Graphs and Combinatorics (2001) 17:295-306
Graphs and
Combinatorics

© Springer-Verlag 2001

On the Structure of Graphs with
Bounded Asteroidal Number

Ton Kloks!, Dieter Kratsch?, and Haiko Miiller?

! Department of Mathematics and Computer Science, Vrije Universiteit, De Boelelaan
1081A, 1081 HV Amsterdam, The Netherlands. e-mail: kloks@cs.vu.nl

23 Fakultit fiir Mathematik und Informatik, Friedrich-Schiller-Universitit Jena,

07740 Jena, Germany. e-mails: “kratsch *hm@minet.uni-jena.de

Abstract. A set A C V of the vertices of a graph G = (V,E) is an asteroidal set if for each
vertex a € 4, the set 4\{a} is contained in one component of G — N[a]. The maximum
cardinality of an asteroidal set of G, denoted by an(G), is said to be the asteroidal number of
G. We investigate structural properties of graphs of bounded asteroidal number. For every
k> 1, an(G) < k if and only if an(H) < k for every minimal triangulation H of G. A
dominating target is a set D of vertices such that D U S is a dominating set of G for every set
S such that G[D U S] is connected. We show that every graph G has a dominating target
with at most an(G) vertices. Finally, a connected graph G has a spanning tree T such that
dr(x,y) — dg(x,y) <3 -|D| — 1 for every pair x, y of vertices and every dominating target D
of G.

1. Introduction

Asteroidal triples (short AT) where introduced in [11] as triples of vertices such
that between any two of the vertices there is a path avoiding the neighbourhood of
the third. It was shown in [11] that chordal graphs without AT are exactly the
interval graphs.

Graphs without an asteroidal triple are called asteroidal triple-free (short AT-
free) and attained much attention recently. Mohring has shown that every minimal
triangulation of an AT-free graph is AT-free and thus an interval graph. This implies
that for every AT-free graph the treewidth and the pathwidth of the graph are
equal [14]. This has been extended to the following characterization of AT-free
graphs: A graph Gis AT-free if and only if every minimal triangulation H of Gis an
interval graph [5, 15]. Furthermore a collection of interesting structural and algo-
rithmic properties of AT-free graphs has been obtained by Corneil, Olariu and
Stewart, among them an existence theorem for so-called dominating pairs in con-
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nected AT-free graphs, called ‘Dominating Pair Theorem’, and a linear time algo-
rithm to compute a dominating pair for connected AT-free graphs (see [5, 6]).

The class of graphs of bounded asteroidal number extends the class of AT-free
graphs, based on a natural way of generalizing the concept of asteroidal triples to
so-called asteroidal sets introduced by Walter in [18]: A set of vertices 4 of a
graph G is called an asteroidal set, if for every vertex a € 4 all vertices of 4\{a}
are contained in the same component of G — Nla|. Walter, Prisner and Lin et al.
used asteroidal sets to characterize certain subclasses of the class of chordal
graphs [12, 16, 18]. The asteroidal number of a graph G, denoted by an(G), is the
maximum cardinality of an asteroidal set in G. Notice that AT-free graphs are
exactly those graphs with asteroidal number at most 2.

We consider the question whether important structural properties of AT-free
graphs have natural analogues for graphs of bounded asteroidal number. This is
in fact the case for two fundamental structural properties of AT-free graphs.

In Section 4 we show that every graph G = (V, E) has a dominating target of
cardinality at most an(G), i.e., a set of vertices D C V with |D| < an(G) such that,
if S C V and G[D U S] connected then D U S is a dominating set of G. Notice that
this theorem (called ‘Dominating Target Theorem’) contains the ‘Dominating
Pair Theorem’ as a special case, since a dominating target of cardinality at most 2
is a dominating pair. Therefore our proof can be considered as a new and simple
proof for the ‘Dominating Pair Theorem’. In Section 5 we show that, for all
k > 1, the graph G has asteroidal number at most £ if and only if every minimal
triangulation of G has asteroidal number at most £.

