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Abstract. A tournament is an oriented complete graph. Vertices x and y dominate a
tournament T if for all vertices z # x, y, either (x,z) or (y,z) are arcs in T (possibly both).
The domination graph of a tournament 7 is the graph on the vertex set of 7 containing
edge {x,y} if and only if x and y dominate 7. In this paper we determine which graphs
containing no isolated vertices are domination graphs of tournaments.

A tournament is an oriented complete graph. Let V(D) and A(D) denote the vertex
and arc sets of a digraph D respectively. An arc from vertex x to y is denoted by
(x,»). If D is a digraph and (x,y) € A(D), we say x beats y. Let V(G) and E(G)
denote the vertex and arc sets of a graph G respectively. An edge between vertices
x and y is denoted by {x,y}. A trivial component (or graph) is a single vertex.

Vertices x and y dominate a tournament T if for all vertices z # x, y, either x
beats z or y beats z (possibly both). The domination graph of a tournament T,
denoted dom(7), is the graph on vertices V(T) with {x,y} € E(dom(7)) if and
only if x and y dominate 7 (see Figure 1).

Domination graphs were introduced by Fisher et al. [1] in conjunction with
competition graphs. The competition graph of a digraph D is the graph on the
same vertices as D with an edge between two vertices if they beat a common vertex
in D. The domination graph of a tournament is the complement of the compe-
tition graph of its reversal (see [1]). See Lundgren [6] or Roberts [9] for more about
competition graphs and Moon [7] or Reid [8] for more on tournaments.

The domination digraph 2(T) of a tournament T is the digraph with the same
vertices as 7 where vertex x beats vertex y in Z(7T) if x and y dominate 7 and x
beats y in 7. Thus, 2(T) is the orientation of dom(7) induced by T (see Figure 1).
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Fig. 1. A tournament (a) with its domination graph (b) and domination digraph (c)
1. Preliminaries

In this paper we extend previous work [1, 2, 3, 4] on domination graphs. A vertex
of a graph is pendant if it is adjacent to exactly one vertex. A caterpillar is a
connected graph whose nonpendant vertices form a (possibly trivial) path. A
trivial caterpillar is a single vertex. If a caterpillar has nonpendant vertices, the
path they form is called the spine. The only caterpillar with all vertices pendant is
K>. The spine of K, is either single vertex. A star, denoted K , is a caterpillar with
exactly one vertex adjacent to the other n vertices. A spiked cycle is a connected
graph whose nonpendant vertices form a cycle. Fisher et al. [1] determined nec-
essary conditions for a graph to be the domination graph of a tournament.

Proposition 1.1. [1] The domination graph of a tournament is either a spiked odd
cycle perhaps with some isolated vertices, or a graph whose components are all
caterpillars.

Proposition 1.2. [2] In the domination digraph of a tournament, a vertex loses to at
most one vertex and beats at most one vertex that beats other vertices.

A typical caterpillar may be pictured as shown in Figure 2, namely as a path
(the spine) with pendant vertices (clusters) attached to the vertices of the path. A
vertex on the spine of a caterpillar is an end vertex if it is adjacent to at most one
other vertex on the spine. Observe that the end vertices of the spine are not
pendant. For example, a path with at least three vertices has two clusters, each
containing a single vertex. We say that a caterpillar has a triple end if at least one
of the end vertices of the spine has degree at least four. Observe that for n > 4,
K, , has a triple end, but K 3 does not. We say a caterpillar is triple end-free if the
degree of each end vertex of the spine is at most 3. Fisher et al. [3] have char-
acterized connected domination graphs.

Proposition 1.3. [3] A connected graph is the domination graph of a tournament if
and only if it is a spiked odd cycle, a star, or a caterpillar with a triple end.
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Fig. 2. Orientation of a caterpillar

In this paper we determine which graphs on n > 4 components, without iso-
lated vertices, are domination graphs of tournaments. Thus all components of
these graphs are nontrivial.

