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Abstract. We show that, if G � �X ;Y ; E� is a bipartite graph with jX j � jY j � 4s and
d�G�V 4sÿ 3 for any integer sV 2, then G contains four vertex-disjoint copies of Ks; s. This
constitutes a partial answer to a conjecture in [4].

1. Introduction

Hajnal and SzemereÂdi [3] proved that if G is of order sk with minimum degree at
least �sÿ 1�k, then G contains k vertex-disjoint complete subgraphs of order s,
where sV 3 and k V 1 are integers. The case s � 3 was ®rst obtained by CorraÂdi
and Hajnal [2]. In [4] and [5], we have considered a similar problem in bipartite
graphs and proposed a conjecture as follows:

Conjecture 1. [4] Let G � �V1;V2; E� be a bipartite graph with jV1j � jV2j � sk

where s and k are integers with sV 2 and k V 1. If the minimum degree of G is at

least �sÿ 1�k � 1, then G contains k vertex-disjoint subgraphs isomorphic to Ks; s.

We veri®ed this conjecture for the case k U 3 in [4]. For s A f2; 3g, we proved
the following:

Theorem 2. [4] Let G � �V1;V2; E� be a bipartite graph with jV1j � jV2j � 3k. If

the minimum degree of G is at least 2k � 1, then G contains k vertex-disjoint hex-

agons such that each of them has two chords in G.

Theorem 3. [5] Let G � �V1;V2; E� be a bipartite graph with jV1j � jV2j � 2k,
where k is a positive integer. Suppose that the minimum degree of G is at least k � 1.
Then G contains k ÿ 1 vertex-disjoint quadrilaterals and a path of order 4 such that

the path is sertex-disjoint from all the k ÿ 1 quadrilaterals.

The condition on the minimum degree of G in Theorem 3 is also sharp. In this
paper, we verify the conjecture for the case k � 4, proving the following:



Theorem 4. Let G � �V1;V2; E� be a bipartite graph with jV1j � jV2j � 4s where s

is an integer with sV 2. If the minimum degree of G is at least 4sÿ 3, then G con-
tains four vertex-disjoint complete subgraphs isomorphic to Ks; s.

We shall use the following terminology and notation. Let G be a graph. For
two disjoint subsets A and B of V�G�, e�A;B� is the number of edges of G between
A and B. For a vertex u of G and a subset (resp. a subgraph) X of V�G� (resp. G),
N�u;X� is the set of vertices in X that are adjacent to u in G. Let d�u;X� �
jN�u;X�j. Thus d�u;G� � d�u;V�G�� � dG�u� which is the degree of u in G. For
convenience, we consider a bipartite graph G as an ordered triple �V1;V2; E� with
V1 UV2 as a ®xed bipartition and E the edge set of G. Thus if G has another
bipartition V 01 UV 02 but �V1;V2�0 �V 01;V 02� as two ordered pairs, we regard
�V1;V2; E�0 �V 01;V 02; E�. Let G � �V1;V2; E� be a given bipartite graph. For a
subgraph H � �U1;U2; F� of G, we write G KH if U1 JV1 and U2 JV2. If H is
a set of subgraphs of G, we write G KH if G KH for all H A H. For a bipartite
graph H, we use kH to denote a set of k vertex-disjoint copies of H. If X JV1 and
Y JV2, we use �X ;Y� to denote the subgraph �X ;Y ; F� of G induced by X UY .
For positive integers a and b, we use Ea;b to denote a bipartite graph �A;B;q�
with no edges such that jAj � a and jBj � b. If we write G � Ea;b, it means that
jV1j � a, jV2j � b and E �q. The bi-complement of G is the bipartite graph
�V1;V2; E 0� with E 0 � fxy B Ejx A V1 and y A V2g. Unexplained terminology and
notation are adopted from [1].

2. Proof of Theorem 4

Considering the bi-complement of bipartite graphs in Theorem 4, an equivalent
statement of Theorem 4 is as follows:

Theorem 4 0. Let G � �X ;Y ; E� be a bipartite graph with jX j � jY j � 4s where s is
an integer with sV 2. If the maximum degree of G is at most 3, then G contains four

vertex-disjoint copies of Es; s.