In Section 6 we consider additive tree spanners. The Dominating Target
Theorem of Section 4 enables us to construct for every connected graph G a
(3 -dt(G) — 1)-additive tree spanner, where dt(G) denotes the minimum cardi-
nality of a dominating target of G.

2. Preliminaries

Throughout the paper, let G denote a graph with vertex set 7 and edge set £. We
denote the number of vertices of G by n, the number of edges of G by m and the
size of a maximum independent set in G by a(G). For a proper subset W C V,
G — W denotes the subgraph of G = (¥, E) induced by the vertex set V'\W. For a
vertex x € V, we write G — x instead of G — {x}. For ¢ # W C V', G[W] denotes
the subgraph of G induced by the vertices of W. For a vertex x of a graph
G = (V,E), Ng(x) is the neighborhood of x in G and Ng[x] = {x} UNg(x) is the
closed neighborhood of x in G. Furthermore Ng[4] = J,c, Ng[v] for A C V. We
do not write the index indicating the graph, if there is no ambiguity.

Definition. An independent set 4 C V' is called an asteroidal set of G if for each
a € A the vertices of 4\{a} are contained in one component of G — N[a]. The
maximum cardinality of an asteroidal set of G is denoted by an(G), and is called
the asteroidal number of G.
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By definition, any asteroidal set is an independent set, thus an(G) < a(G).
Various algorithms for NP-complete graph problems on AT-free graphs can
be extended to graphs of bounded asteroidal number. The graph problems
INDEPENDENT SET and INDEPENDENT DOMINATING SET can be solved by polynomial
time algorithms when restricted to graphs of bounded asteroidal number [2].
Furthermore, the graph problems TREEWIDTH, MINIMUM FILL-IN and VERTEX
RANKING can be solved in polynomial time on graph classes having a polynomial
number of minimal separators and a bounded asteroidal number [3].

Although the decision problem: ‘Given a graph G = (V,E) and a positive
integer k, decide whether an(G) > k°, is NP-complete and it even remains NP-
complete when restricted to triangle-free 3-connected 3-regular planar graphs [9],
there are polynomial time algorithms to compute the asteroidal number for
graphs in some special classes like HHD-free graphs (including all chordal
graphs), claw-free graphs, circular-arc graphs and circular permutation
graphs [9].

The modules of a graph will play a crucial role in Sections 3 and 4. Therefore we
review some definitions and basic properties. For more information we refer to [13].

Foreachset M C V, M isamodule of the graph G = (V,E)if N(a)\M = N(b)\M
foralla,b € M, i.e., all vertices of M have the same neighbourhood outside of M. A
module M is trivial if [M| < 1 or M = V. The graph G is prime if G has only trivial
modules. Otherwise G is (modular) decomposable. For a nontrivial module M C V
we denote by G(M) the graph obtained from G by shrinking M to a single vertex
m € M,i.e. G(M) is isomorphic to G — (M\{m}) for every vertex m € M.

3. Extremities and Separators

In this section we introduce extremities and we establish Dirac-type lemmas
concerning the existence of extremities in prime graphs. These results are of in-
terest in their own. We emphasize the strong relation to Dirac’s theorem on the
existence of simplicial vertices in chordal graphs [7] and the recent work of Berry
and Bordat on moplexes in graphs [1]. Furthermore some of our results in this
section are crucial for the proof of our main theorem.

Definition. Let G = (V,E) be a graph. Then a vertex v € V is an extremity of G if
G — NJv] is connected.

The set L of the extremities of a graph G is of interest since any independent set
of the graph G[L] is an asteroidal set of G.

We start with some preliminaries on vertex separators in graphs. S C V is a
separator of the graph G = (V,E) if G — S is disconnected. We mention that we
usually consider components of a graph as vertex sets. S C V is an a, b-separator
of G = (V,E) if a and b are in different components of G — S. An a, b-separator S
of G is a minimal a, b-separator if no proper subset of S is an a, b-separator. Then
S is said to be a minimal separator of G if it is a minimal a, b-separator of G for
nonadjacent vertices a and b. Finally, S is an inclusion minimal separator of G if S
is a separator of G and no proper subset of S is a separator of G. Notice that every
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inclusion minimal separator is a minimal separator but not every minimal sepa-
rator is an inclusion minimal separator.