2. Domination Graphs on » = 4 or n > 6 Nontrivial Components

In this section we consider those graphs G that are domination graphs of tour-
naments with at least two nontrivial components. Let G be such a graph and 7' a
tournament such that dom(7) = G. By Proposition 1.1, G is the union of non-
trivial caterpillars Gy, ..., G,. It will be useful to properly color such graphs with
two colors, say red and blue, where a proper coloring is an assignment of one color
to each vertex such that if two vertices are adjacent, then they are assigned dif-
ferent colors. Each G; can be so colored in one way (up to interchanging the two
colors). The next result follows from Proposition 1.2 and the proof of Theorem 5
of Fisher et al. [3]. Let 7; denote the subtournament of 7 induced by V' (G;).

Proposition 2.1. If G, the union of n nontrivial caterpillars G,,...,G,, is the
domination graph of a tournament T and is properly colored with two colors, then
the following conditions hold in T:

1. The subdigraph of 2(T) on V(G;) is as shown in Figure 2 (one edge of G; may be
directed either way as indicated by the two arrows).

2. Remaining arcs of T; that are not between vertices in the same cluster of G; are
directed to the right between vertices of different colors and to the left between
vertices of the same color.

3. Arcs between vertices in the same nonend cluster of each G; may be directed in any
way.

The reader is warned that Proposition 2.1 does not say that arcs within every
cluster may be oriented arbitrarily. Let v; denote the only vertex in the subdigraph
of the domination digraph on V(G;) with indegree 0 (there are two possibilities,
marked “v;?” in Figure 2). If v; is a pendant vertex, then every vertex in the same
cluster with v; must beat v;.

Observe that if the spine has an even number of vertices and v; is pendant, then
the vertices of the rightmost cluster (squares in the figure) have a different color
than v;. If v; is not pendant (and the spine has an even number of vertices), then
the vertices of the rightmost cluster have the same color as v;. On the other hand,
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if the spine has an odd number of vertices and v; is pendant (respectively, not
pendant), then the vertices of the rightmost cluster and v; have the same color
(respectively, different colors).

It is also useful to observe that if G; is not K 3 and is triple end-free, then there
is a blue vertex of G; that beats every other blue vertex of G; in T; as well as a red
vertex of G; that beats every other red vertex of G; in T;. Furthermore, the ori-
entation of all arcs in T between T; and 7 is completely determined by the ori-
entation of the arcs between v; and v;, as shown in the next lemma.

Lemma 2.2. Let G be the domination graph of a tournament T where Gy,...,G,
denote the properly colored components of G such that v; and v; have the same color
Soralli,j. If an arc is directed from v; to v;, and if u and w are vertices of G; and G,
respectively, then there is an arc from u to w if and only if u and w are the same
color.

Proof. Assume G is properly colored with red and blue so v; is red for all i.
Suppose v; beats v; and v and w are vertices of G; and G, respectively. Then there
are directed paths v, uy, us, ..., up—1,u from v; to w and v;, wy, wa, ..., w;_1,w from
v; to w in the subdigraphs of Z(T) induced by V(G;) and V' (G,) respectively. The
proof of this lemma is by induction on /, the length of the path from v; to w.

Suppose / = 1. Then w is blue. Since v; beats v; and v; and w dominate T, w
beats v;, a red vertex. Then since v; and u; dominate 7, u;, a blue vertex, beats w.
Then since v; and w dominate T, v; beats u;. And since u; and u, dominate T, u,
beats v;. Then w must beat u,, a red vertex. Continuing in this way we show that
for all x € {v;,uy, us,...,u}, x beats w if and only if x and w have the same color.
In particular, this holds if x = u.

So assume the statement is true for / < k and suppose / = k + 1. By the in-
duction hypothesis, u beats w;_; if and only if # and w;_; have the same color. We
consider two cases.

Suppose w;_; beats u. Then w and u have the same color. Since u,, | and u
dominate 7, u,,_; beats w;. Since w and w,_; dominate T, w beats u,,_;. Then u
must beat w.

On the other hand, suppose u beats w;_;. Then w and u are different colors.
Since w;_; and w dominate T, w beats u.

Thus, u beats w if and only if © and w are the same color. O

By Proposition 1.3, any triple end-free caterpillar alone, except K| 3, is not the
domination graph of a tournament. As we will see, whether or not a collection of
n triple end-free caterpillars is the domination graph of a tournament depends on
n. Furthermore, whether or not X 3 can be a component of such a domination
graph depends on n and the nature of the other components. Before continuing,
we need some definitions.