Suppose, for a contradiction, that the theorem does not hold. Let G �
�X ;Y ; E� be a minimal counter-example to Theorem 4 0, i.e., G Q 4Es; s but G ÿ xy
K 4Es; s for every xy A E. Let x 0 y 0 A E with x 0 A X and y 0 A Y . By the minimality
of G, there exist partitions X � X 01 UX 02 UX 03 UX 04 and Y � Y 01 UY 02 UY 03 UY 04
such that �X 0i ;Y 0i � � Es; s for every i A f2; 3; 4g and �X 01;Y 01� contains x 0 y 0 but no
other edges of G. As D�G�U 3, d�x 0;Y 02 UY 03 UY 04�U 2, and therefore d�x 0;Y 0i � �
0 for some i A f2; 3; 4g. W.l.o.g., say d�x 0;Y 04� � 0. Let X1 � X 01 ÿ fx 0g, X2 � X 02,
X3 � X 03, X4 � X 04 U fx 0g and Yi � Y 0i for every i A f1; 2; 3; 4g. Then �X1;Y1� �
Esÿ1; s, �X2;Y2� � Es; s � �X3;Y3� and �X4;Y4� � Es�1; s. Set

Y � f�X1;Y1�; �X2;Y2�; �X3;Y3�; �X4;Y4�g: �1�

For convenience, we introduce the following notation. If s is a permutation of
Y and x1; x2; . . . ; xn are distinct vertices of X with x1 A X4 and xn B X1, then
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Y�x1;x2; ...;xn;X1�
s � f�Ai;Bi� j 1U i U 4g such that

Bi � sÿ1�Yi� � fy A Y j s�y� A Yig; i A f1; 2; 3; 4g;
Aj � Xj U fxrjxr�1 A Xj; 1U rU nÿ 1gÿfxr�1 A Xj j 1U rU nÿ 1g; j A f2; 3; 4g;
A1 � X1 U fxngU fxrjxr�1 A X1; 1U rU nÿ 2g ÿ fxr�1 A X1 j 1U rU nÿ 2g:
Note that if s � �y1; y2; . . . ; ym�, then s�yi� � yi�1 for i A f1; 2; . . . ;mÿ 1g and
s�ym� � y1. In the following argument, we manage to choose s and
fx1; x2; . . . ; xng carefully such that Y�x1;x2; ...;xn;X1�

s � 4Es; s to obtain a contradiction.
Clearly, e�Y1;X2 UX3 UX4�U

P
y AY1

d�y�U 3s < 3s� 1 � jX2j � jX3j � jX4j.
This implies that d�u;Y1� � 0 for some u A X2 UX3 UX4. As G Q 4Es; s, we see that
u B X4. W.l.o.g., say u A X2. If d�x;Y2� � 0 for some x A X4, then Y�x;u;X1� � 4Es; s,
a contradiction. Therefore we have

d�x;Y1�V 1 and d�x;Y2�V 1 for all x A X4: �2�
We divide our proof into Part I and Part II according to whether there exists

v A X3 such that d�v;Y1� � 0 or d�v;Y2� � 0.

Part I. There exists v A X3 such that d�v;Y1� � 0 or d�v;Y2� � 0.
We may assume that d�v;Y1� � 0. For if d�v;Y2� � 0, we rede®ne �X1;Y1�

and �X2;Y2� by moving u to X1 and then change the subscripts accordingly. As in
(2), we have d�x;Y3�V 1 for all x A X4. As D�G�U 3, we obtain

d�x;Y1� � d�x;Y2� � d�x;Y3� � 1 for all x A X4: �3�
By (3), for each i A f1; 2; 3g, e�Yi;X4� � s� 1 and therefore Yi contains a ver-

tex adjacent to at least two vertices of X4. Let bi be such an arbitrary vertex in Yi

for each i A f1; 2; 3g. We shall show that N�b1;X4� � N�b2;X4� � N�b3;X4� and
then complete the proof in this part. To do so, we will prove a number of claims
in the following. Case 1 in the proof of (4) contains the basic idea. Most of the
other cases following Case 1 are dealt similarly. We ®rst claim

N�b2;X4�KN�b3;X4� or N�b3;X4�KN�b2;X4�: �4�
Proof of (4). Suppose (4) false. Let N�b2;X4�K fd1; d2g and N�b3;X4�K fx1; x2g
with d1 0 d2 and x1 0 x2 such that x1b2 B E and d1b3 B E. Then we have either

d�b2;X3� � 1 or d�b3;X2� � 1 for otherwise Y
�d1;u;X1�
�b2;b3� � 4Es; s. We divide the proof

into the following two cases according to the values of d�b2;X3� � d�b3;X2�.
Case 1: d�b2;X3� � d�b3;X2� � 2, i.e., d�b2;X3� � d�b3;X2� � 1.

