were tested
for normality using the Kolmogorov–Smirnov test and for
homogeneity of variances using Levene’s test. Repeated
measurement analysis of variance (ANOVA) was used to
determine the effects of N and water addition on soil KCl-
extractable N pools. Three-way ANOVAs were used to
determine the effects of N, water addition, soil depth and
their interactions on soil C and N concentrations. Two-way
ANOVA was used to determine the effects of N and water
addition on plant and soil C and N pools. All statistical
analyses were conducted with SPSS (Version13.0 for
windows, SPSS Inc., Chicago, IL, USA), and in all cases
used a significance level of 0.05.

Results

Inorganic N in the soil

Both N and water addition significantly enhanced soil
mineral N availability (P<0.001; Table 1; Fig. 1). Across
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the growing season of 2008, N addition increased soil
NHþ

4 � N, NO�
3 � N and inorganic N concentrations by

143%, 112%, and 125% (all P<0.001; Table 1; Fig. 1),
respectively. Sampling date interacted with N addition to
affect soil mineral N concentrations (Table 1), in that N
addition significantly enhanced mineral N concentrations in
the first 2 months but not in the next 3 months during the
growing season. Water addition enhanced soil NO�

3 � N
and inorganic N concentration by 109% and 62% (all P<
0.001), whereas it had no impact on soil NHþ

4 � N
(Table 1). There was no interaction between N and water
addition to affect soil mineral N concentration (Table 1).

Carbon and N in different soil depth increments

Results from three-way ANOVAs indicated significant
main effects of N addition, water addition and depth on
both soil C and N concentration and content except that
there was no significant effect of N addition on soil C
content (Table 2). Nitrogen and water addition signifi-
cantly interacted to affect soil C concentration and content
but did not affect soil N concentration and content. A
significant interaction between water addition and depth
occurred to affect soil C concentration. The effects of N
and water addition on soil N concentration depended on
soil depth, as indicated by the significant interactions
between them.

Bulk soil C and N content declined exponentially with
depth (Fig. 2a, b). In the top 10 cm, soil C and N content
were significantly enhanced under elevated water condi-
tions (Fig 2a, b).There were no significant main effects of N
addition, water addition and depth and no interactions
among them on soil C/N ratios (Table 2). However,
separate one-way ANOVA by depth increment revealed
significantly lower C/N in the N and water combined plots
than control plots in 0–10 cm depth (Fig. 2c).

Ecosystem C and N storage

Water addition significantly increased ecosystem total C
storage by 10% (Fig. 3). Neither N addition nor its
interaction with water addition had significant effects on
ecosystem total C storage. The C storage varied substan-
tially among different pools (Fig. 3), with 90% of the total
storage distributed in soil. Water addition increased above-
ground biomass and litter C pools, whereas showed no
effects on roots C and soil C (Fig. 3). Nitrogen addition
failed to show a significant effect on ecosystem total C

Table 1 Results (F values) of repeated measures ANOVAs on the
effects of N addition (N), water addition (W), sampling month (M),
and their interactions on soil NHþ

4 � N, NO�
3 � N, and total inorganic

N (In-N) concentrations

NHþ
4 � N NO�

3 � N In-N

N 26.34* 52.63* 76.91*

W 0.06 115.44* 58.545*

N×W 1.41 0.05 0.50

M 13.60* 17.61* 21.77*

N×M 15.42* 13.67* 20.33*

W×M 1.17 3.05*** 0.83

N×W×M 0.99 2.21**** 0.11

*P≤0.001; ***P≤0.05; ****P≤0.1
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of soil NHþ
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storage. Water and N addition interacted to affect C storage
in litter, whereby N addition increased litter C pool under
ambient water conditions but decreased it under elevated
water conditions (Fig. 3).

Water addition significantly increased ecosystem total N
storage and N pools in aboveground biomass, litter, and soil
(Fig. 4). Nitrogen addition enhanced aboveground biomass
and litter N pools but only under ambient water condition
(significant N×W interactions; Fig. 4). In contrast, N
addition did not affect the N storage in roots, soil, and the
entire ecosystem (Fig. 4).

