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Abstract. We show that, if G = (X,Y;E) is a bipartite graph with |X| =|Y| =4s and
0(G) = 4s — 3 for any integer s > 2, then G contains four vertex-disjoint copies of Kj ;. This
constitutes a partial answer to a conjecture in [4].

1. Introduction

Hajnal and Szemerédi [3] proved that if G is of order sk with minimum degree at
least (s — 1)k, then G contains k vertex-disjoint complete subgraphs of order s,
where s > 3 and k& > 1 are integers. The case s = 3 was first obtained by Corradi
and Hajnal [2]. In [4] and [5], we have considered a similar problem in bipartite
graphs and proposed a conjecture as follows:

Conjecture 1. [4] Let G = (V1, V5, E) be a bipartite graph with |Vi| = |V3| = sk
where s and k are integers with s > 2 and k > 1. If the minimum degree of G is at
least (s — 1)k + 1, then G contains k vertex-disjoint subgraphs isomorphic to K .

We verified this conjecture for the case k < 3 in [4]. For s € {2,3}, we proved
the following:

Theorem 2. [4] Let G = (V, Va; E) be a bipartite graph with |Vi| = |Va| = 3k. If
the minimum degree of G is at least 2k + 1, then G contains k vertex-disjoint hex-
agons such that each of them has two chords in G.

Theorem 3. [5] Let G = (V, Va3 E) be a bipartite graph with |Vy| = |Va| = 2k,
where k is a positive integer. Suppose that the minimum degree of G is at least k + 1.
Then G contains k — 1 vertex-disjoint quadrilaterals and a path of order 4 such that
the path is sertex-disjoint from all the k — 1 quadrilaterals.

The condition on the minimum degree of G in Theorem 3 is also sharp. In this
paper, we verify the conjecture for the case k = 4, proving the following:
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Theorem 4. Let G = (Vy, Va; E) be a bipartite graph with |Vi| = |V,| = 4s where s
is an integer with s > 2. If the minimum degree of G is at least 4s — 3, then G con-
tains four vertex-disjoint complete subgraphs isomorphic to K ;.

We shall use the following terminology and notation. Let G be a graph. For
two disjoint subsets 4 and B of V(G), e(A, B) is the number of edges of G between
A and B. For a vertex u of G and a subset (resp. a subgraph) X of V(G) (resp. G),
N(u,X) is the set of vertices in X that are adjacent to u in G. Let d(u, X) =
|N(u, X)|. Thus d(u, G) = d(u, V(G)) = dg(u) which is the degree of u in G. For
convenience, we consider a bipartite graph G as an ordered triple (77, V»; E) with
ViUV, as a fixed bipartition and E the edge set of G. Thus if G has another
bipartition VUV, but (Vy,V,) # (V{,V,;) as two ordered pairs, we regard
(V1, Vo E) # (V], V3, E). Let G = (V1, Va; E) be a given bipartite graph. For a
subgraph H = (U, Uy; F) of G, we write G 2 Hif Uy < Vi and U, < V. If A is
a set of subgraphs of G, we write G =2 ¢ if G 2 H for all H € . For a bipartite
graph H, we use kH to denote a set of k vertex-disjoint copies of H. If X < V] and
Y = V5, we use (X, Y) to denote the subgraph (X, Y; F) of G induced by XU Y.
For positive integers ¢ and b, we use E, , to denote a bipartite graph (4, B; &)
with no edges such that |4| = a and |B| = b. If we write G = E, , it means that
[Vi|=a, |V2| =b and E = . The bi-complement of G is the bipartite graph
(Vy, Vo; E') with E' = {xy ¢ E|x e V| and y € V,}. Unexplained terminology and
notation are adopted from [1].

2. Proof of Theorem 4

Considering the bi-complement of bipartite graphs in Theorem 4, an equivalent
statement of Theorem 4 is as follows:

Theorem 4'. Let G = (X, Y; E) be a bipartite graph with |X| = |Y| = 4s where s is
an integer with s > 2. If the maximum degree of G is at most 3, then G contains four
vertex-disjoint copies of Ej ;.

Suppose, for a contradiction, that the theorem does not hold. Let G =
(X, Y; E) be a minimal counter-example to Theorem 4', i.e., G 2 4E; ; but G — xy
2 4E,  forevery xy € E. Let x'y’ € E with x' € X and »’ € Y. By the minimality
of G, there exist partitions X = X{UX;UX;UX; and Y =Y/UY,UY;UY,
such that (X/, Y/) = E, , for every i € {2,3,4} and (X], Y{) contains x"y’ but no
other edges of G. As 4(G) < 3,d(x', Y, U Y;U Y,) <2, and therefore d(x’, Y/) =
0 for some i € {2,3,4}. W.lo.g,, say d(x, Y]) = 0. Let X; = X{ — {x'}, X, = X,
X3 =X], X4y =X,;U{x'} and ¥; = Y/ for every i € {1,2,3,4}. Then (X;,Y;) =
E; 15, (X2, Y2) =E; ;= (X3,Y3) and (X4, Y4) = Egy1 5. Set

0 = {(X1, 1), (X2, Y2), (X3, Y3), (X4, Ya)}. (1)

For convenience, we introduce the following notation. If ¢ is a permutation of
Y and xi,xp,...,x, are distinct vertices of X with x; € X4 and x, ¢ X}, then
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@12 Xil — £ 4, B))|1 <i <4} such that

Bi=o '(Y)={yeY|o(y) e Yi}, ie{1,2,3,4};
A= XU lxlna e Xl <r<n—T—{naeX|l<r<n—1}, je {234}
A =XiU{xtU{x|x e Xl <r<n=-2}—{xeXi|1 <r<n-2}.