There is a useful characterization of minimal separators and inclusion minimal
separators in terms of so-called full components. Let S be a separator of G. Then a
component C of G — S is said to be a full component if every vertex of S has a
neighbour in C. Now S is a minimal separator of G iff G — § has at least two full
components. Furthermore S is an inclusion minimal separator of G iff all com-
ponents of G — S are full.

Finally a minimal a,b-separator S of G is close to a, if S contains only
neighbors of a. For nonadjacent vertices a and b, there is a unique minimal a, b-
separator S close to a [§].

Lemma 1. Let S be a minimal separator of a prime graph G and let C be a com-
ponent of G — S. Then either C contains an extremity of G or N(c) N S is a separator
of G — C for every c € C.

Proof. Let G be a prime graph and let S be a minimal separator of G. Let C be a
component of G — § and let a be a vertex of a full component of G — S different
from C. For every ¢ € C, we denote by S, . the unique minimal a, c-separator of G
with S,. C N(c). Note that N(c)NS C S,.. Furthermore for every ¢ € C we
define B(c) to be the set of all vertices b € C\S,. which do not belong to the
component of G —S,. containing a. Thus for every ¢ € C, ¢ € B(c) and
N(b)\B(c) C S, for all b € B(c). Consequently b € B(c) implies B(b) C B(c).

We consider all sets B(c) with ¢ € C and we choose a vertex ¢’ € C such that
B(c') is minimal with respect to set inclusion. Let B = B(c¢’). Notice that
B(b) = B for all b € B by the minimality of B. This implies N(»)\B C N(¥') for
all b, € B and therefore N(b)\B = N(¢) for all b € B. Consequently B is a
module of G which implies |B| =1 since G is prime. In other words, B = {¢'},
N(c') =S, and no component of G— S, except those containing a or ¢
contains a vertex of C. Hence either ¢’ is an extremity of G or N(¢)NS is a
separator of G — C.

Suppose C contains no extremity of G. Consequently N(c) NS is a separator
of G— C for all vertices ¢ € C for which B(c) is minimal with respect to set
inclusion. Consider any vertex d € C for which there is a ce€ C with
B(c) C B(d). As we have shown above ¢ € B(d) implies N(c)\B(d) C S,4. Since
a is a vertex of a full component of G —§ we get SNN(d) C S, 4. Consequently
SNN(c) CSNN(d) which implies that N(d) NS is a separator of G — C. This
completes the proof. O

Corollary 2. Let G be a prime graph and S a minimal separator of G. Let C be a
component of G — S without an extremity. Then C C N(S).

Lemma 3. Let G be a prime graph and S a minimal separator of G. Then there is a
component of G — S that contains an extremity of G. Furthermore, if S is an
inclusion minimal separator of G, then at least two components of G — S contain
an extremity of G.
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Proof. Let G be a prime graph. Suppose there is a minimal separator S of G such
that no component of G — S contains an extremity. We choose a component C of
G — § such that N(C) is minimal. Then by Lemma 1, for every vertex ¢ € C,
N(c) NS is a separator of G — C, implying S C N(c) for every vertex ¢ € C. Hence
C is a module of G and thus |C| = 1, since G is prime.

Since N(C) is a separator of G — C, there is a component C’' of G — S such that
C # C'and N(C") C N(C). Thus the choice of C implies N(C) = N(C’). Hence the
above arguments applied to C’ show that C' = {¢’}. Finally this implies that
{c,c'} is a nontrivial module of G, contradicting the primality of G.

