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Abstract. Given a graph G and a positive integer r, let frðGÞ denote the largest number of
colors that can be used in a coloring of EðGÞ such that each vertex is incident to at most r
colors. For all positive integers n and r, we determine frðKn;nÞ exactly and frðKnÞ within 1.
In doing so, we disprove a conjecture by Manoussakis, Spyratos, Tuza and Voigt in [4].
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1. Introduction

Let F and G be two graphs, and c be a coloring of EðGÞ (the edge set of G). F is
said to be a rainbow subgraph (or polychromatic subgraph) of G, if G contains a
subgraph isomorphic to F , all of whose edges are assigned distinct colors.
Several recent papers study conditions on c that ensure the existence of a
rainbow subgraph F in G (see [2]–[4]). There has been particular interest in
determining the least number of colors in a coloring of EðKnÞ that forces a
certain rainbow subgraph to occur. Such problems are sometimes called
Anti-Ramsey problems.
We study a problem of this type. A star with l edges is an ðlþ 1Þ-vertex graph

with l edges, in which one vertex is adjacent to all the other l vertices. Given a
graph G and a positive integer r, let frðGÞ denote the maximum number of colors
that can be used in a coloring of EðGÞ without forcing a rainbow star with r þ 1
edges. In other words, frðGÞ denotes the maximum number of colors that can be
used in a coloring of EðGÞ such that each vertex is incident to at most r colors.
When G ¼ Kn, determining frðGÞ becomes an Anti-Ramsey problem, and is

the main focus of this paper. Trivially, for r � n� 1, frðKnÞ ¼ 1
2 nðn� 1Þ. Hence

we will assume that r � n� 2. For r � n� 2, previous bounds on frðKnÞ were
obtain by Manoussakis et al. [4]. They showed that b12 ðnðr � 1Þ þ 2Þc �
frðKnÞ � b12 ðnðr � 1Þ þ r þ 1Þc. They further conjectured the lower bound to be
best possible. In section 3, we disprove their conjecture by proving

1990 Mathematics Subject Classification: 05C35, 05C55

Graphs and Combinatorics (2002) 18:303–308

Graphs and
Combinatorics
� Springer-Verlag 2002



Theorem 1. Given positive integers n and r, where r � n� 2,

frðKnÞ ¼
�
1

2
nðr � 1Þ

�
þ
�

n
n� r þ 1

�
þ �;

where � ¼ 0 or 1 if n is odd, r is even, and b 2n
n�rþ1c is odd; � ¼ 0 otherwise. (

In section 2, we consider the case where G ¼ Kn;n. Trivially, if r � n then
frðKn;nÞ ¼ n2. Hence we will assume that r � n� 1. We prove the following
theorem.

Theorem 2. Given positive integers n and r, where r � n� 1,

frðKn;nÞ ¼ nðr � 1Þ þ
�

n
n� r þ 1

�
: (

We are going to prove Theorem 2 first to illustrate some of the key ideas used
in the proof of Theorem 1.
We consider only simple graphs. We denote the vertex set and edge set of G by

V ðGÞ and EðGÞ, respectively. The neighborhood of a vertex v 2 V ðGÞ, written
NGðvÞ, is the set of all vertices adjacent to v in G. The degree of a vertex v 2 V ðGÞ
in G is dGðvÞ ¼ jNGðvÞj. Subscripts will be omitted whenever appropriate. The
subgraph of G induced by a subset S � V ðGÞ is denoted by G½S�. A graph is
k-regular if every vertex in it has degree k. A subgraph H � G is a spanning
subgraph of G if V ðHÞ ¼ V ðGÞ. A k-regular spanning subgraph of G is called a
k-factor of G. Given a positive integer m, ½m� denotes the set f1; . . . ;mg.

2. The Bipartite Case

Let G ¼ Kn;n: Let X ¼ fx1; . . . ; xng and Y ¼ fy1; . . . ; yng be the two bipartite sets of
G. In our proof, we need the following lemma which can be found in any
introductory graph theory book.

Lemma 1. Kp;p has a t-factor for all t 2 ½p�:

Lower bound. frðGÞ � nðr � 1Þ þ b n
n�rþ1c, where r � n� 1.

