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Abstract Composition and effects of additions of fibric (Oi)
and hemic/sapric (Oe + Oa) layer extracts collected from a
20-year-old stand of radiata pine (Pinusradiata) on soil
carbon dioxide (CO2) evolution were investigated in a 94-
day aerobic incubation. The 13C nuclear magnetic resonance
spectroscopy indicated that Oi layer extract contained greater
concentrations of alkyl C while Oe + Oa layer extract was
rich in carboxyl C. Extracts fromOi and Oe +Oa layers were
added to a forest soil at two different polyphenol concentra-
tions (43 and 85 μg g−1 soil) along with tannic acid (TA) and
glucose solutions to evaluate effects on soil CO2 efflux. CO2

evolution was greater in amended soils than control
(deionized water) indicating that water-soluble organic
carbon (WSOC) was readily available to microbial degra-
dation. However, addition of WSOC extracted from both Oi
and Oe + Oa layers containing 85 μg polyphenols g−1 soil
severely inhibited microbial activity. Soils amended with
extracts containing lower concentrations of polyphenols
(43 μg polyphenols g−1 soil), TA solutions, and glucose
solutions released 2 to 22 times more CO2-C than added
WSOC, indicating a strong positive priming effect. The
differences in CO2 evolution rates were attributed to
chemical composition of the forest floor extracts.

Keywords Radiata pine (Pinus radiata) . Oi and Oe + Oa
extracts . Dissolved organic carbon . Water-soluble organic
carbon . Polyphenols . 13C nuclear magnetic resonance
spectroscopy

Introduction

Decomposition of litter is of primary importance for
sustainability of forest ecosystems because of its role in
maintaining soil fertility and organic matter (Kalbitz et al.
2000). Nutrient turnover in forest soils is influenced by a
supply of readily available carbon (C), which includes
water-soluble organic carbon (WSOC) (Harris and Safford
1996). The WSOC enters the soil profile as a leachate from
live and decaying above-the-ground phytomass (Cook and
Allan 1992), soil humus, root exudates (Kalbitz et al.
2000), and microbial biomass and metabolites (Christ and
David 1996). The chemical composition of WSOC has a
major influence on soil carbon dioxide (CO2) efflux
(Borken et al. 2004). It was reported that the presence of
polyphenols in water-soluble extracts of forest floor
materials is particularly important (Heng and Goh 1984).
The readily biodegradable fraction of WSOC ranges from
12 to 44% (Gron et al. 1992; Yano et al. 1998). The fraction
of the WSOC that is not decomposed is thought to be
bound to the mineral soil and may play an important role in
soil C dynamics (Vance and David 1992; Guggenberger
and Kaiser 2003; Kaiser and Guggenberger 2003).

Soil microbial response to differences in WSOC
composition can be variable and from a general ecological
and evolutionary understanding, one would expect the
indigenous microbial population to be best adapted to the
optimal utilization of the organic compounds present in a
certain soil (Block et al. 1992). In contrast, Kalbitz et al.
(2003) reported that in a study involving degradation of
dissolved organic matter (DOM) collected from four sites
(beech forest, spruce forest, peat, and agricultural soil), the
highest DOM degradation was not observed with the native
inoculum. Although the reasons for the different inoculum
efficiencies are not known, these results clearly show that
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DOM biodegradability depends on the type and origin of
the microorganisms.

Carbohydrates and amino acids are highly decompos-
able in soils and are utilized preferentially by microorgan-
isms during degradation of different compounds in DOM
solutions (Amon et al. 2001; Kalbitz et al. 2003), whereas
tannins and lignins are resistant to microbial degradation
and generally accumulate during decomposition (Kögel-
Knabner et al. 1992; Ganjegunte et al. 2005a). Boissier and
Fontvieille (1993) found that polyphenols were closely
related to the amount of nondegradable DOM in incubation
experiments. In forests, polyphenolic compounds in
canopy leachate, leaf litter, coarse woody debris, root
exudates, and microbial metabolites tend to accumulate
and influence C cycling in forest floor and in soil (Hernes
et al. 2001; Kraus et al. 2003).