If S is an inclusion minimal separator of G then N(C) = § for every compo-
nent C of G. Thus every component without an extremity of G consists of one
vertex. As we have seen above, a prime graph can have at most one component of
this type. Consequently all but one component of G — § contain an extremity of
G. Finally if G — S has exactly two components then both of them contain an
extremity of G. OJ

Corollary 4. Every non complete prime graph has at least two extremities.

4. Repulsive Asteroidal Sets and Dominating Targets

In this section we extend the concept of a dominating pair, introduced by
D.G. Corneil, S. Olariu and L. Stewart for AT-free graphs in [5], to graphs with
bounded asteroidal number and we obtain a generalization of the Dominating
Pair Theorem.

Definition. A set D C V' in a graph G = (V,E) is said to be a dominating target, if
DU S is a dominating set in G for every set S C ¥ for which G[D U S] is connected.
We denote the minimum cardinality of a dominating target of G by dt(G).

Obviously every dominating set of a graph is also a dominating target.

Lemma 5. Let D be a dominating target of G = (V,E). Then D C D' C V implies
that D' is also a dominating target of G.

Proof. Consider any S C V with G[D' U §’] connected. Choosing S = 8" U (D'\D)
we get D'US = DUS. Hence G[DUS] is connected. Thus the fact that D is a
dominating target of G implies that DU S = D' U S’ is also a dominating set of G.

O

Notice that the notion of a dominating target generalizes the notion domi-
nating pair since every dominating target D with |D| < 2 forms a dominating pair
of G.

Definition. An asteroidal set 4 of a graph G = (V, E) is repulsive if for every vertex
v € V\N[A] not all vertices of 4 are contained in one component of G — N[v].

Clearly every repulsive asteroidal set (short RAS) is a maximal asteroidal set.
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The following theorem presents a structural property that is of great impor-
tance for graphs with bounded asteroidal number.

Theorem 6 (RAS Theorem). Every graph G = (V,E) has a repulsive asteroidal set.

Proof. We prove the theorem by induction on the number of vertices of the
graph. Clearly all graphs on at most two vertices have a RAS. For graphs G on at
least three vertices we distinguish between three cases.

Case 1. G is prime.

By Corollary 4, the set L of all extremities of G is non empty. Now let / be any
maximal independent set of G[L].

We claim that 7 is a RAS of G. Clearly 7 is an asteroidal set of G since G — N[v)
is connected for all v € I. Suppose [ is not a RAS of G, thus there is a vertex
u € V\N[I] such that I C C for a component C of G — Nu]. Since / is a maximal
independent set of G[L], we have L C N[/]. Hence N[u] is a separator of G. Let S be
an inclusion minimal separator of G with S C N[u]. By Lemma 3 there is an
extremity w of G which belongs to a component of G — S that does not contain
any vertex of C. Therefore 7 U {w} is an independent set of G[L], contradicting the
choice of /. Consequently 7/ is a RAS of G.

Case 2. M is a nontrivial module of G and G(M) is complete.

Let 4 be a RAS of G[M]. We consider a vertex v € V\N|[A]. Since V\M C N[m]
for every vertex m € M, we have ve€ M\N[4], and every component of
G[M] — N[v] is a component of G — N[v]. Consequently, 4 is a RAS of G.

Case 3. M is a nontrivial module of G and G(M) is not complete.

Let m € M be the vertex representing M in G(M), and let 4 be a RAS of G(M).
We claim that 4 is a RAS of G if m ¢ 4. Otherwise, (4\{m}) U{m'} is a RAS of G
for every vertex m' € M.

First we consider a vertex v € V\(N[4] UM). If m and v are adjacent in G(M),
then M C NJv] and the components of G(M) — N[v] are exactly the components of
G — N[v]. If m is an isolated vertex of G{(M)— NJ[v], then the components of
G — N[v] are exactly the components of (G{(M) — N[v]) — m and the components
of G[M]. If m and w are two different vertices in one component C of G(M) — N|v],
then the components of G — N[v] are exactly the components of G(M) — N[v]
except C and a component D containing M and the remaining vertices of C.