Proof. To prove the lower bound, we present a coloring of EðGÞ using
nðr � 1Þ þ b n

n�rþ1c colors, such that at each vertex at most r colors are used on its
incident edges.
Let m ¼ b n

n�rþ1c. Partition X into m subsets X1; . . . ;Xm, each of size at least
n� r þ 1. Partition Y into Y1; . . . ; Ym, such that jYij ¼ jXij for each i 2 ½m�. By
Lemma 1 each G½Xi [ Yi� contains an ðn� r þ 1Þ-factor, call it Fi. Let
F ¼ F1 [ � � � [ Fm. Then F is an ðn� r þ 1Þ-factor of G, and thus G� EðF Þ is an
ðr � 1Þ-factor. We now color the edges of G by assigning color i to the edges in Fi
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for each i 2 ½m�, and assigning distinct new colors to the remaining edges in G. It is
easy to verify that at each vertex exactly r colors are used on the incident edges,
and that altogether nðr � 1Þ þ m ¼ nðr � 1Þ þ b n

n�rþ1c colors are used. (

Upper bound. frðGÞ � nðr � 1Þ þ b n
n�rþ1c; where r � n� 1.

Proof. Let c be a coloring of EðGÞ, such that at each vertex at most r colors are
used on the incident edges. We use jcj to denote the number of colors used in c.
For each i 2 ½n�, let Ai and Bi denote the set of colors used on the edges incident to
xi and to yi, respectively; clearly, jAij; jBij � r. Let m be the largest integer such
that there are m pairwise disjoint Ai’s. Without loss of generality, suppose that
A1; . . . ;Am are pairwise disjoint. For j > m, we have Aj \ ð[m

i¼1AiÞ 6¼ ; and
therefore jAj � [m

i¼1Aij � r � 1. It follows that

jcj ¼ j [n
i¼1Aij ¼ j [m

i¼1Aij þ j [n
j¼mþ1Aj � [m

i¼1Aij � mr þ ðn� mÞðr � 1Þ: ð2:1Þ

On the other hand, for each j 2 ½n�, since A1; . . . ;Am are pairwise disjoint,
cðx1yjÞ; . . . ; cðxmyjÞ are all distinct, and they belong to [m

i¼1Ai. Since at most r
distinct colors are allowed on the edges incident to yj, we have
jBj � [m

i¼1Aij � ðr � mÞ. Hence

jcj ¼ j [n
j¼1Bjj ¼ j [m

i¼1Aij þ j [n
j¼1Bj � [m

i¼1Aij � mr þ nðr � mÞ: ð2:2Þ

We can rewrite (2.1) and (2.2) as jcj � nðr � 1Þ þ m and jcj � nðr � 1Þþ
nþ mðr � nÞ, respectively. Combining the two, we have

jcj � nðr � 1Þ þminfm; nþ mðr � nÞg: ð2:3Þ

Notice that m increases as m increases, and nþ mðr � nÞ decreases as m increases,
and the two quantities are equal when m ¼ n

n�rþ1. Hence, minfm; nþ mðr � nÞg �
n

n�rþ1. Since jcj is an integer, we have jcj � nðr � 1Þ þ b n
n�rþ1c. (

3. The Complete Graph Case

Let G ¼ Kn. We need the following two elementary lemmas in our proof.

Lemma 2. K2p has an l-factor for all l 2 ½2p � 1�, (

Lemma 3. Every 2p-regular graph contains a 2t-factor for all t 2 ½p�. (

Lower bound. frðGÞ � b12 nðr � 1Þc þ b n
n�rþ1c, where r � n� 2.

Proof. To prove the lower bound, we present a coloring of EðGÞ using
b12 nðr � 1Þc þ b n

n�rþ1c colors, such that at each vertex at most r colors are used on
the incident edges. Let m ¼ b n

n�rþ1c. Partition V ðGÞ into m subsets A1; . . . ;Am,
where jAij ¼ n� r þ 1 for i 2 ½m� 1�, and jAmj ¼ n� ðm� 1Þðn� r þ 1Þ �
n� r þ 1. For i 2 ½m� 1�, G½Ai� is ðn� rÞ-regular, let Fi ¼ G½Ai�.
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Case 1. n and r have the same parity.

In this case n� r is even. G½Am� is a complete graph on at least n� r þ 1
vertices. By Lemma 2 and Lemma 3, it contains an ðn� rÞ-factor, call it Fm. Let
F ¼ [m

i¼1Fi. Then F is an ðn� rÞ-factor of G, and G� EðF Þ is an ðr � 1Þ-factor of
G. Now color the edges of G by assigning color i to the edges in Fi, and assigning
distinct new colors to the remaining edges in G. The coloring defined this way uses
1
2 nðr � 1Þ þ m ¼ b12 nðr � 1Þc þ b n

n�rþ1c colors, and at each vertex exactly r colors
are used on the incident edges.