Note that if ¢ = (y, y5,..., V), then a(y;) = y;,; forie{1,2,...,m—1} and
o(y,) =y,- In the following argument, we manage to choose ¢ and
{x1,%2,...,x,} carefully such that @ Xt X0, X K1) — 4E; ; to obtain a contradiction.

Clearly, (Y17X2UX3 UX4) < Zer ( ) <3s<3s+4+1= |X2| + |X3| + |X4|
This implies that d(u, Y1) = 0 for some u € X> U X3U X4. As G 2 4E; ;, we see that
ug¢ Xy. Wlo.g., say ue Xp. If d(x, Y,) = 0 for some x € Xy, then @l uX — =4E, ,,
a contradiction. Therefore we have

dx,Y))>1 and d(x,Y2) =1 forall xeXy. (2)

We divide our proof into Part I and Part II according to whether there exists
v € X3 such that d(v, Y1) =0 or d(v, Y») = 0.

Part I There exists v € X3 such that d(v, Y1) =0 or d(v, Y») = 0.

We may assume that d(v, Y1) = 0. For if d(v, Y2) =0, we redefine (X, Y1)
and (X3, Y») by moving u to X; and then change the subscripts accordingly. As in
(2), we have d(x, Y3) > 1 for all x € X4. As 4(G) < 3, we obtain

d(x, Y]) = d(x, Yz) = d(x, Y3) =1 forall xe Xy. (3)

By (3), for each i € {1,2,3}, e(Y;, X4) = s + 1 and therefore Y; contains a ver-
tex adjacent to at least two vertices of Xj. Let b; be such an arbitrary vertex in Y;
for each i € {1,2,3}. We shall show that N (b, Xs) = N(b2, X4) = N(b3, X4) and
then complete the proof in this part. To do so, we will prove a number of claims
in the following. Case 1 in the proof of (4) contains the basic idea. Most of the
other cases following Case 1 are dealt similarly. We first claim

N(bz,X4) = N(b3,X4) or N(b3,X4) =2 N(bg,X4). (4)

Proof of (4). Suppose (4) false. Let N (b2, X4) 2 {di,d>} and N (b3, X4) 2 {x1,x2}
with d; # d, and x; # x» such that x5, ¢ E and d\b3 ¢ E. Then we have either
d(by, X3) =1 or d(b3, X2) = 1 for otherwise © ’2‘ zf‘] = 4E ;. We divide the proof
into the following two cases according to the Values of d(by, X3) + d(b3, X).

Case I1: d(by, X3) + d(b3, X2) = 2, ie., d(by, X3) = d(b3, X3) = 1.
In this case, d(by, X1) = d(b3, X1) = 0. We also have either d(b;, X) =0 or
d(b1, X3) =0. W.lo.g., say d(by, X3) = 0. Then we have
N(b1, X4) = N(b3, Xs) = {x1, %2} (4.1)
for otherwise @[b f‘; =4E;, for any x'eN(b;,X4)— N(b3,Xs). Then

d(b1,X>) =1 for otherwise @[Zm;)iﬁ] = 4E; ;. We claim

d(y,X;)=1forall ye Y3 —{b3} and i e {1,2,4} and d(u, Y3) =0 (4.2)
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Proof of (4.2). First, bsu ¢ E for otherwise @EZ‘I’;:;‘!

vertex in Y3 — {b3}. If d(y, X;) = 0 then @EZ‘I;{;] =4E;, and if d(y, X2) = 0 then
@EZ‘I);‘]})Z) = 4E; ;, a contradiction. Hence d(y, X1) > 1 and d(y, X») > 1. As 4(G)
< 3, there exists d’ € {d),d»} with d'y ¢ E. Then d(y, X> — {u}) > 1 for otherwise
@Eilzg =4E; ,, a contradiction. As y is arbitrary in Y3 — {3} and 4(G) < 3,
this shows, together (3), that 3s > e(Y3, X1 UXo — {u}) +e(Y3,X4) > 25— 1)+
(s 4+ 1) = 3s, from which (4.2) follows.

Let ¢; € Y7 with ¢1d; € E. We claim

) = 4E; ;. Let y be an arbitrary

if d(c1,X2) > 0,d(y,X;)=1forall ye Y1 —{b1} and i € {2,3,4} (4.3)
and

if d(c1,X2) =0, there exists ¢’ € Y1 — {b1, ¢} such that d(y, X;) =1
forall ye Y1 —{c1,¢',b1} and i € {2,3,4}, N(c1, X4) = {d1,dp} and
1 <d(c, Xp) <2. (4.4)

Proof of (4.3) and (4.4). Let y be an arbitrary vertex in Y| — {b;}. Then d(y, X3)

> 1 for otherwise @Ex B)X]] =4F, . If d(y, X2) = 0 and there exists d’ € {d,d»}
[d’

with d'y ¢ E, then @(y"]fz’)x'] = 4F, ;, a contradiction. Hence if d(y, X2) = 0, then
y=oc and N(y,X4) = {d,dr}. It follows that 3s > e( Y], XU X3) +e( Y1, Xa)
>2(s—1)+d(c1,X2)+ (s+1)=3s—1+d(c1, X2). As 4(G) < 3 and N(cy, Xy)
NN(bi, Xs) = & by (3), we see that (4.3) and (4.4) hold.