In this case, d�b2;X1� � d�b3;X1� � 0. We also have either d�b1;X2� � 0 or
d�b1;X3� � 0. W.l.o.g., say d�b1;X3� � 0. Then we have

N�b1;X4� � N�b3;X4� � fx1; x2g �4:1�
for otherwise Y

�x 0;X1�
�b1;b3� � 4Es; s for any x 0 A N�b1;X4� ÿN�b3;X4�. Then

d�b1;X2� � 1 for otherwise Y
�d1;u;X1�
�b1;b2� � 4Es; s. We claim

d�y;Xi� � 1 for all y A Y3 ÿ fb3g and i A f1; 2; 4g and d�u;Y3� � 0 �4:2�
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Proof of (4.2). First, b3u B E for otherwise Y
�d1;u;X1�
�b1;b3;b2� � 4Es; s. Let y be an arbitrary

vertex in Y3 ÿ fb3g. If d�y;X1� � 0 then Y
�x1;X1�
�b1; y� � 4Es; s, and if d�y;X2� � 0 then

Y
�x1;X1�
�b1; y;b2� � 4Es; s, a contradiction. Hence d�y;X1�V 1 and d�y;X2�V 1. As D�G�

U 3, there exists d 0 A fd1; d2g with d 0y B E. Then d�y;X2 ÿ fug�V 1 for otherwise

Y
�d 0;u;X1�
�b1;y;b2� � 4Es; s, a contradiction. As y is arbitrary in Y3 ÿ fb3g and D�G�U 3,

this shows, together (3), that 3sV e�Y3;X1 UX2 ÿ fug� � e�Y3;X4�V �2sÿ 1��
�s� 1� � 3s, from which (4.2) follows.

Let c1 A Y1 with c1d1 A E. We claim

if d�c1;X2� > 0; d�y;Xi� � 1 for all y A Y1 ÿ fb1g and i A f2; 3; 4g �4:3�
and

if d�c1;X2� � 0; there exists c 0 A Y1 ÿ fb1; c1g such that d�y;Xi� � 1
for all y A Y1 ÿ fc1; c 0; b1g and i A f2; 3; 4g;N�c1;X4� � fd1; d2g and
1U d�c 0;X2�U 2: �4:4�

Proof of (4.3) and (4.4). Let y be an arbitrary vertex in Y1 ÿ fb1g. Then d�y;X3�
V 1 for otherwise Y

�x1; v;X1�
�y;b3� � 4Es; s. If d�y;X2� � 0 and there exists d 0 A fd1; d2g

with d 0 y B E, then Y
�d 0;u;X1�
�y;b2� � 4Es; s, a contradiction. Hence if d�y;X2� � 0, then

y � c1 and N�y;X4� � fd1; d2g. It follows that 3sV e�Y1;X2 UX3� � e�Y1;X4�
V 2�sÿ 1� � d�c1;X2� � �s� 1� � 3sÿ 1� d�c1;X2�. As D�G�U 3 and N�c1;X4�
VN�b1;X4� �q by (3), we see that (4.3) and (4.4) hold.

By (4.2±4.4), we have e�X2 ÿ fug;Y1 UY3�V 2�sÿ 1� � 1 with equality only
if d�c1;X2� � 0 and d�c 0;X2� � 1. As D�G�U 3, this implies that there exists
fw1;w2gJX2 ÿ fug with d�w1;Y1 UY2� � d�w2;Y1 UY2� � 3 such that if
d�c1;X2� � 1 or d�c 0;X2� � 2 then w1 0w2. Furthermore, we see that, if d�c1;X2�
� 1 then N�w1�VN�w2� �q, and if d�c1;X2� � 0 and d�c 0;X2� � 2 then N�w1�
VN�w2�J fc 0g. Note that if d�c1;X2� � 0 then N�c1;X4� � fd1; d2g. Then we can
choose a vertex y A N�fw1;w2g� such that y B N�fd1; d2g� and d�y;X2� � 1. Say

w.l.o.g. that y A N�w1�. If y A Y1 then Y
�d1;w1;d2;u;X1�
�y;b2� � 4Es; s, and if y A Y3 then

Y
�d1;w1;d2;u;X1�
�b1; y;b2� � 4Es; s, a contradiction.