Short-rotation radiata pine (Pinusradiata) plantation
forestry is a major land use in New Zealand and there is
little information on the composition of WSOC from
radiata pine forest floor and its influence on soil organic
matter (SOM) decomposition rates. It was reported that
radiata pine fine litter and coarse woody debris litter
contain relatively high concentrations of recalcitrant
compounds (Ganjegunte et al. 2004, 2005a). Although
effects of the addition of plant residues on soil CO2 efflux
were extensively studied (Vanlauwe et al. 1994; Bell et al.
2003), only a few studies investigated soil CO2 efflux
induced by water soluble organic substrates (Shen and
Bartha 1997; Falchini et al. 2003), mostly in arable
topsoils. Information on effects of the addition of water-
soluble organic substrates on CO2 efflux from forest soils is
very limited. Addition of WSOC from forest floor of
monoculture radiata pine can have significant impacts on
SOM decomposition and consequently the nutrient avail-
ability in these forest soils. The main objectives of this
study were to: (1) evaluate the composition of fibric (Oi)
and hemic/sapric (Oe + Oa) forest floor extracts and (2)
evaluate impacts of the addition of forest floor WSOC,
polyphenols in particular, on the CO2 efflux from soils
under fast growing radiata pine.

Materials and methods

Preparation and analysis of forest floor extracts

Forest floor materials were collected from 20-year-old
radiata pine stands growing in Bottle Lake Forest near
Christchurch (43°30′S, 172°40′E). The forest was planted
on windblown greywacke sand dunes (Waikuku sand) and
there was a significant build up of forest floor with clearly
distinguishable Oi and Oe + Oa layers. Forest floor samples
were collected in July 2000 when the site was dry. Forest
floor samples were collected from three subplots of 2×2-m
area within two selected stands. Approximately 20 kg of
intact Oi and Oe + Oa layer material was sampled from
each subplot (4 m2). Depths of Oi and Oe + Oa layers were
1.0 and 3.5 cm, respectively. In the laboratory, Oi and Oe +
Oa layers were separated and air-dried. Moisture content in

air-dried samples was determined by oven drying sub-
samples from each plot.

Aqueous extracts of Oi and Oe + Oa layer materials from
three subplots from two stands of Bottle Lake Forest plot
were prepared separately by shaking 200 g (oven-dry
equivalent) of material with 2 l of deionized water for 8 h at
20°C, followed by sequential filtration through Whatman
44, 5 μm and 0.45 μm (Millipore nylon) membrane.
Duplicate subsamples of the six filtrates were analyzed for
soluble carbohydrates, polyphenols, and total organic
carbon (TOC). Soluble carbohydrates were determined
using Anthrone reagent method (modified Doutre et al.
1978). Polyphenols were determined using Folin–Denis
assay as described by Allen et al. (1974). Total organic
C was determined using a Shimadzu TOC-5000A
Analyzer.

After the extracts were analyzed they were bulked and
concentrated using freeze-drying. The freeze-dried Oi and
Oe + Oa extracts were analyzed by nuclear magnetic
resonance (NMR) spectroscopy. Solid-state cross-polariza-
tion magic angle spinning, total suppression of side-bands
(CPMAS-TOSS) 13C NMR spectra was obtained using a
Bruker MSL 300 operating at 75.5 MHz. The samples were
spun at magic angle spinning rates of 4.8 kHz in a 7-mm
OD rotor. Spectra were acquired with 1 ms contact time, 1 s
relaxation delay, and 6,000 scans. The spectra were
processed using 50 Hz line-broadening and baseline
correction. Spectra were plotted with a standard height
assigned to the tallest peak. Peak areas were measured
electronically using standard Bruker software for the
following chemical shift regions (Randall et al. 1995):
(1) alkyl C, 0–45 ppm; (2) N-alkyl C, 45–65 ppm;
(3) O-alkyl C, 65–95 ppm; (4) acetal C, 95–108 ppm;
(5) aromatic C, 108–140 ppm; (6) phenolic C, 140–
160 ppm; and (7) carboxyl C, 160–220 ppm.

Incubation experiment

The annual input of polyphenols to soil from organic matter
in radiata pine forest floor in New Zealand is approxi-
mately 85 μg g−1 soil (Heng and Goh 1984). In this study,
the impacts of the addition of Oi and Oe + Oa layer extracts
at two concentrations of polyphenols (100 and 50% of the
annual soil input of polyphenols) on soil CO2 evolution
rates were evaluated. To obtain the desired concentration of
85 μg polyphenol g−1 soil, the aqueous extracts were
bulked and concentrated using freeze-drying. Three liters
of Oi layer and 1.7 l of Oe + Oa layer extracts (Table 1)
were concentrated to 100 ml. The concentrations of
polyphenols, carbohydrates, and TOC in the final (con-
centrated) solutions of Oi and Oe + Oa extracts are shown
in Table 2.