Case 2. n is even and r is odd.

In this case jAmj ¼ n� ðm� 1Þðn� r þ 1Þ is even, and is at least n� r þ 1. By
Lemma 2, G½Am� has an ðn� rÞ-factor, call it Fm. We can then color the edges of G
as in the previous case.

Case 3. n is odd and r is even.

In this case jAmj ¼ n� ðm� 1Þðn� r þ 1Þ is odd, and is at least n� r þ 2. Let
t ¼ jAmj. Suppose that Am ¼ fv1; . . . ; vtg. Let C denote the spanning cycle
v1v2 . . . vtv1 of G½Am�. Then G½Am� � EðCÞ is ðt � 3Þ-regular, where t � 3 is even.
Since n� r � 1 is even, and n� r � 1 � t � 3, by Lemma 3 G½Am� � EðCÞ contains
an ðn� r � 1Þ-factor, call it F 0. Let F 00 be the spanning subgraph of G½Am� con-
sisting of edges vtv1; v1v2; v3v4; . . . ; vt�2vt�1. F 00 is a spanning subgraph of G½Am� in
which v1 has degree 2, and all the other vertices have degree 1. Let Fm ¼ F 0 [ F 00.
Fm is a spanning subgraph of G½Am� in which v1 has degree n� r þ 1, and all the
other vertices have degree n� r. We now color the edges of G by assigning color i
to the edges in Fi for each i 2 ½m�, and assigning distinct new colors to the
remaining edges in G. Notice that in G� Eð[m

i¼1FiÞ, every vertex except v1 has
degree r � 1, and v1 has degree r � 2. Hence exactly 12 ðnðr � 1Þ � 1Þ ¼ b12 nðr � 1Þc
new colors are used in addition to colors 1; . . . ;m. Altogether,
b12 nðr � 1Þc þ m ¼ b12 nðr � 1Þc þ b n

n�rþ1c colors are used. Furthermore, at each
vertex at most r colors are used on the incident edges. (

Upper bound. frðGÞÞ � b12 nðr � 1Þ þ 1
2 b 2n

n�rþ1cc, where r � n� 2.

Proof. Let c be a coloring of EðGÞ, such that at each vertex at most r colors are
used on the incident edges. We use jcj to denote the number of colors used in c.
Let H be a spanning subgraph of G containing exactly one edge from each color
class (H may contain isolated vertices). Write V ¼ V ðGÞ ¼ V ðHÞ. By the defi-
nition of H , dH ðvÞ � r for all v 2 V and eðHÞ ¼ jcj. Let S ¼ fv 2 V : dH ðvÞ ¼ rg,
and let m ¼ jSj. If S is empty, then DðHÞ � r � 1, and therefore
eðHÞ � b12 nðr � 1Þc. Hence we may assume that S is nonempty. For each vertex
u 2 V , let AGðuÞ and AH ðuÞ denote the set of colors used on the edges incident to
u in G and in H , respectively. Clearly, AH ðuÞ � AGðuÞ, and if u 2 S then
AGðuÞ ¼ AH ðuÞ.

Claim 1. For every u;v2 V , AH ðuÞ\AH ðvÞ¼ ;, if uv=2EðHÞ, and AH ðuÞ\AH ðvÞ¼
fcðuvÞg if uv2EðHÞ. Furthermore, S induces a clique in H .
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Proof. Since c assigns distinct colors to EðHÞ, it follows immediately that
AH ðuÞ \ AH ðvÞ ¼ ; if uv=2EðHÞ and that AH ðuÞ \ AH ðvÞ ¼ fcðuvÞg if uv 2 EðHÞ.
For u; v 2 S, cðuvÞ 2 AGðuÞ \ AGðvÞ ¼ AH ðuÞ \ AH ðvÞ, hence uv 2 EðHÞ. Therefore,
S induces a clique in H . (

Claim 2. Let u; v be two vertices in S and w be a vertex in V � S. If cðuwÞ ¼ cðvwÞ,
then cðuwÞ ¼ cðvwÞ ¼ cðuvÞ.

Proof. Suppose cðuwÞ ¼ cðvwÞ ¼ a, then a 2 AGðuÞ \ AGðvÞ ¼AH ðuÞ \ AH ðvÞ ¼
fcðuvÞg. Hence, a ¼ cðuvÞ.

Claim 3. Suppose u 2 S; v =2 S, and uv =2EðHÞ, then cðuvÞ =2AH ðvÞ.