By (4.2-4.4), we have e(X> — {u}, Y1U Y3) > 2(s — 1) + 1 with equality only
if d(c;,X2) =0 and d(c’,X2) =1. As 4(G) < 3, this implies that there exists
{wi,m} € Xy — {u} with d(w;, Y1UY,) =d(wp, Y1UY,) =3 such that if
d(c1,X3) =1ord(c’, Xp) =2 then wy # wy. Furthermore, we see that, if d(c;, X3)
=1 then N(w;) NN (w2) = &, and if d(c1, X2) = 0 and d(c’, X2) = 2 then N(w;)
NN(wz) = {c'}. Note that if d(c;, X2) = 0 then N(cy, X4) = {di,d>}. Then we can
choose a vertex y € N({w;,w>}) such that y ¢ N({d,d>»}) and d(y, X») = 1. Say
w.l.o.g. that y € N(w1). If y e Y| then @l mdeu Xil _ 4E, ,, and if y € Y3 then

dy,wi,do,u, X . (y,b2) E
@Ebll";l b,Z) wX] 4E; ;, a contradiction.

Case 2: d(bz,X3) +d(b3, X)) = 1.
W.lo.g., say d(by, X3) = 1 and d(b3, X>) = 0. Then d(b,, X) = 0. Similar to

the proofs of (4.2), (4.3) and (4.4), we can prove the following (4.5), (4.6) and (4.7).
We omit their proofs.

1,0,
»,b

diy,X;)=1forall ye Y1 —{b1} and i € {2,3,4} and d(b;, X3) =1. (4.5)
Let a, € Y, with ax; € E. Then we have

if d(az, X3) > 0,d(y,X;) =1forall ye Y» — {h,} and i € {1,3,4} and
d(v,Y,) =0 (4.6)

and
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if d(as, X3) = 0, there exists a’ € Y, — {az, by} such that d(y, X;) = 1

for all ye Y, — {ap,d’,b,} and i € {1,3,4}. Moreover, N(az, X4) =

{x1, %2}, 1 <d(d, X3) <2,d(v, Y, —{a'}) = 0,and if d(d’, X3) =1

then va' ¢ E. (4.7)

By (4.5-4.7), e(X3—{v},Y1UY>) >2(s—1)+1 with equality only if
d(a, X3) =0 and d(a’,X3) =1. As 4(G) <3, this implies that there exists
{wi,m} € X3 — {v} with d(w;,Y1UY3)=d(wy, Y1UY3)=3 such that, if
d(ar, X3) =1 or d(a’,X3) =2, then w; # w,. Furthermore, we see that when
wy # wa, either N(w;) N N(wy) = & or N(w;) N N(wz) < {a’}. Clearly, we can
choose y e N({wi,wz}) such that y¢ N({x;,x2}) and d(y,X3)=1. Say ye

N(wy). If y € Y; then @[;‘ l;“;; uh) 4E;,, and if y € Y5, then 6 1, ”‘> w0 X]
4E; ;, a contradiction. This proves (4).

We claim
N(by, X4) = N(b3, Xa). (5)
Proof of (5). Suppose (5) false. By (4), we may assume w.l.o.g. that N(by, X4) 2

N (b3, X4). Say N(by, X4) = {x1,x2,x3} and N(b3, Xs) = {x1,x,}. Similar to the
proofs of (4.2), (4.3) and (4.4), we can show the following (5.1), (5.2) and (5.3).

d(b3,X2 — {M}) =1 d(b],Xz) =1 and N(b],X4) = {X],Xz}; (51)
d(y,X;)=1forall ye Y, —{b;} and i € {2,3,4}; (5.2)
d(y,X;) =1forallye Y3 — {b3} and j e {1,2,4} and d(u, Y3) = 0. (5.3)

By (5.1-5.3), e(X2 —{u}, 1UY3) >2(s— 1) +2. As 4(G) < 3, this implies
that there exists w e X> — {u} with d(w, Y; U Y3) = 3. Clearly, there exists y e
N(w) such that y ¢ N({x1,x2}) and d(y, X2) = 1. As before, it is easy to see that
G 2 4E; ;, a contradiction. This proves (5).

We claim

N(bz,X4) =2 N(bl,X4) (6)
Proof of (6). Suppose (6) false. Let N(by, X4) = {d),d2} and N (b2, Xa) 2 {x1,x2}

such that d; ¢ N(by, X4), di # d» and x| # x,. Similar to the proofs of (4.2), (4.3)
and (4.4), we can show the following (6.1), (6.2) and (6.3).

d(bz,X}):l and d(bg,,X]):l; (61)
d(y,X;)=1forall ye Y, —{b,} and i € {1, 3,4}; (6.2)
d(y,X;) =1forall ye Y3 —{bs} and je {1,2,4}. (6.3)

By (6.1-6.3), e(X1, Y2UY3;) =2(s—1)+2. This implies that there exists
{Wl,WQ} = ¢ such that d(Wl, Y, U Y3) = d(Wz, Y, U Y3) =3 and w1 # wa.
Clearly, we can choose y € N({w;,w»}) such that y ¢ N({di,d>}). W.Lo.g., say
y € Y, N N(wy). Then either @E’Z"‘”) b _ 4E, ; with d(b1, X») = 0 or @[ill Z;‘ ;]2)’)(‘]
= 4E, ; with d(b1, X3) = 0, a contradiction. So (6) holds.