Soil used in the incubation was the same as the ones used
in microcosms described by Girisha et al. (2003). Soil
samples were air-dried and sieved to pass through a 2-mm
sieve. The organic C content of soil (SOC) was 9.42% and
because the amount of C in amendments (forest floor
extracts) added were very small in comparison to SOC
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content, soil was mixed with acid-washed fine sand
(1:1, weight) to reduce background soil respiration so that
the effect of the extracts on soil respiration could be
accurately determined. Selected chemical properties of
bulked soil–sand mixture are shown in Table 3. The organic
C concentration of soil–sand mixture was 3.2% and C:N
ratio was 23. Soil–sand mixture was preincubated at 25°C
for 10 days to stabilize the respiration rate.

After preincubation, about 30 g of air-dried soil mixture
was placed in small, round plastic containers (45 mm in
diameter and 27-mm-deep) and moisture content was
adjusted to 80% of field capacity by adding either 5 ml of
deionized water (in the case of the control) or 5 ml of
extracts or standard [glucose or tannic acid (TA)] treatment
solutions. Ten treatments and a control (soil treated with
deionized water) were evaluated (replicated four times) in
the present experiment (Table 4). About 2.07 ml of
concentrated Oi extract was diluted to 5 ml and added to
30 g of soil–sand mixture to achieve desired concentration
of 85 μg g−1 soil for Oi 85 treatment. Similarly, 4.88 ml of
concentrated Oe + Oa extract was diluted to 5 ml and added
to soils to attain the required concentration of 85 μg
polyphenols g−1 soil in Oe + Oa 85 treatment. Half of the
volumes of concentrated solutions were used for the Oi 43
and Oe + Oa 43 treatments (43 μg polyphenols g−1 soil).
Because the study was designed to examine the effects of
water-soluble polyphenols on soil CO2 evolution rates,
hydrolysable tannin standards (TA) at equivalent concen-
trations (85 and 43 μg g−1 soil) were included. TA solution
of 510 mg l−1 was prepared and 5 ml of this was used for
TA 85 treatment and 2.5 ml of this solution diluted to 5 ml
was added to TA 43 treatment soils. We included four
different glucose treatments (G) (G 259, G 130, G 210, and
G 105 μg g−1 soil) to represent the soluble carbohydrate
concentrations in the four forest floor extract treatments
(Oi 85, Oi 43, Oe + Oa 85, and Oe + Oa 43), respectively. A
glucose solution of 5,000 mg l−1 concentration was added

in different volumes to achieve the required concentrations
of soluble carbohydrates.

Plastic containers containing soils amended with
extracts/deionized water were placed in 1 l glass jars and
incubated at 25°C for 94 days. Soil moisture content was
maintained at 80% field capacity by adding deionized
water based on weight loss measured on a weekly basis.

CO2 evolution from soil

The CO2 evolved during the incubation experiment was
determined using alkali traps according to the method
outlined by Alef and Nannipieri (1995). Briefly, this
method involves trapping of CO2 in a NaOH solution and
quantifying by titrating with HCl. During the first week of
incubation, CO2 evolution was measured after 1.0, 1.5, and
5.0 days. Thereafter, CO2 evolution was determined at
weekly intervals.

Statistical analysis

The significance of treatment effects on CO2 production for
each incubation period was determined by using one-way
ANOVA (Genstat 4.1). Least significant differences (LSD)
procedures were used for treatment mean separation. All
statistical evaluations are based on p<0.05, unless other-
wise mentioned.

Results

Qualitative analysis of Oi and Oe + Oa extracts

Concentrations of polyphenols, soluble carbohydrates and
TOC in Oi layer extract were significantly greater than
those in the Oe + Oa layer extracts (Table 1). The NMR
spectra indicated a relatively greater proportion of alkyl-C

Table 1 The concentrations [mean±SD (mg l−1)] of soluble
carbohydrates, polyphenols, and TOC in aqueous extracts of Oi
and Oe + Oa layers from Bottle Lake Forest (n=6)

Forest floor Carbohydrates Polyphenols TOC

Oi Layer 136.3±0.5 44.1±0.1 372.8±7.4
Oe + Oa Layer 124.5±0.1 33.3±0.4 299.8±13.2
LSD (0.05) 0.51 0.34 21.76