Case 2: d�b2;X3� � d�b3;X2� � 1.

W.l.o.g., say d�b2;X3� � 1 and d�b3;X2� � 0. Then d�b2;X1� � 0. Similar to
the proofs of (4.2), (4.3) and (4.4), we can prove the following (4.5), (4.6) and (4.7).
We omit their proofs.

d�y;Xi� � 1 for all y A Y1 ÿ fb1g and i A f2; 3; 4g and d�b1;X3� � 1: �4:5�
Let a2 A Y2 with a2x1 A E. Then we have

if d�a2;X3� > 0; d�y;Xi� � 1 for all y A Y2 ÿ fb2g and i A f1; 3; 4g and
d�v;Y2� � 0 �4:6�

and
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if d�a2;X3� � 0; there exists a 0 A Y2 ÿ fa2; b2g such that d�y;Xi� � 1
for all y A Y2 ÿ fa2; a

0; b2g and i A f1; 3; 4g: Moreover;N�a2;X4� �
fx1; x2g; 1U d�a 0;X3�U 2; d�v;Y2 ÿ fa 0g� � 0; and if d�a 0;X3� � 1
then va 0 B E: �4:7�
By (4.5±4.7), e�X3 ÿ fvg;Y1 UY2�V 2�sÿ 1� � 1 with equality only if

d�a2;X3� � 0 and d�a 0;X3� � 1. As D�G�U 3, this implies that there exists
fw1;w2gJX3 ÿ fvg with d�w1;Y1 UY2� � d�w2;Y1 UY2� � 3 such that, if
d�a2;X3� � 1 or d�a 0;X3� � 2, then w1 0w2. Furthermore, we see that when
w1 0w2, either N�w1�VN�w2� �q or N�w1�VN�w2�J fa 0g. Clearly, we can
choose y A N�fw1;w2g� such that y B N�fx1; x2g� and d�y;X3� � 1. Say y A

N�w1�. If y A Y1 then Y
�x1;w1;x2; v;X1�
�y;b3;b2� � 4Es; s, and if y A Y2, then Y

�x1;w1;x2; v;X1�
�y;b3� �

4Es; s, a contradiction. This proves (4).
We claim

N�b2;X4� � N�b3;X4�: �5�
Proof of (5). Suppose (5) false. By (4), we may assume w.l.o.g. that N�b2;X4�K
N�b3;X4�. Say N�b2;X4� � fx1; x2; x3g and N�b3;X4� � fx1; x2g. Similar to the
proofs of (4.2), (4.3) and (4.4), we can show the following (5.1), (5.2) and (5.3).

d�b3;X2 ÿ fug� � 1; d�b1;X2� � 1 and N�b1;X4� � fx1; x2g; �5:1�
d�y;Xi� � 1 for all y A Y1 ÿ fb1g and i A f2; 3; 4g; �5:2�
d�y;Xj� � 1 for ally A Y3 ÿ fb3g and j A f1; 2; 4g and d�u;Y3� � 0: �5:3�
By (5.1±5.3), e�X2 ÿ fug;Y1 UY3�V 2�sÿ 1� � 2. As D�G�U 3, this implies

that there exists w A X2 ÿ fug with d�w;Y1 UY3� � 3. Clearly, there exists y A
N�w� such that y B N�fx1; x2g� and d�y;X2� � 1. As before, it is easy to see that
G K 4Es; s, a contradiction. This proves (5).

We claim

N�b2;X4�KN�b1;X4� �6�
Proof of (6). Suppose (6) false. Let N�b1;X4�K fd1; d2g and N�b2;X4�K fx1; x2g
such that d1 B N�b2;X4�, d1 0 d2 and x1 0 x2. Similar to the proofs of (4.2), (4.3)
and (4.4), we can show the following (6.1), (6.2) and (6.3).

d�b2;X1� � 1 and d�b3;X1� � 1; �6:1�
d�y;Xi� � 1 for all y A Y2 ÿ fb2g and i A f1; 3; 4g; �6:2�
d�y;Xj� � 1 for all y A Y3 ÿ fb3g and j A f1; 2; 4g: �6:3�

By (6.1±6.3), e�X1;Y2 UY3� � 2�sÿ 1� � 2. This implies that there exists
fw1;w2gJX1 such that d�w1;Y2 UY3� � d�w2;Y2 UY3� � 3 and w1 0w2.
Clearly, we can choose y A N�fw1;w2g� such that y B N�fd1; d2g�. W.l.o.g., say

y A Y2 VN�w1�. Then either Y
�d1;w1;d2;X1�
�b1; y� � 4Es; s with d�b1;X2� � 0 or Y

�d1;w1;d2;X1�
�b1;b3; y�� 4Es; s with d�b1;X3� � 0, a contradiction. So (6) holds.