Discussion

Effects of N addition

Results from this study showed that N addition had no
significant effect on either total ecosystem C storage or
individual C pool (aboveground biomass, litter, roots and
soil) in this semi-arid grassland ecosystem over the first
2 years of the treatments (Fig. 3). We attributed the
unchanged C storage in aboveground biomass and litter in
response to N addition to the limited effect of N addition on
aboveground productivity in 2007 and 2008 (Lü, unpublished
data). In a recent study, Bai et al. (2010) found that N
addition, with a rate up to 17.5 gm−2, usually showed no
effects on aboveground productivity in the first 2 years of
treatments in this semi-arid grassland. Nitrogen fertilization
will lead to shifts in plant functional group composition in
this area (Bai et al. 2010), with perennials being replaced by
fast-growing annuals. However, this replacement may have
not occurred in the short-term. In fact, N addition showed
neutral or negative effects on the aboveground biomass of
dominant perennial grasses in the mature grassland ecosys-
tem in this region (Bai et al. 2010). Moreover, we found that
C storage in roots did not change after 2 years of N addition.
This may largely be accounted for by unchanged root
biomass in response to N addition (Two-way ANOVA, F=
1.849; P=0.193). These results suggest that unchanged
aboveground biomass in response to N amendment in the
initial 1 or 2 years after experimental N addition may be
mirrored by similar responses of C storage.

The C stored in soil organic matter generally accounts
for ~90% of total C storage in this region (He et al. 2008).
The change of soil C storage in response to global change

Fig. 2 Effect of N and water addition on soil C (a), N (b) contents,
and soil C/N ratio (c) (mean±1 SE; n=5) at different soil depths.
Letters indicate significant differences (P≤0.05) among treatments C
control, N N addition, W water addition, NW N and water addition

C% N% C content N content C/N

N 14.33* 15.47* 0.05 4.11*** 1.29

W 34.19* 24.99* 5.43** 15.52** 0.69

D 1194.28* 325.79* 145.18* 140.41* 2.33****

N×W 5.74*** 1.41 6.74*** 0.01 3.57****

N×D 2.60**** 3.57*** 0.17 1.52 0.73

W×D 5.79** 7.72* 1.20 5.57** 0.42

N×W×D 1.60 0.94 0.96 1.29 0.66

Table 2 Results (F values) of
three-way ANOVAs on the
effects of N addition (N), water
addition (W), soil depth (D), and
their interactions on soil C (C%)
and N concentration (N%), soil
C and N content, and soil C/N
ratio (C/N)

*P≤0.001; **P≤0.01;
***P≤0.05; ****P≤0.1
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factors depends on the balance between C inputs to soil by
net primary productivity and C outputs by soil organic
matter decomposition (von Lützow and Kögel-Knabner
2009). Results from this study show that the short-term
effect of N addition on this large C pool was not significant.
Given the failure of N addition to affect plant C pool in this
ecosystem, our results indicate that the short-term effects of
N addition on microbial biomass and activities may be
limited. In fact, results from another experiment that focused
on soil microbial community in this region showed no
statistically significant differences between the N addition
plots (16 gN m−2 year−1) and the control plots with respect
to microbial biomass C, microbial biomass N and soil
organic matter concentration after 3 years of N addition
(Zhang et al. 2008). Furthermore, a recent study in the same
area reported that N addition had no significant effect on
total soil respiration over two growing seasons (Yan et al.
2010). It is well known that AM fungi are important
belowground C sinks and sensitive to soil N availability.
However, the responses of fungal communities to N addition
depend on plant C inputs (Allison et al. 2007), and N
addition may have no significant effects on fungi biomass
in some grasslands (Murray et al. 2006). Considering that
the soil C sequestration should be a slow process, long-term
experiments are needed to evaluate the role of increased N
availability in determining the changes of soil C stocks.