Then we claim

N(b1,Xs) = N(b2, Xa) (7)



358 H. Wang

Proof of (7). Suppose (7) false. By (6), we may choose x € N(by, X4) such that
xb; ¢ E. Moreover, we have d(by, X4) = d(b3, X4) = 3. We have d(b1, X2 U X3) <

1. W.lo.g., say d(b;, X») = 0. Then @[Z "bX)'] = 4E, ,, a contradiction. So (7) holds.

We are now in the position to complete the proof of the theorem in Part I. The
proof of (5) and (7) shows, together with (3), that for each i € {1,2,3}, b; is the
unique vertex in Y; such that d(b;, X4) > 2. Hence we have

d(y,X4) <1 forall ye 1UY,UYs — {bl,bz,bg}. (8)

We suppose first that d(b;, X4) = 3. Let N(by, Xs) = {x1,x2,x3}. By (3) and
(8), for each ie{1,2,3}, there exists a;€ ¥Y; — {b;} and a bijection 7, : X4—
{x1,x2,x3} = ¥; — {a,-,b,-} such that x7;(x) € E for all x € X4 — {x1, x2,x3} and
d(a;, X4) = 0. Since d(b;, X;UX,UX3) =0 for all ie{l1,2,3}, we can readily
show, as before, that d(y, X;) > 1 for all y € ¥; — {b;} and {i, j} = {1,2,3} with
i # j. Consequently, as 4(G) <3, d(y, X;) =1 for all ye Y; — {a;,b;} and {i, j}
< {1,2,3} with i # j. Clearly, e(X1, Y2U Y3 — {b2,b3}) > 2(s — 1). Let x be ar-
bitrary in X;. If d(x, Y, U Y3) = 3, we choose y € N(x) — {a2,a3}. Then we may
assume w.l.o.g. that ye Y, and see that 9[“ Yy“ Yl =4E,,, a contradiction.
Hence d(x, Y,U Y3) < 2. This argument shows that e(X;, Y2U Y3) <2(s— 1),
and consequently, d(z, YU Y3 — {by,b3}) =2 for all z€ X} and d(ay, X;) =1 =
d(as, X1). If d(x, Y4) = 0, then we see that G = 4E; ; as we can use any y € N(x)
in the above argument. Hence d(x,Ys) = 1. Assume d(x,Y;)=0. Let ye

— {b,} with y # a and xy € E. Then either @[” B '“ nl 4E, ; with vy ¢ E, or

@E;‘ 15;)X ) — 4E,, with vyeE, a contradiction. Hence d(x,Y3) > 1. Similarly,
d(x,Yy) = 1. Thus d(x, ¥;) = 1 forall i € {2,3,4} as 4(G) < 3. Then @} ! =
4E, ; where y € N(x, Y2). '

Next, we suppose d(b1, X4) = 2. Let N(b1, X4) = {x1,x2}. As before, for each
i e {1,2,3}, there exists a bijection ; : X4 — Y; — {b;} such that xt;(x) € E for all
x € Xg — {x1,x2}. We claim

d(y,X;) =1forall ye Y; —{b;} and {i,j} = {1,2,3} with i # j. 9)

Proof of (9). Suppose (9) false, i.e., there exists i € {1,2,3} and y; € Y¥; — {b;}
such that d(y;, X;) = 0 for some j € {1,2,3} with j # i. Let xo € X4 — {x1,x2} be
such that 7;(xo) = y;. Say N(xo, ¥;) = {yr} for re {1,2,3}. We divide the proof
of (9) into the following Case 3, Case 4 and Case 5.

Case 3: i =1, ie., d(y, X;) = 0 for some j € {2,3}.

W.lo.g., say d(y,, X2) = 0. As @”’ X‘] # 4E; ;, we see that d(bz,Xl) =1 and

d(by, X3) = 0. Then we sce that d(b3,X1) =1 and d(b3, X2) =0 as O3,

4E; ;. Together with d(b;, X>U X3) < 1, it is easy to see that (X2 U X3, YU Y3 U
{bl} — {y}) =2 ZES"S for any y € YoUY; — {bz,b3}. As (X4 — {Xl}, Y4) = ES.’S, we
obtain (X7 U{x;}, i U{y} —{b1}) # E,, for any ye YoU Y3 — {by,b3}. This
implies that d(y, X;) > 1 for all y e YU Y3 — {by,b3}.

If d(y, X3) = 0 for some y e Y, — {h,}, then @Ex' PN — 4E ) and if d(z, X3)

=0 for some ze Y;— {h3}, then @P"“)X‘] =4E,,, a contradiction. Hence
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d(y,X3) = 1forall ye Y, — {by} and d(z, X2) = 1 for all z € Y3 — {b3}. As 4(G)
< 3, this shows, together with (3), that, for each i € {2,3} and j € {1,2,3,4}—{i},
d(y, ;) =1 for all yeY;—{b;}. Hence e(X;,Y>UY3;)=2(s—1)+2. This
implies that there exists w € X such that d(w, Yo U Y3) = 3. We choose yeN(w)
such that y ¢ {2, b3}. W.lo.g., say y € Y,. Then either @xl v VZ xl =4E, , with

(b
d(b1, X2) =0, or @[Z‘ }; x;>X‘] = 4E, ;, a contradiction.

Note that as 4 (G) < 3, the argument of Case 3 shows (9) for the case i = 1.
Case 4: i€ {2,3}and j=1,1ie., d(y,,X1) =0o0rd(y;,X;) =0.