Two vertices u and v are dominated in a digraph if there is a vertex w such that
(w,u) and (w, v) are arcs. Two vertices u and v are paired in a digraph if there is a
vertex w such that (u,w) and (v,w) are arcs, or (w,u) and (w,v) are arcs. Two
vertices are distinguished if there is a vertex w such that (u, w) and (w, v) are arcs,
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or (w,u) and (v, w) are arcs. A digraph is well-covered if every two distinct vertices
u and v are paired and distinguished.

Lemma 2.3. If there is a well-covered tournament on n > 2 vertices, then the union
of any n nontrivial caterpillars is the domination graph of a tournament.

Proof. Let G be such a union of caterpillars; call them G;, i =1,...,n. To con-
struct a tournament 7 having domination graph G, properly color G with red and
blue. Proposition 2.1(1) establishes at least two possibilities for the domination
digraph of T. Choose the one in which all v; are nonpendant. Without loss of
generality, assume that v; is red for all i. Add arcs to complete the tournament as
follows. Within each cluster, add arcs in any way. Proposition 2.1 then determines
the remaining arcs within each subtournament on V' (G;).

Connect the vertices {v;|i = 1,...,n} so that the resulting n-vertex tournament
is well-covered. Then Lemma 2.2 determines any remaining arcs in 7. Now we
must verify that all pairs of vertices, except those that are adjacent in G, are
dominated.

1. It is easy to check that no vertex beats pairs of vertices that are adjacent in G.

2. Consider two vertices in the same caterpillar, of different colors but not adja-
cent in G, call them v and w with w to the right of v. There must be a vertex
u # v, adjacent to w in G and with an arc directed from u to w. Thus u is the
same color as v and to the right of v, so u beats both v and w.

3. Consider two vertices, v and w, in the same caterpillar, say G;, of the same
color. Pick any other caterpillar, say G;. Depending on the direction of the arc
between v; and v; in T, and on the color of v and w, either all red vertices of G;
beat v and win T, or all blue vertices do. Since G; must have at least one red and
at least one blue vertex, v and w are dominated.

4. Consider two vertices, v and w, in different caterpillars, say G; and G;, and of
the same color. Pick & so that v, pairs v; and v;. Depending on the direction of
the arc between v, and v; in 7, and on the color of v and w, either all red vertices
of Gy beat v and w in T, or all blue vertices do.

5. Consider two vertices, v and w, in different caterpillars, say G; and G;, and of
different colors. Pick k so that v, distinguishes v; and v;. Depending on the
direction of the arc between v; and v; in T, and on the colors of v and w, either
all red vertices of Gy beat v and w in T, or all blue vertices do.

Thus all pairs, except those adjacent in G, are dominated. O

We use this lemma to characterize a large class of domination graphs with
nontrivial components.

Theorem 2.4. If G is the union of n nontrivial caterpillars where n = 4 or n > 6, then
G is the domination graph of a tournament.

Proof. Tt is well known that for n =3 and »n > 5, there is a tournament on n
vertices such that every arc is in a 3-cycle. For example, regular tournaments on
an odd number of vertices have this property. To obtain such a tournament on an
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even number of vertices, first construct the following tournament 7, on 2m + 1
vertices, m > 3. Let the vertices be labeled with Z,,, 1, the integers modulo 2m + 1.
For each i € Z,,,11, let i beat i + j for all j € {1,2,...,m — 1,m+ 1}. This tour-
nament is regular, so every arc is in a 3-cycle. Moreover, every arc not involving
vertex 0 is in a 3-cycle that does not involve 0. So the (2m)-subtournament of 7 on
vertices labeled with i € Z,,, 1 — {0} has the desired property.

Take any tournament such that every arc is contained in a 3-cycle, add a
vertex, and direct all arcs from the new vertex. It is easy to check that the resulting
tournament is well-covered. Hence, for n =4 and n > 6, G is the domination
graph of a tournament. O

The next result will help establish that if G is the domination graph of a
tournament with » nontrivial triple end-free components, none of which is K| 3,
then in fact » must be 4 or at least 6.

Lemma 2.5. If G is the union of n > 2 nontrivial triple end-free caterpillars,
G, ..., Gy, none of which is K, 3, and G is the domination graph of a tournament T,
then there is a well-covered tournament on n vertices.