Table 2 The concentrations (mg l−1) of soluble carbohydrates,
polyphenols, and TOC in concentrated aqueous extracts of Oi and
Oe + Oa layers from Bottle Lake Forest

Sample Concentrateda

Soluble carbohydrates Polyphenols TOC

Oi layer 3,750 1,229 10,518
Oe + Oa layer 1,360 524 4,461
a3 l ofOi layer extractwas concentrated to 100ml by freeze-drying; 1.7 l
of Oe + Oa layer extract was concentrated to 100 ml by freeze-drying

Table 3 Selected properties of the soil–sand mixture (1:1) used for
incubation

Properties Value

pH (1:2.5) 5.5
Olsen P (mg kg−1) 6
Total P (mg kg−1) 304
Extractable K (cmol + kg−1) 0.47
Extractable Ca (cmol + kg−1) 2
Extractable Mg (cmol + kg−1) 1.15
Extractable Na (cmol + kg−1) 0.14
Cation exchange capacity (cmol + kg−1) 12.1
Base saturation (%) 32
Density (Mg m−3) 0.97
Field capacity (%) 17
Total C (%) 3.2
Total N (%) 0.14
C:N ratio 23
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(23%) in the Oi layer extract than the Oe + Oa layer (14%)
(Fig. 1 and Table 5). However, the signal intensities for the
O-alkyl C, N-alkyl, and aromatic and phenolic regions
were similar for the Oi and Oe + Oa layer extracts. The
Oe +Oa layer extract contained relatively greater amount of
carboxyl-C (17%) compared to the Oi extract (13%). No
statistical analysis of spectra was possible because NMR
spectroscopy was carried out on a composite sample
extracted from six forest floor samples.

CO2 evolution

The rate of evolution of CO2 was greater during the initial
stages of the incubation experiment and it decreased with
time (Figs. 2 and 3). Data indicated that significant
differences in CO2 evolution were observed between Oi
85 and Oe + Oa 85 treatments up to 46 days, after which,

there were no significant differences (Fig. 2). However, no
significant differences in rates of CO2 evolution were
observed between Oi 43 and Oe + Oa 43 treatments
throughout the incubation (Fig. 2). The differences
between Oi 85 and Oi 43 were not significant until

Table 4 Amounts of TOC, soluble carbohydrates, and polyphenols added to soil in forest floor extracts and standards

Treatment Description Amendment Milliliter
added

TOC in amendment
(mg kg−1 soil)

Soluble
carbohydrates
(mg kg−1 soil)

Polyphenols
(mg kg−1 soil)

Control Control (deionized water) Deionized water 5 – – –
Oi 85 Oi layer extract with

polyphenol concentration
of 85 μg g−1 soil

Oi extract
concentrated

2.07 diluted
to 5

728 259 85

Oi 43 Oi layer extract with
polyphenol concentration
of 43 μg g−1 soil

Oi extract
concentrated

1.04 diluted
to 5

364 130 43

Oe + Oa 85 Oe + Oa layer extract with
polyphenol concentration
of 85 μg g−1 soil

Oe + Oa extract
concentrated

4.88 diluted
to 5

723 211 85

Oe + Oa 43 Oe + Oa layer extract
polyphenol concentration
of 43 μg g−1 soil

Oe + Oa extract
concentrated

2.44 diluted
to 5

362 105 43

TA 85 Tannic acid (C76H52O46)
standard for Oi and Oe + Oa
extracts with polyphenol
concentration of 43 μg g−1 soil

Tannic acid
(510 mg l−1)

5 46 – 85

TA 43 Tannic acid (C76H52O46) standard
for Oi and Oe + Oa extracts
with polyphenol concentration
of 43 μg g−1 soil

Tannic acid
(510 mg l−1)

2.5 diluted
to 5

23 – 43

G 259 Glucose standard for Oi layer
extract with polyphenol
concentration 85 μg g−1 soil

D-glucose
(5,000 mg l−1)

1.55 diluted
to 5

104 259 –

G 130 Glucose standard for Oi layer
extract with polyphenol
concentration 43 μg g−1 soil

D-glucose
(5,000 mg l−1)

0.78 diluted
to 5

52 130 –

G 210 Glucose standard for Oe + Oa
layer extract with polyphenol
concentration 85 μg g−1 soil

D-glucose
(5,000 mg l−1)