W.lo.g., say d(y,, X1) =0. As @ Ao X‘] # 4E; ;, we have d(b;,X>) =1 and

d(by, X3) = 0. Then d(b3, X> — {u}) = L and d(bs, X)) =0as O 41 £ 4, (I

d(z, X, —{u}) =0 for some ze Y;— {b3}, then either @EZ;Z)X‘ =4E,, with
d(by, X3) = 0, or @Ezl 'ff])] = 4E, , with d(b,, X;) = 0, a contradiction. If d(z, X)
= 0 for some z € Y3 — {b3}, then @[Y‘ X‘] = 4E; , a contradiction. Hence d(z, X;)
>1 and d(z, X, — {u}) > 1 for all ZeY; - {b3} Together with Case 3 and as
A(G) < 3, this shows that d(y,X;) =1 for all ye Y;—{b;}, ie{1,3} and je
{1,2,3,4} — {i}. Furthermore d(u, Y1UY3)=0. Thus e(X>—{u}, 1UY3) =
2(s — 1) + 2. This implies that there exists w e X» — {u} with d(w, Y; U ¥3) = 3.
As before, we readily see that G 2 4E; ;, a contradiction.

Note that the argument of Case 4 shows that d(y,X;) > 1 for all ye Y, U

— {b2,b3}.

Case 5: {i,j} ={2,3}, 1.e, d(y;, X;) = 0.

W.lo.g., say d(yz,X3) = 0. Then d(b3, X») = 1 and d(b3, X;) =0 as @Ej"'“bj)(‘]

# 4E, ;. Then we see that d(b;, X2) =1 and d(by, X3) =0 as (le ”yX})L # 4E, ,.
If d(z, X> — {u}) = 0 for some z € Y3 — {b3}, then cither O b, ")Xl] =4E, ; with
d(by, X3) =0 or @[Z‘ L:Z(Z‘; =4E,,, a contradiction. Hence d(z X, —{u}) =1
for all z e Y3 — {b3}. Together with Case 3 and Case 4, this shows that d(y, X;)
=1 for all yeY;—{b;}, ie{l,3} and je{l,2,3,4} —{i}. Furthermore
d(u, Y1U Y3 —{b3}) =0. Thus e(X, — {u}, Y1 UY3) > 2(s— 1) + 1. This implies
that there exists w e X; — {u} with d(w, Y; U Y3) = 3. As before, we readily see
that G = 4E; ;, a contradiction. This proves (9).

By (9), we have e(X;, Yo U Y3) = 2(s — 1) 4+ e({b2, b3}, X1). Let yz be arbitrary
in Ewith ye YU Y3 — {by,b3} and z € X,. Say ye Y; — {b;}. By 9), d(y, X1) =
1. We claim

d(z, ¥) =2 and d(z, Y3 > 1. (10)

Proof of (10). Suppose (10) false. W.l.o.g., say i = 2. Then either d(z, ¥>) =1 or
d(z,Ys) = 0. Assume first d(z, Y4) =0. Then d(b1,X2) =1 and d(b;,X3) =0
for otherwise @EY' 'S Y 4E . Let xe Xy — {xi,x2} with 75(x) = . Then

d(by, X, —{u}) =1 and d(b3,X;) =0 for otherwise @EZ‘ oy Y g, af

d(y', X, —{u}) =0 for some y' e Y3 — {b3}, then either @[“’“y))(‘ =4E; ; with
d(bz,X3) =0, or @[“ “y,X,‘)]> =4E, with d(b,X1) =0, a contradlctlon Hence
dy, X, —{u}) > 1 for all y € Y3. Together with (9), this shows that e(X; — {u},
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Y UY3) =2(s—1)+2. This implies that there exists we X, — {u} such that
d(w, Y1UY,) =3. As before, we can readily see that G 2 4E;, a contradic-
tion. Hence d(z, Y4) > 1. Next, assume d(z, Y2) = 1. Then d(b;,X>) =1 and

d(by,X3) =0 for otherwise @Ex“'z’)“’xl] =4E,,. Then for each y’e Y; — {b3},

d(y', X> —{u}) > 1 as @“”’X' 2 4E, ; unless yzeE but when y'z e E, we

(b1,y",)
have d(z, Y3) =1 as 4(G) < 3, and consequently, (Y'l"y,g Yl — 4E, , a contra-

diction. Then by (9), e(X> — {u}, Y1 U Y3 — {b3}) = 2(s — 1) + 1. This implies that
there exists w € X, — {u} such that d(w, Y; U Y3) = 3. As before, we can readily
see that G < 4E; ,, a contradiction. So (10) holds.

As 4(G) < 3 and by (9) and (10), we see that d(z, Y4) = 1 and either d(z, 13)
=2ord(z,Y3) =2forall z e X;. Moreover, d(by, X1) = d(b3,X1) =0. Let oy, €
E with zp € X and y, € Y, U Y3. W.lo.g., say y, € Y,. Then we have d(zy, Y4) =
1 and d(zo, Y2 — {h2}) = 2. Let t € Y4 with zot € E. Then d(¢, X;) > 2 for other-
wise O = 4E, . Therefore d(1,X2) =0 or d(t,X3) =0 as 4(G) < 3.
First, assume d(f,X3) =0. Then d(b;,X3) =1 and d(b;,X3) =0 for other-

wise @[Z‘I o )Y&ZXI)] =4E,,. Then d(b;,X2) =1 and d(b3,X,) =0 for otherwise

@E;‘l j”bjz}j(]] =4E, . Then for each y € Y3 — {b3}, d(y, X2 — {u}) > 1 as le Zi‘;

#4E, ;. By (9), thls shows that e(X; — {u}, Y1 U Y3) > 2(s — 1) + 1. This implies
that there exists we X, — {u} such that d(w, Y; U Y3) = 3. As before, we can
readily see that G 2 4E; ,, a contradiction. Hence d(z, X3) = 1 and d(z, X2) = 0.