Next we consider a vertex v in M\N[4]. Then every component of
G(M) — N|m] is a component of G — N|v].

In all subcases the graph G — N[v] has two different components containing
vertices in 4 since G{M) — Nv] has two different components containing vertices
in A. O

Remark 1. There are graphs G that do not have a RAS 4 with |4]| = an(G). For
example, the graph G in Fig. 1 has asteroidal number three, but no maximum
asteroidal set of G is a RAS.
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Fig. 1. The RAS {x,y} is not a maximum asteroidal set

Now we are ready to present our main theorem which is an immediate con-
sequence of the RAS Theorem.

Theorem 7 (Dominating Target Theorem). Every graph G = (V,E) has a domi-
nating target D with |D| < an(G). Furthermore, every repulsive asteroidal set of a
graph G is a dominating target of G.

Proof. We show that every repulsive asteroidal set of a graph G = (V,E) is a
dominating target of G.

Let D be a RAS of G. Trivially any RAS D of a disconnected graph contains
vertices of different components and is thus a dominating target since there is no
set S C V' with G[D U S] connected.

Thus we may assume that G is connected. Consider any set S C ¥ such that
G[DUS] is connected. We claim that DUS is a dominating set of G. Let
v € V\N[D]. Since D is a RAS the vertices of D are not all contained in one
component of G — N[v]. Thus there are two vertices a and b of D in different
components of G — N[v], implying that any a, b-path contains an internal vertex of
N[v]. Consequently D U S is a dominating set of G.

Therefore any RAS D is a dominating target of G. Furthermore |D| < an(G)
since D is an asteroidal set. U

Note that this theorem immediately implies the Dominating Pair Theorem for
asteroidal triple-free graphs since an(G) < 2 for all AT-free graphs. Therefore we
also obtain a simple proof of the Dominating Pair Theorem.

Remark 2. There are graphs G that do not have a RAS 4 with |4| = dt(G). For
example, the graph G in Fig. 2 has a dominating target of size two, but every RAS
of G has at least three vertices.

Fig. 2. The dominating target {x,y} is not a RAS
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5. Minimal Triangulations

We start with some preliminaries on minimal triangulations and minimal sepa-
rators of graphs.

Definition. A graph H is chordal if it does not contain a chordless cycle of length
at least four as an induced subgraph.

Definition. A rriangulation of G is a graph H with the same vertex set as G such
that H is chordal and G is a subgraph of H. A triangulation H of G is called
minimal if there is no proper subgraph H’ of H which is also a triangulation of G.

In the following lemma we mention two useful characteristics of minimal
triangulations (see e.g. [10]).

Lemma 8. If H is a minimal triangulation of a graph G then

1. If a and b are nonadjacent in H, then every minimal a, b-separator in H is also a
minimal a,b-separator in G.

2. If S is a minimal separator in H and if C is the vertex set of a component of
H — S, then C induces also a component in G — S.

As mentioned already in the introduction, it can be shown that a graph G is AT-
free if and only if every minimal triangulation of G is AT-free. Now we prove that
graphs of bounded asteroidal number have an analogous characterization. We
start with the easy part.

Lemma 9. Let k > 1. If an(H) < k for every minimal triangulation H of a graph G,
then an(G) < k.

Proof. Assume 4 = {ay,...,a;} is a maximum asteroidal set in G. Construct a
graph H of G by making a clique of V'\4. H is a triangulation of G since H is a
split graph. Notice that 4 is an asteroidal set of H, since H is a supergraph of G
with Ny[a;] = Ngla;] for all i € {1,2,...,£}. Since H is a triangulation of G there
exists a spanning subgraph H' of H that is a minimal triangulation of G. Con-
sequently, Nyla;] = Ny/[a;] = Ngla;] for alli € {1,2,...,¢}, thus 4 is an asteroidal
set of H', implying an(G) = ¢ < an(H') < k. O

Lemma 10. Let k > 1. If an(G) < k then an(H) < k for every minimal triangulation
H of G.