It is reasonable to expect that N addition with a rate up to
17.5 gm−2 year−1 would significantly enhance ecosystem N
storage. Nitrogen addition did significantly increase soil
mineral N concentrations during the growing season in this
ecosystem, which have also been found in other studies
(Zhang et al. 2008; Bai et al. 2010). However, N addition
had no significant effects on either total N storage or
individual N pools in this ecosystem except for above-
ground biomass N pool (Table 2). Similarly, Vourlitis et al.
(2009) showed that short-term N addition (4 years) failed to
stimulate ecosystem N storage in Mediterranean-type
shrubland. The enhanced aboveground biomass N pool in
response to N addition in this study largely resulted from
increased N concentration of plant tissues (Lü and Han
2010) but not from the improvement of biomass. It is
notable that the significant effect of N addition on
aboveground biomass N pool was only observed under
ambient water conditions, indicating this ecosystem was
more water limited than N limited. Soil C/N ratio has been
suggested as a sensitive indicator of N impacts on soil
(Evans et al. 2006). A decline in soil C/N ratio with N
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(e) in a semi-arid grassland of northern China. Data are represented as
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among treatments. C control, N N addition, W water addition, NW N
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addition has been widely observed, resulting from either N
enrichment (Baron et al. 2000) or soil C loss (Vourlitis et al.
2007). In this study, N addition did not affect both soil C
and N content, consequently the soil C/N ratio. These
results indicate that the temperate steppe in this area had
limited ability to retain additional N inputs, at least in the
short-term. It is important to underline that it is well
established that measurements of organic C and total N
contents of soil are not sensitive to changes in environ-
mental factors and agricultural management.

There are several possible pathways for the loss of added
N in this ecosystem. Firstly, the soil depth beyond 40 cm
may respond to aboveground environmental variation, as
suggested by Kitchen et al. (2009), who found that
sampling to a depth of 90 cm can also reveal important
root responses to treatment in prairie ecosystem. Secondly,
N leaching represents a potentially significant pathway of N
loss. Nitrate-N, the most mobile form of N, usually dominates
the components of soil inorganic N in the temperate steppe
(Wang et al. 2006). In the urban grasslands of Maryland,
Groffman et al. (2009) found that annual NO�

3 � N leaching
can reach up to 4.1 g N m−2 year−1. The temporal trend of
soil inorganic N in this study showed that inorganic N
concentration was much lower in the late (September and
October) than the early stage of the growing season (Fig. 1).
We attribute this to the heavy rain during the end of July and
the beginning of August (117 mm from 31st July to 11th
Aug and 63.3 mm in 31st July), because precipitation
intensity would significantly enhance NO�

3 � N leaching
(Sugita and Nakane 2007). Thirdly, N loss from NO and
N2O emissions has been found to be substantial in the
grassland ecosystems that received additional N input
(Mosier et al. 1998), even in a relatively short-term (Dittert
et al. 2005). Furthermore, N may return directly to the
atmosphere via abiotic pathway (solar radiation drives N gas
loss) in this semi-arid ecosystem due to the high soil-surface
temperature as that has been observed in the arid environ-
ment (McCalley and Sparks 2009).

Effects of water addition

Water addition significantly enhanced plant and soil C storage
in this semi-arid grassland ecosystem and the increased
aboveground biomass and litter C pools in response to water
addition may have accounted for this change (Fig. 3). Water
addition significantly increased aboveground productivity by
60% (Lü, unpublished data), which may explain the

Fig. 4 Effect of N and water addition on N pools in aboveground
biomass (a), litter (b), roots (c), soil (d), and ecosystem total N storage
(e) in a semi-arid grassland of northern China. Data are represented as
mean±1 SE (n=5). Letters indicate significant differences (P≤0.05)
among treatments. C control, N N addition, W water addition, NW N
and water addition. *P≤0.05; **P≤0.01; ***P≤0.001
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increased aboveground biomass C pool under elevated water
conditions. Previous studies also reported that water addition
can significantly stimulate gross ecosystem productivity in
this semi-arid grassland (Niu et al. 2009). Water addition
failed to affect soil C storage in the present study, we assume
it is because the amount of precipitation is not as important
as precipitation distribution in influencing carbon sequestra-
tion in this area as suggested by Chen et al. (2009). The
result also indicates that gains in productivity may translate
into increased soil C inputs, but not necessarily into
increased soil C sequestration. As primary productivity is
positively related with annual precipitation (Bai et al. 2008)
and water addition usually enhance net ecosystem exchange
in this area (Niu et al. 2009), it is reasonable to expect water
addition will increase soil C storage in the long-term.