Then we claim

N�b1;X4� � N�b2;X4� �7�
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Proof of (7). Suppose (7) false. By (6), we may choose x A N�b2;X4� such that
xb1 B E. Moreover, we have d�b2;X4� � d�b3;X4� � 3. We have d�b1;X2 UX3�U
1. W.l.o.g., say d�b1;X2� � 0. Then Y

�x;u;X1�
�b1;b2� � 4Es; s, a contradiction. So (7) holds.

We are now in the position to complete the proof of the theorem in Part I. The
proof of (5) and (7) shows, together with (3), that for each i A f1; 2; 3g, bi is the
unique vertex in Yi such that d�bi;X4�V 2. Hence we have

d�y;X4�U 1 for all y A Y1 UY2 UY3 ÿ fb1; b2; b3g: �8�
We suppose ®rst that d�b1;X4� � 3. Let N�b1;X4� � fx1; x2; x3g. By (3) and

(8), for each i A f1; 2; 3g, there exists ai A Yi ÿ fbig and a bijection ti : X4ÿ
fx1; x2; x3g ! Yi ÿ fai; big such that xti�x� A E for all x A X4 ÿ fx1; x2; x3g and
d�ai;X4� � 0. Since d�bi;X1 UX2 UX3� � 0 for all i A f1; 2; 3g, we can readily
show, as before, that d�y;Xj�V 1 for all y A Yi ÿ fbig and fi; jgJ f1; 2; 3g with
i 0 j. Consequently, as D�G�U 3, d�y;Xj� � 1 for all y A Yi ÿ fai; big and fi; jg
J f1; 2; 3g with i 0 j. Clearly, e�X1;Y2 UY3 ÿ fb2; b3g�V 2�sÿ 1�. Let x be ar-
bitrary in X1. If d�x;Y2 UY3� � 3, we choose y A N�x� ÿ fa2; a3g. Then we may

assume w.l.o.g. that y A Y2 and see that Y
�x1;x;x2;X1�
�b1; y� � 4Es; s, a contradiction.

Hence d�x;Y2 UY3�U 2. This argument shows that e�X1;Y2 UY3�U 2�sÿ 1�,
and consequently, d�z;Y2 UY3 ÿ fb2; b3g� � 2 for all z A X1 and d�a2;X1� � 1 �
d�a3;X1�. If d�x;Y4� � 0, then we see that G K 4Es; s as we can use any y A N�x�
in the above argument. Hence d�x;Y4� � 1. Assume d�x;Y3� � 0. Let y A
Y2 ÿ fb2g with y0 a2 and xy A E. Then either Y

�x1;x; v;X1�
�b1; y� � 4Es; s with vy B E, or

Y
�x1; v;X1�
�y;b3� � 4Es; s with vy A E, a contradiction. Hence d�x;Y3�V 1. Similarly,

d�x;Y2�V 1. Thus d�x;Yi� � 1 for all i A f2; 3; 4g as D�G�U 3. Then Y
�x1;x;u;X1�
�b1; y� �

4Es; s where y A N�x;Y2�.
Next, we suppose d�b1;X4� � 2. Let N�b1;X4� � fx1; x2g. As before, for each

i A f1; 2; 3g, there exists a bijection ti : X4 ! Yi ÿ fbig such that xti�x� A E for all
x A X4 ÿ fx1; x2g. We claim

d�y;Xj� � 1 for all y A Yi ÿ fbig and fi; jgJ f1; 2; 3g with i 0 j: �9�
Proof of (9). Suppose (9) false, i.e., there exists i A f1; 2; 3g and yi A Yi ÿ fbig
such that d�yi;Xj� � 0 for some j A f1; 2; 3g with j 0 i. Let x0 A X4 ÿ fx1; x2g be
such that ti�x0� � yi. Say N�x0;Yr� � fyrg for r A f1; 2; 3g. We divide the proof
of (9) into the following Case 3, Case 4 and Case 5.