1.26 diluted
to 5

84 211 –

G 105 Glucose standard for Oe + Oa
layer extract with polyphenol
concentration 43 μg g−1 soil

D-glucose
(5,000 mg l−1)

0.63 diluted
to 5

42 105 –

Table 5 Relative signal intensities (%) at different regions of NMR
spectra of Oi and Oe + Oa extracts

Shift region Oi Oe + Oa

Alkyl (0–45 ppm) 23 14
N-alkyl (45–65 ppm) 12 12
O-alkyl (65–95 ppm) 29 28
Acetals (95–108 ppm) 8 12
Aromatics (108–140 ppm) 10 11
Phenolics (140–160 ppm) 4 6
Carboxyls (160–220 ppm) 13 17
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68 days; thereafter, CO2 evolution from Oi 43 was
significantly greater than from the Oi 85 treatment. The
Oe + Oa 43 treatment recorded significantly greater rates of
CO2 evolution than Oe + Oa 85 throughout the incubation
period (Fig. 2).

CO2 evolution from Oi 85 was significantly greater than
its TA equivalent (TA 85) during the first 48 days of
incubation, after which, there was no significant difference.
The differences in CO2 evolution between Oi 43 and TA 43
were significant up to 90 days and thereafter, no significant
differences were observed (Fig. 3a). The Oe + Oa 85 and
TA 85 did not differ significantly in CO2 evolution
throughout the incubation period. In contrast, Oe + Oa
43 produced significantly greater CO2 than its polyphenol
standard TA 43 throughout the incubation period (Fig. 3b).

The CO2 evolution from glucose standard (G 259) for Oi
85 treatment was significantly greater than Oi 85 only after
90 days of incubation.

Significant differences between Oi 43 and its glucose
standard G 130 were observed only during the first 14 days
of incubation (Fig. 3c). The CO2 evolution from Oe + Oa
85 was significantly lower than its glucose standard G 210
after 38 days of incubation and the differences remained
significant throughout the end of incubation. Significant
differences existed between Oe + Oa 43 and its equivalent
glucose standard (G 105) up to 46 days (Fig. 3d).

Discussion

Chemistry of Oi and Oe + Oa extracts

The Oi layer mainly consisted of freshly fallen needles and
contained greater amounts of water-soluble carbohydrates
and polyphenols compared to the Oe + Oa layer. This
difference between the two readily identifiable layers is in
agreement with other studies (Gamble et al. 1996; Bhat
et al. 1998; Kraus et al. 2004). The differences were
primarily attributed to the greater degree of leaching and
microbial degradation of Oe + Oa layer (Gamble et al.
1996; Bhat et al. 1998; Kraus et al. 2004). The greater
degree of decomposition not only influenced the total
amount of TOC in the Oe + Oa layer but also the nature of
C as more readily available substrates are utilized early in
the decomposition process (Hopkins and Chudek 1997).

The NMR spectra of freeze-dried aqueous extracts
indicated that while the relative signal intensities of alkyl
C region of Oi extract spectra was comparatively greater
than Oe + Oa extract, the carboxyl signal intensity for Oe +
Oa extract was greater than the Oi layer extract (Fig. 1 and
Table 5). Similar results were reported by Fröberg et al.
(2003) for a 35-year-old Norway spruce forest floor layer.
The alkyl signals are mainly from compounds that are
resistant to decomposition such as surface waxes, cutins,
suberins, and resins (Baldock and Preston 1995). This was
expected because Oi layer material is mostly composed of
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Fig. 1 13C CPMAS NMR spectra of freeze-dried aqueous extracts
of Oi and Oe + Oa layers
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Fig. 2 Cumulative CO2-C evo-
lution over a period of 94 days
from litter extract amendments
at 100 and 50% annual input
polyphenol concentrations rate
(n=44, i.e., four replications ×
11 treatments including control).
*LSD bars are the mean LSDs
for all five curves