Both plant available soil N concentration and total
ecosystem N storage showed a positive response to water
addition in this study. Similar results have been found in a
regional scale experiment carried out in the grasslands of
the Central Great Plains, in which McCulley et al. (2009)
observed that ecosystem N storage increased across the
precipitation gradient. The positive effects of water addition
on soil inorganic N concentrations in this ecosystem can be
attributed to the increased microbial activities in response to
increased water availability as reported by Liu et al. (2009).
The simultaneous alleviation of water and N limitation in
the watered plots resulted in increased aboveground
biomass and enhanced N concentrations in plant tissues
(Lü and Han 2010), and consequently higher N storage in
both aboveground biomass and litter. Water addition
stimulated not only N pools related with plant but also the
soil N pool, probably due to altered N cycling under elevated
water environment. Many studies have demonstrated that
water additions affect litter decomposition dynamics (Liu et
al. 2006; Xiao et al. 2007), stimulate litter mass loss and
nutrient releasing, especially for plants with higher litter
quality (Liu et al. 2006). Thus, more N was given back to
soil pool in the watered plots than that in the control plots.
On the other hand, increased plant material supply under
elevated water conditions will stimulate N immobilization
and reduce denitrification losses (Crasweel 1978). In fact,
water-initiated increases of soil N concentration and content
only happened in the surface layer (Fig. 2), indicating that
the changes in the soil N pool may have resulted from litter
decomposition and microbial immobilization.

The interactive effects of N and water addition

Partially consistent with the results of a study that found no
interactive effects of N and water addition on ecosystem C
fluxes in semi-arid grassland (Niu et al. 2009), we observed
no significant interactions between N and water addition to
affect ecosystem total C and N storage. However, N and

water addition interacted to affect the litter C and N pool
and aboveground biomass N pool. For the litter pool, N
addition tended to increase C and N storage under ambient
water conditions, whereas it tended to decrease them under
elevated water environment. This may be partly explained
by the shifts of water or N limitation under these treat-
ments. In the plots that received only additional N, the
decomposition may be limited by water availability (Liu et
al. 2006). In contrast, when water and N were added in
combination, the rate of litter decomposition may be higher
and resulting in lower litter biomass storage. As for the
effects of N and water addition on aboveground biomass N
storage, N addition significantly increased it under ambient
water conditions but not under elevated water conditions. A
probable explanation is that water addition can significantly
enhance soil inorganic N concentrations and plant tissue N
concentration (Lü and Han 2010), so the effects of N
addition may be limited when it was added together with
water. These results suggest that water availability may be
relatively more important than N availability in regulating
plant C and N pools in this semi-arid grassland. Similarly,
Seagle and McNaughton (1993) also reported primary
limitation by water instead of N in a modeling study,
though other studies observed co-limitation of water and N
in different grassland ecosystems (Harpole et al. 2007). All
these differences may be resulted from the relative
importance of N and water in regulating ecosystem
processes in different locations (Niu et al. 2009).

Conclusions

With a field manipulative experiment, this study investi-
gated the short-term effects of N and water addition on
grassland ecosystem C and N storage. Admittedly, this
study suffers from several caveats that limit the potential for
a complete understanding of how N deposition and
increased precipitation will influence C and N storage in
the temperate steppe of northern China. Firstly, N input
from atmospheric deposition cannot be well simulated as
urea fertilizer was used. Secondly, the amount of water
added is much higher than the potential increase of
precipitation in this area in the near future. Third, this
study is based on a limited temporal (the second year of
treatments) and spatial (in one site with mature community)
perspective. Both soil organic C and total N were not
sensitive to the 2-year treatments of N and water addition. It
is well known that at least 5–10 years are needed to detect
significant changes in both pools. It remains unknown
whether the results from the present study can be
generalized over longer temporal and larger spatial scale.
Despite all these possible limitations, our results highlights
the importance of water availability in regulating responses
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of ecosystem C and N storage in semi-arid grassland in the
short-term. Based on the results from this study and those
from a recent study by Bai et al. (2010), we suggest that
longer term responses of this semi-arid grassland ecosystem
to N addition should be included in the future research.
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