Proof. Let H be a minimal triangulation of G and let 7 be an independent set in H.
Let a € I such that 7\{a} is contained in one component of H — Ny[a]. We claim
that 7\{a} is contained in one component of G — Ngla].

To prove this claim, let b € I'\{a} and let S be the unique minimal a, b-separator
closetoain H. Then S C Nyla| implies that I\ {a} is contained in the component of
H — S containing b. By Lemma 8§, S is a minimal «a, b-separator in G, and the vertex
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sets of the components containing » in H — S and G — § are the same. Clearly the
component of G — S, that contains 7\{a}, does not contain any neighbor of a.
Hence its vertices are contained in a component of G — Ng/[a]. This proves the claim.

Now let 4 be an asteroidal set of maximum cardinality in any minimal tri-
angulation H of G. By the claim, 4 is also an asteroidal set of G. Thus
an(H) < an(G) <k. O

From Lemmas 9 and 10 we conclude:

Theorem 11. Let G = (V,E) be a graph and k > 1. Then an(G) < k if and only if
an(H) < k for every minimal triangulation H of G.

6. Tree Spanners

This section shows the power of the insight in the structure of graphs of bounded
asteroidal number that we established in previous sections.
We consider additive tree spanners of connected graphs.

Definition. Let dg denote the distance metric on the connected graph G = (V,E).
A spanning tree T of G is called c-additive tree spanner of G whenever
dr(x,y) < dg(x,y) + c for every pair x,y € V.

For more information on tree spanners see e.g. [4, 17]. In this section we will
prove the following theorem.

Theorem 12. Let D be a dominating target of a connected graph G. Then G has a
(3|D| — 1)-additive tree spanner.

In what follows we consider a connected graph G = (V,E) and a dominating
target D C V of G. We choose a set S of minimum cardinality such that G[D U S] is
connected.

Let T be an arbitrary spanning tree of G[D U S]. For a leaf s € S of T the graph
G[D U S\{s}] is still connected; contradicting the choice of S. Hence every leaf of T
is a vertex in D. By B we denote the set of branch points in T, these are vertices of
degree at least three.

Lemma 13. Every path in T contains at most |D| vertices in D U B.

Proof. Let b € B be a branchpoint of a path P in 7. Then there is a component of
T — b containing no vertex of P. This component contains a leaf in D. Conse-
quently, the number of vertices of DU B on P is at most |D]. O

Let (vy,0v2,...,0;) be a shortest path in G. If vy € DU S then u = vy, otherwise
we fix a vertex u € N(v;) N (DUS). If v € DU S then w = v;, otherwise we fix a
vertex w € N(v;) N (DUS). Let (x1,x,...,x,) be the (u,w)-path in T, u = x; and
w = x,. We define a linear ordering on the vertex set of the (u, w)-path in T by
a<bifa=x,b=x;and i< j Wewritea <X bifa<bora=5b.
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For every vertex y € DU S let )/ denote the first common vertex of two paths
in T, namely the (y, w)-path and the (u, w)-path. Fori =1,... ] we fix vertices u;
and w; in N[v;] N (DU S) such that ¥} < w! and the (u}, w})-path in T has maxi-
mum length. Especially let u = u; = | and w = w; = w).

Definition. A subpath of the (u;, w;)-path in T is called (i, j)-strip if the endvertices
are different and belong to {u;, w;} UD U B, all inner vertices belong to S\B, and
i<j.

Hence the vertices of D U B split the (u;, w;)-path in T into (i, j)-strips such that
every edge on the (u;, w;)-path belongs to exactly one (i, j)-strip.

Lemma 14. If the (a,b)-path in T is an (i, j)-strip then dr(a,b) < 2 + dg(v;,v;).