203



recently fallen needles, which contain greater concentra-
tions of surface waxes, cutins, suberins, and resins. The
signal intensities in O-alkyl and acetal regions for Oi and
Oe + Oa extracts were similar, indicating that polysaccha-
rides content in these two extracts were similar (Preston
1996). This observation is in contrast with the results of
other studies (Wilson 1983; Baldock and Preston 1995)
that have reported decrease in O-alkyl and acetal C with
decomposition (from Oi to Oa stage). This might be due to
loss of soluble sugars and polysaccharides from Oi material
either due to leaching or microbial degradation. Zech et al.
(1992) investigated the relationship between the O-alkyl
C signal intensity and loss of polysaccharides during
decomposition. They noted that decrease in O-alkyl C was
not proportional to the decrease in total polysaccharides,
indicating accumulation of nonpolysaccharide O-alkyl
C such as oxygenated C atoms of propane side chain and
methoxyl groups of lignin monomers. Lack of differences
in O-alkyl C could also be due to microbial formation of
polysaccharides in the Oe +Oa layer during decomposition.
Sollins et al. (1996) stated that many bacteria and fungi
release diverse polysaccharides into their immediate envi-

ronment. Huang et al. (1998) also observed an accumula-
tion of polysaccharides in mineral soil samples with
increasing decomposition of organic matter, which could
be attributed to microbially synthesized polysaccharides.

The combined signal intensity of N-alkyl, aromatic and
phenolic regions are attributed to lignin monomers and
hydrolysable tannins (Lorenz et al. 2000; Ganjegunte et al.
2005b). Both Oi and Oe + Oa layer extracts recorded similar
combined signal intensity of N-alkyl, aromatic and phenolic
regions. Tannins and lignin are resistant to decomposition
and they accumulate during initial stages of decomposition
(Kraus et al. 2004; Ganjegunte et al. 2004, 2005a). Lack of
differences between the combined signal intensities of N-
alkyl, aromatic and phenolic C between Oi and Oe + Oa
layers suggests that lignin and tannins inOe +Oa layersmay
have been decomposed or at least significantly altered. Similar
observations were made by other studies (Zech et al. 1992;
Martinez 2002). As decomposition progresses (from the Oi to
Oe + Oa stage), aromatic (lignin) and aliphatic compounds
(polysaccharides) in theOi layer undergo depolymerization and
demethyloxylation to yield carboxyl C (Wershaw et al. 1996)
representing organic acids like aldonic and aldaric acids. Thus,
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Fig. 3 Cumulative CO2-C evolution from soils amended with a Oi
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the extract of the Oe + Oa layer registered relatively greater
signal intensity in the carboxyl region indicating that it is
derived from more decomposed substrates. In addition,
accumulation of secondary metabolites and amide C may
also contribute to signals in the carboxyl region (Hopkins and
Chudek 1997).

Impact of the addition of Oi and Oe + Oa extracts
on CO2 evolution

The amount of C added as WSOC in different treatments
was a fraction of the total soil C but in all cases, CO2

evolution rates were greater than the control over 94 days
of incubation period (Figs. 2 and 3). Soluble organic matter
is an important substrate for microorganisms (Marschner
and Bredow 2002) and is quickly depleted during incuba-
tion. Laboratory studies (Boissier and Fontvieille 1993;
Boyer and Groffman 1996) have shown that microorgan-
isms can decompose different amounts of the water-soluble
organic matter fraction. These studies, which ranged in
duration from hours to months, indicated that 10–40% of
the water-soluble organic C was decomposable under
laboratory conditions. The difference between CO2-C
evolved from soils amended with different WSOC and
that of control indicates the fraction of added WSOC that
was mineralized. The cumulative CO2-C evolved from
Oi 43, Oe + Oa 43, TA 85, TA 43, G 259, G 130, G
210, and G 105 were 229, 260, 811, 2,252, 713, 1,394,
865, and 1,702% of the added WSOC, respectively.
This may be attributed to the “positive priming effects” of
added WSOC, a phenomenon that deals with triggering a
change (positive or negative) in natural mineralization
processes through input of an easily decomposable energy
source (Kuzyakov et al. 2000). It was suggested that some
microorganisms invest low amounts of energy to maintain
the cell in a state of “metabolic alertness,” thus being able to
react more rapidly to the addition of substrates and it was
shown that even trace amounts of easily available substrates
trigger microorganisms into activity (De Nobili et al. 2001).
Another theory suggests that the addition of easily available
substrates only promotes the growth of microorganisms,
which are characterized by their ability to respond to the
addition of substrate by rapid growth, but are not able to
utilize the more complex organic compounds typical for
SOM (Fontaine et al. 2003). De Nobili et al. (2001) and
Chander and Joergensen (2001) suggested that additional
CO2 evolution from soils after the addition of substrate is
only an apparent priming effect, assuming that the
additional CO2 originates from the turnover of native
microbial biomass instead of SOM mineralization.