Then @(le ;0;2) Yl = 4E, . This completes Part 1.

Part II. For every x € X3, d(x,Y)) > 1 and d(x, ¥3) > 1.

We need the following structure lemma. To state the lemma, we construct the
following graphs first.

For each odd integer s > 3, G, is a bipartite graph of order 4s with a bipartition
(4, B) such that |4] = |[B| =2sand d(x) =1 forall xe 4 and d(y) =0 or d(y) =
2 forall y e B.

For each integer s > 4 with s = 1 (mod 3), H, is a bipartite graph of order 4s
with a bipartition (4, B) and a fixed vertex y, € B such that |4| = |B| = 2s, d(x) =
lforall xe 4, d(y,) =2,and d(y) =0ord(y) =3 forall ye B— {y,}.

For each integer s > 2 with s = 2 (mod 3), I is a bipartite graph of order 4s
with a bipartition (4, B) and two fixed vertices xp € 4 and y, € B such that
d(x0, B—{yo}) =0,d(yy, 4 —{x0}) =0,d(x) =1forall xe 4 — {x0}, and d(y)
=0ord(y)=3forall ye B— {y,}.

Lemma. Let H = (X, Y; E) be a bipartite graph of order 4s with |X| = |Y| = 2s
and s > 2. Suppose that d(x) <1 for all x€ X and d(y) <3 for all ye Y. Then
H 2 2E; ; unless H is isomorphic to one of Gy, Hy and I.

Proof of the Lemma. Suppose H 2 2E, ;. We shall prove that H is isomorphic to
one of Gy, Hy and I;. Enumerate Y = {uy,u,, ..., us} such that

3> d(ul) > d(uz) = e = d(u,) > 0 and d(u,-+1) = d(ur+2) =...= d(uzs) =0.
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If S50, dw) <s, let N({uy,uz,...,u,}) = X1 = X with |X;| =5 and Y =
{thr1,. .. upys}. Then H 2 2E; ;= {(X1, Y1), (X — X1, Y — Y1)}, a contradiction.
Therefore we may let  be the least integer in {1,2,...,r} such that >/, d(u;) > s.
Similarly, it is easy to see that H 22E; if Zl’;ll d(u;) = s. Therefore we
have S°/7! d(u;) <5 — 1. Hence d(u) = d(uz) = --- > d(u;) = 2. Moreover, as
d(u;) < 3, we see that Z{;ll du;))=s—1lor Zit;ll d(u;) = s — 2. In the latter case,
d(u,) = 3. We divide the proof into the following two cases.

Case a: Zf;ll du)=s—1.
In this case, we claim

d(x)=1forall xe X, and d(y) =0ord(y) =2 forall yeY. (12)

Proof of (12). Suppose that d(u) = 1 for some v € Y — {uy,uz,...,u,}. Let X; =
N{u,uz,...,u;—y,u}t) and X, = X — X). Clearly, |X| = |Xz2| =s. As d(x) <1
for all xeX and by (11), we see that N(X2) < {u;tri1,...,U5-1} and
d(ues) =0. Let Yy ={u, w1, usy —{u} and Y=Y —Y;. Then H
2 2E; = {(X1, 1), (X2, Y2)}, a contradiction. Similarly, we can show that H =
2E; ; if d(x) = 0 for some x € X as we can take X| = N({uy,uz,...,u,_1})U{x}
in the first place. So (12) holds.

Suppose d(u,—1) = 3. Then d(u;) =3 forallie {1,2,...,1— 1}, s=1 (mod 3)
and 25 = 2 (mod 3). Together with (12), this implies that there exists y, € ¥ such
that d(y,) =2. If there exists another vertex y,e Y —{y,} with d(y;) =2,
let X1 = N({“lv“b sy Ur-25 Vo, y(/)})a H=X-X, In= {utflv Uty ooy utJr.v} -
{»0, ¥} and Y> =Y — Y;. Then by (11), we see that N(X>) = Y; and thus
{(X1, 1), (X2, Y2)} = 2E; ;, a contradiction. Hence d(y) =0 or d(y) = 3 for all
y€Y —{»y}, and consequently, H =~ H,.

Next, assume d(u,—1) = 2, By (11) and (12), d(u;) = d(us1) = - = d(u,) = 2.
As |[N({ur,uz,...,us})| =541 < 2s = |X| and by (12), we see r > t. If d(u;) = 3,
let X] = N({uz,u3, e 7ut+1}), Xz =X - X], Y] = {ul,u,+27 . ,MHA-} and Y2 =
Y — Y,. Then we see that {(X1, Y1), (X2, Y2)} = 2E;,, a contradiction. Hence
d(uy) = 2. This shows d(y) =0 or d(y) =2 forall ye Y and s — 1 = 3.1} d(u;)
=0 (mod 2). Hence H = G,.

Case b: Zf;ll d(u) =s—2.