Proof. Let W be the set of inner vertices on the (a,b)-path in 7. Let
S = {vj,vi11,...,v;} U(S\W). Then G[D U S'] is connected, and, by the choice of
S, |S| < |S"| implies dr(a,b) =1+ |W| <24 j—i=2+dg(v;,v;). O

Let M be the set of (1,7)-strips. To every strip s € M we assign indices i and j
such that s is an (i, j)-strip and j — i is minimum.
Lemma 15. Leti < jand p < q be pairs of indices assigned to different strips s and t
in M with i < p. Then the paths (v;,Viy1,...,0j—1) and (Vp, Vps1, ..., 04-1) have no
edge in common.

Proof. Assume the contrary. Then i+2<j p+2<ygq, and 3</. Let a
and b be the endvertices of s and let ¢ and d be the endvertices of £, a < band ¢ < d.

First we assume i = p. If u, | <X a thensis an (i + 1, /)-strip. If b < | then
b < wj,, and s is an (7,7 + 1)-strip. Both contradicts the choice of i and ;. Hence
a < u,, <bandu, | =u; since no inner vertex of s is in B. Similarly, u; is an
inner vertex of z. This contradicts the choice of s and ¢ that have no inner vertex in
common. Hence i # p. Analogously we prove j # g.

Next we assume i<p<g<j . If b=<Xc then s is an (i,q)-strip,
since u; Ka<b=<xXc<d=xw,. If d=<a then s is an (p,j)-strip, since
u; Kc<d<a=<bx w}. Both contradicts the choice of i and j since
j—i>q—iand j—i>j—p.

Finally let i < p < j < q. We consider the neighbours of v;_; in DU S. Note
that p<j— 1<, since we assume that the paths (v;,vi41,...,0;-1) and
(0p, Ups1, - - ., Ug—1) have an edge in common. Since s is not a (i, j — 1)-strip we have

W)y < b. Since t is not a (j — 1, ¢)-strip we have ¢ <u;_,. Together this implies

c=u;; Sw,_; <b Hence d <a Both s and ¢ are (p,j)-strips, since
u, X ¢ <d < a < b < w;. This contradicts our rule to assign indices to strips in

Msince i< p<j<gq. O
Now we prove Theorem 12.

Proof. Let D C V be a dominating target of the connected graph G = (V,E). We
choose a set S of minimum cardinality such that DUS is connected. Let
T = (DUS,F) be an arbitrary spanning tree of G[D U S]. Since D is a dominating
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target there is a spanning tree 7" = (V,F’') of G with F C F’, such that every
vertex in V\(D U S) is a leaf of 7. We will show dr (v,v') < dg(v,v") + 3|D| — 1 for
all v,/ € V.

For fixed v,v' € V let (v1,...,v;) be a shortest (v,v')-path in G. Now it is
sufficient to show dr(uy,w;) < dg(vi,v;) + 3(|D] — 1), for vertices u; and w; in
D U S adjacent to vy and v; in 7", respectively. Clearly we may assume u; # w;. For
1 <i < j <1 we choose vertices u; and w; as done above, and define (i, j)-strips.

Let a and b be vertices on the (u;, w;)-path in T such that the (a,b)-path in T is
a strip in s € M to which we assigned indices i and j. We apply Lemma 14. If i =
then we obtain dr(a,b) < 2. If i < j we obtain dr(a,b) < 3 + dg(v;,v;—1). Sum-
ming over all s € M, Lemma 15 implies dr(u;,w;) < dg(vy,v;) + 3(r + 1) where r
denotes the number of inner vertices on the (u;,w;)-path in T that belong to
DU B. We extend the (uj,w;)-path in T to a path connecting two leaves of 7. By
Lemma 13 this new path contains at most |D| vertices in D U B. Hence we have
dT(u],Wl) Sdc(v],v;)+3(|D| — 1) O

Corollary 16. Every graph G has a (3 - dt(G) — 1)-additive tree spanner.

Remark 3. Corollary 16 is almost the best possible, since, for every k& > 1,
dt(Cs;) = k, and every tree spanner of Cs; is (3k — 2)-additive.

Acknowledgments. The authors are grateful to Anne Berry (Université de Montpellier II,
France) for fruitful discussions.
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