Proof. Let G be such a graph and 7 a tournament such that dom(7) = G.
Properly color G with red and blue so that v; is red for all i. Proposition 2.1
determines many arcs in 7. We must assume that arcs within any cluster could be
oriented in any way, except the end clusters, which are guaranteed to contain no
more than two vertices. Without loss of generality, assume that the rightmost
vertex in each end cluster beats any other vertex in that cluster. Let 7; denote the
subtournament of 7 induced by V(G;). Depending on the subtournament on
{vili=1,...,n}, Lemma 2.2 determines arcs among the 7;.

We claim that the tournament induced on {y;li=1,...,n} is well covered.
Suppose not. Then there are vertices, without loss of generality v; and v,, that are
either not paired or not distinguished. Without loss of generality, assume v, beats
v1. To arrive at a contradiction, and finish the proof, we will show that some pair
of vertices, other than the endpoints of an edge of G, is not dominated. There are
two cases: either v; and v, are not paired or not distinguished.

Suppose v; and v, are not paired. Let v be the red vertex in 7, that beats every
other red vertex in 7. We show that no vertex beats v; and v.

Consider w in 7} such that w beats vy in T. Suppose that w is blue. Then w is to
the left of vy, a contradiction since v; is red and has indegree 0 in Z(T). Therefore
w is red. Hence v beats w in T and so no vertex in 7 beats v; and v.

Consider w in T3 such that w beats v in 7. Since v beats every red vertex in 75,
we conclude that w is blue. Therefore v, beats w so that no vertex in 7> beats v;
and v.

Finally, consider w in 7; where i > 2 such that w beats v in T. If v; beats vy, then
w must be red. Since vy and v, are not paired, v; beats v;. Consequently, v; beats w
and so w does not dominate v; and v. If v, beats v;, then w must be blue. Since v,
and v, are not paired, v; beats v;. Consequently, v; beats w and so w does not
dominate v; and v. So no vertex in 7; where i > 2 beats v; and v.
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Thus, v; and v are not dominated, so v and v, are adjacent in dom(7) = G, a
contradiction, completing the first case.

Suppose v; and v, are not distinguished. Let v be the blue vertex in 7; that
beats every other blue vertex in 7. We show that no vertex beats v, and v.

Consider w in 77 such that w beats v in T. Since v beats every blue vertex in 77,
we conclude that w is red. Therefore v, beats w so no vertex in 7} beats v, and v.

Consider w in T such that w beats v,. Suppose w is blue. Then w is to the left of
vy. This is a contradiction since v, has indegree 0 in Z(T). Therefore w is red. Then
since v 1s blue and v, beats v; we conclude that v beats w and so no vertex in 7»
beats v, and v.

Consider w in T; where i > 2 such that w beats v in T. If v; beats v, then since
v; and v, are not distinguished, v; beats v;. Consequently w must be blue, so that
v, beats w and therefore w does not beat v, and v. On the other hand, if v beats v;,
then since v; and v, are not distinguished, v, beats v;. Consequently w must be red,
S0 v, beats w so w does not beat v, and v. Thus, no vertex of 7; where i > 2 beats v,
and vin T. O

Theorem 2.6. If G is the union of n > 2 nontrivial triple end-free caterpillars, none
of which is K, 3, then G is the domination graph of a tournament T if and only if n is
not 2, 3 or 5.

Proof. 1t is easy to see that no tournament on 2 or 3 vertices is well-covered. It is
also the case that no 5-vertex tournament is well covered. This has been checked
by hand and can be verified using the list of all 5-vertex tournaments given in
Moon [7]. Thus, if G is the domination graph of a tournament 7', then » is not 2, 3
or 5.

On the other hand, if n =4 or n > 6, then G is the domination graph of a
tournament by Theorem 2.4. O]

3. Domination Graphs on 5 Nontrivial Components

We now consider domination graphs (of tournaments) with 5 components, all of
which are nontrivial.

Theorem 3.1. If G is the union of five nontrivial caterpillars, at least one of which
has a triple end, then G is the domination graph of a tournament.

Proof. There is a tournament on 5 vertices in which every two vertices are
distinguished (for example, see Figure 3), and every pair of vertices, except one, is
paired. Let us call such a tournament almost well-covered.