In this case, d(u;) = 3. By (11), d(u;) =3 for all i e {1,2,...,¢} and therefore
s =2 (mod 3) and 2s = 1 (mod 3). As before, it is easy to see that if there exists
o € Y with d(y,) = 2, or there exist two distinct vertices y,, v} € Y with d(y,) =
d(y{) =1, or there exist two distinct vertices xg, x; € X with d(xo) = d(x{) = 0,
then H 2 2E, ;, a contradiction. Therefore there exist xp € X and y, € Y such that
d(x)=1 for all xe X —{xo}, and d(y) =0 or d(y)=3 for all ye Y — {y,}.
Furthermore, d(xo, Y — {y,}) =0 and d(yy, X — {x0}) =0. Thus H = I,. This
proves the lemma. O

We now turn back to the proof of the theorem. As 4(G) < 3 and by the as-
sumption of Part II and (2), we have

d(x,Y;UYs) <1 forall xeX3UXjy. (13)
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Moreover, for each i e {1,2} we have e(X3U Xy, Y;) > 25+ 1 and therefore
there exists b; € Y; such that d(b;, X3U X4) = 3 and d(b;, X1 U X3) = 0. We divide
the proof into the following two cases.

Case 1: There exists w € X3 U Xy such that H = (XzU Xy — {w}, Y3U Yy) 2 2E; ;.
By the lemma, H = G,, H; or I,. We enumerate Y3U Yy = {yo, yi,..., s

Virtse--s Vot With d(y,, H) = -+~ = d(yy,_y, H) = 0 such that
(i) when s=1 (mod2) and H~ G, t=s—1 and d(y;,H) =2 for all ie
{0,1,...,1};

(i) when s=1(mod3) and H=x=H,, t=(25s—2)/3, d(yy,H) =2 and
d(y,H)=3forallie{l,2,...,1};

(iii) when s=2 (mod3) and H x~1I, t=(2s—1)/3, d(yy,,H) <1 and
d(y,H)=3forallie{1,2,...,t}.

Moreover, when s =2 (mod 3) and H = I, let xo € X3U X4 — {w} be such that
d(xo, H—yy) =0 and d(y,, H — x9) = 0. We may also assume that when the
neighbor of w in N (w, H) (if any) is of degree 2 in H, then w is adjacent to y,. This
might happen when H =~ G, or H;. We claim

s=1(mod3), H~H; and wy,€E. (14)

Proof of (14). Suppose (14) false. Then wy, ¢ E if s =1 (mod 3) and H =~ H,.
Choose an arbitrary vertex zo from X3UXy — {w} such that if H = G, with
s=1 (mod 2) and wy, € E then zyy, ¢ E, and if H = I; with s = 2 (mod 3) then
zo # Xo. Then d(zo, H) = d(zo, Y1) = d(z0, Y2) = 1. Note that we have at least
four different choices for zy if H % I, and three different choices for zy if H =~ I,. It
is easy to see that H — zy + w is isomorphic to none of G,, H, and I;. By the
lemma, H —zo+w22E, = {(X3,Y]),(X,, Y,)}. Therefore (X;UX>U{z},
nu YZ) 2 2Es,s~

It is clear that there exists y’ € Y5 U Y, such that d(y', X; U X)) > 2.

Note that d(u, Y1UY,) =0. If zo ¢ N(b1), then zo ¢ N(by) for otherwise
{01 U {u}, Y1 U {ba} — {Bi}), (Xa U {20} — {ub, Y2 U {bi} — {b2})} = 2E,.
Similarly, we see that if zy ¢ N(by) then zo ¢ N(b;). Hence if we must have
zo € N({b1,b2}) for any appropriate choice of zy, then H >~ 1, and N(b;) =
N(by) = N(y,). In this situation, let X7 = {c1}, X2 = {u, 2}, N(y,) = {d1, d>, d»},
Y1 ={ai,b} and Y, = {a,b}. We may assume N(w, Y3UYy) = {yy, »>}.
Then G = 4E2.,2 = {({dlvdZ}v {yO’ )’2})7 ({d3a ”}1 {alﬂaZ})v ({clv CZ}v {blv bZ})’
({x0,w}, {¥1, »3})}, a contradiction.

Therefore z ¢ N({bhbz}). Let ]VV(Z()7 Y, U Yz) = {21722} with z; € Yy and z; €
Yz. If d(zl,Xz) = 0, then {(X] U {Zo}, Y] U {bz} — {Z]}), (Xz, Y2 U {Zl} — {bz})}
= 2E,,, a contradiction. It follows that d(z;,X>) > 1 and d(z;,X;UX]) < 1.
Wlo.g., say d(z1,X;) =0. Let X/ =X, U{z} and Y] =17, — {z1}. Clearly,
(Xllv Yll) = ES,A'*l' Let 0' = {(Xlla Yl/)a (XZa YZ)v (XS/’ YS/)’ (X4/a Y4, U {Zl})} As byzp
¢ E, we have d(by, X|) = d(b,, X1) = 0. Since d(y’, X5 U X,) > 2, we have either
d(y',X{)=0ord(y', X2) = 0. As in the proof of (2), we must have y’ € Y. Then
we apply the proof of Part I to ©' to obtain G = 4E,, a contradiction. This
proves (14).
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Let H' = H + w. By (14), d(y,, H') = 3. Clearly, 1 > 2 as s > 4. We may as-
sume w.l.o.g. that N(b;) = {di,d>r,d3} = N({y9, ¥1, ¥»}) such that d(b;, N(y,))
<d(b1,N(y;)) <d(b1,N(y,)). Let i be the smallest integer in {0, 1,2} such that
N(b)NN(y;) # . Wlo.g., say di € N(by) N N(y;). Then d(dy, Y1) = d(d,, Y>)
= 1. Let {w, wa, w3, wsa,ws} = Y3U Yy be a set of five isolated vertices of H'. It is
easy to see that R= (N({yg, 1, 12}) — {di};{yo: ¥}, b1, wi, w2, w3, wa, ws}) 2
2E4 4 where y; = y, if dy € N(y,) and y; = y, if di ¢ N(y,). Clearly, S=H' -
(V(R)U{dl}) is isomorphic to none of Gy_4, H;4 and I,_4 as d(y,S) =0 or
d(y)=3forallye V(S)N(Y3U Y4) and d(x,S) = 1 forall x e VV(S) N (X3 U Xy).
By the lemma, S 2 2E, 4, 4. Hence RUS =2 2E;,. Let i€ {0,1,2} —{0,/}. As
d(y, X1UXy) =0, it follows that {(X;U{di}, 1U{y,} —{b1}), (X2, Y2)} =
2E; ;. Therefore G 2 4E; ;.