Case 3: i � 1, i.e., d�y1;Xj� � 0 for some j A f2; 3g.
W.l.o.g., say d�y1;X2� � 0. As Y

�x0;X1�
�y1;b2�0 4Es; s, we see that d�b2;X1� � 1 and

d�b2;X3� � 0. Then we see that d�b3;X1� � 1 and d�b3;X2� � 0 as Y
�x0;X1�
�y1;b2;b3�0

4Es; s. Together with d�b1;X2 UX3�U 1, it is easy to see that �X2 UX3;Y2 UY3 U
fb1g ÿ fyg�K 2Es; s for any y A Y2 UY3 ÿ fb2; b3g. As �X4 ÿ fx1g;Y4� � Es; s, we
obtain �X1 U fx1g;Y1 U fyg ÿ fb1g�0Es; s for any y A Y2 UY3 ÿ fb2; b3g. This
implies that d�y;X1�V 1 for all y A Y2 UY3 ÿ fb2; b3g.

If d�y;X3� � 0 for some y A Y2 ÿ fb2g, then Y
�x1; v;X1�
�y;b3� � 4Es; s, and if d�z;X2�

� 0 for some z A Y3 ÿ fb3g, then Y
�x1;u;X1�
�b2; z� � 4Es; s, a contradiction. Hence
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d�y;X3�V 1 for all y A Y2 ÿ fb2g and d�z;X2�V 1 for all z A Y3 ÿ fb3g. As D�G�
U 3, this shows, together with (3), that, for each i A f2; 3g and j A f1; 2; 3; 4gÿfig,
d�y;Xj� � 1 for all y A Yi ÿ fbig. Hence e�X1;Y2 UY3� � 2�sÿ 1� � 2. This
implies that there exists w A X1 such that d�w;Y2 UY3� � 3. We choose y A N�w�
such that y B fb2; b3g. W.l.o.g., say y A Y2. Then either Y

�x1;w;x2;X1�
�b1; y� � 4Es; s with

d�b1;X2� � 0, or Y
�x1;w;x2;X1�
�b1;b3; y� � 4Es; s, a contradiction.

Note that as D�G�U 3, the argument of Case 3 shows (9) for the case i � 1.

Case 4: i A f2; 3g and j � 1, i.e., d�y2;X1� � 0 or d�y3;X1� � 0.

W.l.o.g., say d�y2;X1� � 0. As Y
�x0;u;X1�
�b1; y2� 0 4Es; s, we have d�b1;X2� � 1 and

d�b1;X3� � 0. Then d�b3;X2 ÿ fug� � 1 and d�b3;X1� � 0 as Y
�x0;u;X1�
�b1;b3; y2�0 4Es; s. If

d�z;X2 ÿ fug� � 0 for some z A Y3 ÿ fb3g, then either Y
�x1;u;X1�
�b2; z� � 4Es; s with

d�b2;X3� � 0, or Y
�x1;u;X1�
�b1; z;b2� � 4Es; s with d�b2;X1� � 0, a contradiction. If d�z;X1�

� 0 for some z A Y3 ÿ fb3g, then Y
�x1;X1�
�b1; z� � 4Es; s, a contradiction. Hence d�z;X1�

V 1 and d�z;X2 ÿ fug�V 1 for all z A Y3 ÿ fb3g. Together with Case 3 and as
D�G�U 3, this shows that d�y;Xj� � 1 for all y A Yi ÿ fbig, i A f1; 3g and j A
f1; 2; 3; 4g ÿ fig. Furthermore d�u;Y1 UY3� � 0. Thus e�X2 ÿ fug;Y1 UY3� �
2�sÿ 1� � 2. This implies that there exists w A X2 ÿ fug with d�w;Y1 UY3� � 3.
As before, we readily see that G K 4Es; s, a contradiction.

Note that the argument of Case 4 shows that d�y;X1�V 1 for all y A Y2 U
Y3 ÿ fb2; b3g.
Case 5: fi; jg � f2; 3g, i.e., d�yi;Xj� � 0.

W.l.o.g., say d�y2;X3� � 0. Then d�b3;X2� � 1 and d�b3;X1� � 0 as Y
�x1; v;X1�
�y2;b3�

0 4Es; s. Then we see that d�b1;X2� � 1 and d�b1;X3� � 0 as Y
�x1; v;X1�
�b1; y2;b3�0 4Es; s.