Although forest floor extracts added to soil contained
similar concentrations of polyphenols (85 and 43 μg g−1

soil) as the TA standards (85 and 43 μg g−1 soil), the
cumulative CO2-C evolution from soils amended with TA
85 as a proportion of added WSOC was 54 and 22 times of
that from Oi 85 and Oe + Oa 85, respectively. Similarly, the
cumulative CO2-C evolution from soils amended with TA
43 as a proportion of added WSOC was nine and eight

times of that from Oi 85 and Oe + Oa 85, respectively. The
results of this study clearly suggest that at lower
concentrations, polyphenols present in WSOC were readily
available to microorganisms. Similar results were reported
in many previous studies (Bending and Read 1996; Bhat et
al. 1998; Fierer et al. 2001; Kraus et al. 2004). While Fierer
et al. (2001) reported that shorter-chained condensed
tannins were more labile and less inhibitory to microbes
than longer-chained condensed tannins, the opposite of this
was reported by Kraus et al. (2004). Bhat et al. (1998)
indicated that hydrolysable tannins are more labile than
condensed tannins. Thus, the varying results observed
in different studies suggest that tannins/polyphenols of
different chemical structure are processed in soil in different
ways.

However, higher concentrations of polyphenols and
WSOC in Oi 85 and Oe + Oa 85 resulted in severe
inhibition of microbial activity, indicating significant
“negative priming effects.” Possible mechanisms of neg-
ative priming are toxicity of the substrate to microorgan-
isms and inhibition of enzyme activities or structural
change of organic matter by binding (Gianfreda et al. 1993;
Fierer et al. 2001). A preferential utilization of the easily
available substrate compared to SOM is a further
explanation (Kuzyakov et al. 2000). The cumulative CO2

evolution was significantly lower for extracts containing
relatively greater concentrations of polyphenols (Oi 85 and
Oe + Oa 85) than extracts with lower concentrations of
polyphenols (Oi 43 and Oe + Oa 43), indicating that the
effects of greater concentrations of polyphenols become
more important with time as readily available sources of C
become depleted (Heng and Goh 1984).

Lack of significant differences in cumulative CO2-C
values between Oi 85 and G 259 up to 90 days suggests
that freshly fallen needles may have contained adequate
supplies of readily available C to sustain soil respiration for
this length of time (Kalbitz et al. 2003). Similarly, Oi 43,
which had a lower polyphenols concentration, registered
significantly greater CO2 evolution than its glucose
standard G 130 up to 2 weeks. Once the readily available
C sources were utilized, differences became nonsignificant.
The same argument can be extended to C mineralization
rate differences between Oe + Oa 43 and its glucose
standard G 105. Significantly lower CO2 evolution from
Oe + Oa 85 than its glucose standard G 210 after 38 days of
incubation could be due to the combined effects of greater
polyphenols concentration and presence of recalcitrant
compounds such as lignin in the Oe + Oa extract. However,
the cumulative CO2-C evolved from soils amended with G
259 and G 130 were 7 and 14 times added WSOC
compared to 0.4 and 2.3 times of added WSOC in soils
amended with Oi 85 and Oi 43 extracts. Similarly, CO2-C
evolved from soils amended with G 210 and G 105 were 9
and 17 times of added WSOC compared to 0.15 and 2.60
times of added WSOC from soils amended with Oe + Oa
85 and Oe + Oa 43 extracts, respectively. This again
confirms the positive priming effects of the addition of
glucose solutions.
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Conclusions

The study demonstrated positive priming effects of forest
floor layer extracts on soil CO2 efflux. While recalcitrant
compounds such as suberins, cutins, and wax controlled
CO2 release in Oi layer extract, carboxyl C representing
organic acids like aldonic and aldaric acids may have
influenced C release from Oe + Oa layer extract. WSOC
compounds were readily decomposed by soil microbes and
significant positive priming effects were observed in soils
amended with WSOC except Oi 85 and Oe + Oa 85
extracts. In case of Oi 85 and Oe + Oa 85 extracts, which
contained greater polyphenol concentrations, the CO2

efflux was significantly lower indicating severe inhibition
of microbially mediated degradation of added WSOC. In
forest floor extracts, the presence of readily available
source C compounds might have been responsible for
greater C release compared to that from their respective TA
standards. Further research is needed to examine the
influence of different rates, specific types of tannins/
polyphenols, and microbial communities on C and N
cycling in forest soils.
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