Proof. since uv =2EðHÞ, by Claim 1 AH ðuÞ \ AH ðvÞ ¼ ;. On the other hand,
cðuvÞ 2 AGðuÞ ¼ AH ðuÞ. Hence cðuvÞ 2 AH ðvÞ. (

Claim 4. For all v=2S, dH ðvÞ � r � jS�NH ðvÞj
2 .

Proof. Let k ¼ jS � NH ðvÞj. Suppose that S � NH ðvÞ ¼ fu1; . . . ; ukg. By Claim 3,
cðuivÞ =2AH ðvÞ for i 2 ½k�. Furthermore, by Claim 2, if cðuivÞ ¼ cðujvÞ, then
cðuivÞ ¼ cðujvÞ ¼ cðuiujÞ. This implies that no three of the edges u1v; . . . ; ukv can
have the same color, since otherwise S would contain a monochromatic triangle.
Hence at least k2 distinct colors are used on the edges u1v; . . . ; ukv, and those colors
are not used in AH ðvÞ. Altogether, at least jAH ðvÞj þ k

2 ¼ dH ðvÞ þ k
2 distinct colors

are used on the edges incident to v in G. Since at most r colors are allowed on
those edges, we have dH ðvÞ þ k

2 � r, which yields dH ðvÞ � r � k
2 ¼ r � jS�NH ðvÞj

2 . (

Now,
P

v2V dH ðvÞ ¼
P

v2S dH ðvÞ þ
P

v=2S dH ðvÞ � mr þ
P

v=2S r � jS�NH ðvÞj
2

� �
¼

nr �
P

v=2S
jS�NH ðvÞj

2 . Notice that
P

v=2S jS � NH ðvÞj counts exactly the number of
non-edges in H between S and V � S. Since each vertex in S has exactly
n� 1� r non-neighbors in H outside S, we have

P
v=2S jS � NH ðvÞj ¼

mðn� 1� rÞ. Therefore,
X
v2V

dH ðvÞ � nr � mðn� 1� rÞ
2

¼ nðr � 1Þ þ n� mðn� 1� rÞ
2

: ð3:1Þ

On the other hand, for each v =2 S; dH ðvÞ � r � 1 by the definition of S, hence
X
v2V

dH ðvÞ � mr þ ðn� mÞðr � 1Þ ¼ nðr � 1Þ þ m: ð3:2Þ

Combining (3.1) and (3.2), we have

X
v2V

dH ðvÞ � nðr � 1Þ þmin m; n� mðn� 1� rÞ
2

� �
: ð3:3Þ
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Notice that m increases as m increases, while n� mðn�1�rÞ
2 decreases as m

increases, and the two quantities are equal when m ¼ 2n
n�rþ1. Hence,

minfm; n� mðn�1�rÞ
2 g � 2n

n�rþ1. Since
P

v2V dH ðvÞ is an integer, we haveP
v2V dHðvÞ � nðr � 1Þ þ b 2n

n�rþ1c. Hence, jcj ¼ eðHÞ � b12 nðr � 1Þ þ 1
2 b 2n

n�rþ1cc. (

Upper bound vs. lower bound.

It is easy to verify that the upper bound b12 nðr � 1Þ þ 1
2 b 2n

n�rþ1cc and the lower
bound b12 nðr � 1Þc þ b n

n�rþ1c differ by at most 1. Indeed, they are equal unless n is
odd, r is even, and b 2n

n�rþ1c is odd.

4. Further Discussions

In section 3, we have completely determined frðKnÞ except for the case when n is
odd, r is even, and b 2n

n�rþ1c is odd, in which case we have determined frðKnÞ within
1. It is likely that by using more sophisticated counting arguments and case
analysis, one may be able to improve the upper bound by 1, and hence completely
settle the issue. For small values of n and r, ad hoc analysis suggest that the lower
bound b12 nðr � 1Þc þ b n

n�rþ1c is best possible.
There are several possible directions for further investigation. In our con-

structions in both Theorem 1 and Theorem 2, at each vertex, one of the color
classes contains a lot of edges while each of the other color classes contains only
one edge. One could therefore ask to maximize the number of colors used in a
coloring of EðKnÞ, such that at each vertex, at most r colors are used on the incident
edges, and that the color classes on the incident edges differ by at most 1 in size.
Another generalization is as follows: Given integers n, r, d, where dr � n� 1,
determine the maximum number of colors that can be used in a coloring of EðKnÞ
such that at each vertex, at most r colors are used on the incident edges, and that
each of the colors is used at most d times. One could ask similar questions for Kn;n.
More generally, one can study frðGÞ for other interesting classes of graphs G.
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