Case 2: (X3U Xy — {x}, Y3U Yy) 2 2E; ; for all x e X3U Xj.
Then we have

(X]UXzU{X}, Y]U Yz) ,722ES7S for allxeX3UX4. (15)
We claim

Foreachie {1,2} if ye Y; and d(y,X3UXy) =3
then d(x, Y;) = 2 for every x € N(). (16)

Proof of (16). Suppose (16) false. We may assume w.l.o0.g. that for some i € {1,2},
there exists x € N(b;) such that d(x, Y;) = 1. Let {7, j} = {1,2} and N(x,Y;) =
{x1,x2} (maybe x; = x;). W.lLo.g., we may assume i =2 as d(u, Y, UY) =0.
Then d(y,X3)>1 for all ye Y, —{x;,x} for otherwise {(X;U{u}, YU
{2} = {»}), (N2 U{x} — {u}, 2 U{p} —{b2})} = 2E; , for any y € Y1 — {x1,x2}
with d(y, X2) = 0. It follows that 3s > e(Y}, X2 U {x}) e(Y1,Xx3UXy — {x}) =
s+ 2s = 3s. Then we see that d(y) =3 for all y e Y1, d(xl,Xz) d(x2,X2) =0,
d(z,Y1)=1forall ze X3UXy — {x} and d(y,X>2) =1 for all y e Y| — {x1,x2}.
Hence b; € {x1,x2}. If there exists x’ € N({x,x2}) such that x'b, ¢ E, then x’ # x
and {(XiU{x'}, TU{b} — {x}), (X2, o U{x,} — {b2})} =2E,; where x,€
{x1,x} with x,x’" € E, a contradiction. Hence N(b;) 2 N({xj, x2}). It follows
that x; = x, = b; and N(by) = N(b;). This also says that d(x, Y;) = 1. Then
similarly, we can show that d(y,X;) =1 for all ye Y, — {h,} and d(z, Y2) =1
and z € X3 U Xy. Let z be an arbitrary vertex in X3U Xy — N(b,). Let y, € ¥} and
¥, € Y, be such that N(z, Y1 U Y>) = {y,, »,}. Let z; € X; be such that z;y, € E.
If d(z1, Y2) =1, then {(X1U{u,x} —{z1}, i U{y,} —{b1}), (X2U{z1} —{u},
Y>U{b1} —{»})} =2E,,, a contradiction. Hence d(z1, Y>—{b2}) >2 and
therefore d(z;, Y3UYs) < 1. As (X3UXy — {x}, Y3UY4) 2 2E;,, we see that
there are partitions X;UXqU{z} - {x} =X;UX; and Y3U Yy = Y{U Y, such
that (X3/, YS/) vv and (X4,Y4) H—l 5. Let Xl XlU{X} {Z]} YI/: Y, U
{m}—{bh}, X, =X, and Y; =Y, U {bl} {»;:}. Then (X{,Y/])= ES,I_S and
(X3, Y)) = E; 5. Furthermore d(u, Y{) =0 and d(x', Y{) = 0 where x’ € N(b;) —
{x}. Then we apply the proof of Part I to ®' = {(X/, Y/)|1 <i <4} to obtain
G 2 4E; ,, a contradiction. This proves (16).
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By (16) and as 4(G) < 3, we have N(y')NN(y") = & for any y' € Y| and
y"e Y, with d(y', XU Xy) =d(y”, X3U Xy) = 3. It follows that N(y")NN(y")
= ( for any two distinct vertices y’, y"” € Y, with d(y’', X3 U Xy) = d(y”, X3 U Xy)
=3 for otherwise we apply the proof of (16) to @, ,y to show that
d(z, VU{y'} = {b1}) =2 and d(z, Y,U{b} —{»'}) =2 and so d(z) =4 for
each ze N(y')NN(y"), a contradiction. Let y;,..., y, be a list of vertices of Y5
with d(y;, X3UXy) =3 for all ie{1,2,...,t}. Then 1> 1, d(z, Y2) =2 for all
zeN(y;) and ie{1,2,...,t}, and N(y;)NN(y;) = & for 1 <i < j<t Hence
e(Y2,X3UXy) = e(Yo, X3UXa = N({yy,...,0})) +e(Yo, Ny, .-, 0:}) =
(2s4+1—-31)+ 6t =25+3t+ 1. As 4(G) <3, this implies that Y, contains at
least 3z + 1 vertices, each of which is adjacent to three vertices of X3 U X4. Hence
t > 3t + 1, a contradiction. This completes Part II.

By Part I and Part II, the theorem holds.
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