Let G be a graph as in the statement of the theorem and denote by G,
i=1,...,5 the five caterpillars where G, is a caterpillar with a triple end. Create
tournament 7 as follows. For i # 2, color G; with red and blue so the pendant
vertices are blue. These create subtournaments on each V' (G;) consistent with
Proposition 2.1 so that each v; is red. Now, properly color G, and orient the edges
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Fig. 3

so that a triple end is the rightmost cluster and so that v, and the vertices in the
rightmost cluster have the same color, red. Add arcs among the vertices of
the rightmost cluster so that every vertex in this set has an arc from at least one of
the others (this is possible because G, has a triple end). Complete the subtour-
nament of T on V(G,) so that it is consistent with Proposition 2.1.

Add arcs to complete the tournament as follows. Connect the vertices
{vili = 1,...,5} so that the resulting 5-vertex tournament is almost well covered.
We may assume that v; and v, are not paired and that (v, v;) is an arc. Then
Lemma 2.2 determines the remaining arcs of 7.

Now we must verify that all pairs of vertices, except those that are adjacent in
G, are dominated. This done as in Theorem 2.3, except in Case 4, for two vertices
in G; and G, of the same color.

If the two vertices, v € V(G)) and u € V(G,), are blue, then the two are
dominated by v;. On the other hand, if the two vertices are red, then there is a red
vertex in the rightmost cluster of G, that beats every red vertex in Gy as well as u.

Thus, all pairs, except those adjacent in G are dominated. O

Theorem 3.2. If G is the union of five nontrivial caterpillars, at least one of which is
a K, 3, then G is the domination graph of a tournament.

Proof. Let G be such a graph. Denote by G;, i =1,...,5, the five caterpillars
where G4 is a K 3. For i # 4, create a subtournament of 7 on V(G;) consistent
with Proposition 2.1. Define the subtournament of 7' on ¥(Gj) as follows: let one
vertex (v4) beat the other three and the subtournament on the other three be a
directed cycle. Color the vertices of G; with red and blue, where v; is red for all 7.

Add arcs to complete the tournament as follows. Connect the vertices
{vili =1,...,5} as shown in Figure 3. Then Lemma 2.2 determines the remaining
arcs in 7.

Now we need to verify that all pairs of vertices, except those that are adjacent
in G are dominated. Cases 1, 2 and 3 of the proof for Lemma 2.3 hold for this
tournament. Notice that the tournament on {v;li =1,...,4} is well-covered.
Furthermore, every pair of vertices in the subtournament on {v;|i = 1,...,5} is
paired and v4 and vs are the only two vertices that are not distinguished. Thus,
Case 4 also holds and Case 5 holds for all pairs except u € V(G4) and v € V(Gs).
All that remains is to verify pairs of vertices u € V' (G4) and v € V(Gs) of different
colors.
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1. If v is blue and u is red (so u = v4), then they are dominated by vs.
2. If v is red and u is blue, then there is another blue vertex in G4 that beats u
and v.

Thus, all pairs, except those adjacent in G, are dominated. ]

Corollary 3.3. If G is the union of five nontrivial components, then G is the domi-
nation graph of a tournament if and only if each of the components is a caterpillar
and at least one of the components has a triple end or is K| 3.

4. The Main Theorem

We have completed all the work necessary to characterize domination graphs, G,
(of tournaments) having » components, all of which are nontrivial. If » = 1, then
G is connected and by Proposition 1.3, G is either a spiked odd cycle, a star, or a
caterpillar with a triple end. If n > 2, then each component is a caterpillar. The
cases n =4 and n > 6 are treated in Theorem 2.4. The case n = 5 is treated in
Corollary 3.3. The cases n = 2 and 3 are treated in [4], and although lengthy, are
very similar to the case n = 5.

Theorem 4.1. If G is the union of n nontrivial components, then G is the domination
graph of a tournament if and only if

n=1and G is a spiked odd cycle, a star or a caterpillar with a triple end or
n > 2, each component is a caterpillar and one of the following occurs:

1. n = 2 and either both caterpillars have a triple end or one has a triple end and the
other is K 3;

2. n =3 and either all three caterpillars have a triple end, or one caterpillar is K 3
and the other two have a triple end, or two caterpillars are K, 3 and the other one
has a triple end,

3. n =5 and at least one of the caterpillars has a triple end or is a K 3;

4. n=40rn>6.

Domination graphs (of tournaments) with trivial components are considered
separately in [5].
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