If d�z;X2 ÿ fug� � 0 for some z A Y3 ÿ fb3g, then either Y
�x1;u;X1�
�b2; z� � 4Es; s with

d�b2;X3� � 0 or Y
�x1;u;X1�
�b1; z;b2� � 4Es; s, a contradiction. Hence d�z;X2 ÿ fug�V 1

for all z A Y3 ÿ fb3g. Together with Case 3 and Case 4, this shows that d�y;Xj�
� 1 for all y A Yi ÿ fbig, i A f1; 3g and j A f1; 2; 3; 4g ÿ fig. Furthermore
d�u;Y1 UY3 ÿ fb3g� � 0. Thus e�X2 ÿ fug;Y1 UY3�V 2�sÿ 1� � 1. This implies
that there exists w A X2 ÿ fug with d�w;Y1 UY3� � 3. As before, we readily see
that G K 4Es; s, a contradiction. This proves (9).

By (9), we have e�X1;Y2 UY3� � 2�sÿ 1� � e�fb2; b3g;X1�. Let yz be arbitrary
in E with y A Y2 UY3 ÿ fb2; b3g and z A X1. Say y A Yi ÿ fbig. By (9), d�y;X1� �
1. We claim

d�z;Yi�V 2 and d�z;Y4�V 1: �10�
Proof of (10). Suppose (10) false. W.l.o.g., say i � 2. Then either d�z;Y2� � 1 or
d�z;Y4� � 0. Assume ®rst d�z;Y4� � 0. Then d�b1;X2� � 1 and d�b1;X3� � 0
for otherwise Y

�x1; z;x2;X1�
�b1; y� � 4Es; s. Let x A X4 ÿ fx1; x2g with t2�x� � y. Then

d�b3;X2 ÿ fug� � 1 and d�b3;X1� � 0 for otherwise Y
�x1; z;x;u;X1�
�b1;b3; y� � 4Es; s. If

d�y 0;X2 ÿ fug� � 0 for some y 0 A Y3 ÿ fb3g, then either Y
�x1;u;X1�
�b2; y 0� � 4Es; s with

d�b2;X3� � 0, or Y
�x1;u;X1�
�b1; y 0;b2� � 4Es; s with d�b2;X1� � 0, a contradiction. Hence

d�y;X2 ÿ fug�V 1 for all y A Y3. Together with (9), this shows that e�X2 ÿ fug;
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Y1 UY3� � 2�sÿ 1� � 2. This implies that there exists w A X2 ÿ fug such that
d�w;Y1 UY2� � 3. As before, we can readily see that G K 4Es; s, a contradic-
tion. Hence d�z;Y4�V 1. Next, assume d�z;Y2� � 1. Then d�b1;X2� � 1 and

d�b1;X3� � 0 for otherwise Y
�x1; z;u;X1�
�b1; y� � 4Es; s. Then for each y 0 A Y3 ÿ fb3g,

d�y 0;X2 ÿ fug�V 1 as Y
�x1; z;u;X1�
�b1;y 0;y� Q 4Es; s unless y 0z A E; but when y 0z A E, we

have d�z;Y3� � 1 as D�G�U 3, and consequently, Y
�x1; z; v;X1�
�b1;y 0� � 4Es; s, a contra-

diction. Then by (9), e�X2 ÿ fug;Y1 UY3 ÿ fb3g� � 2�sÿ 1� � 1. This implies that
there exists w A X2 ÿ fug such that d�w;Y1 UY3� � 3. As before, we can readily
see that G J 4Es; s, a contradiction. So (10) holds.

As D�G�U 3 and by (9) and (10), we see that d�z;Y4� � 1 and either d�z;Y2�
� 2 or d�z;Y3� � 2 for all z A X1. Moreover, d�b2;X1� � d�b3;X1� � 0. Let z0 y0 A
E with z0 A X1 and y0 A Y2 UY3. W.l.o.g., say y0 A Y2. Then we have d�z0;Y4� �
1 and d�z0;Y2 ÿ fb2g� � 2. Let t A Y4 with z0t A E. Then d�t;X1�V 2 for other-
wise Y

�x1; z0;x2;X1�
�b1; t� � 4Es; s. Therefore d�t;X2� � 0 or d�t;X3� � 0 as D�G�U 3.

First, assume d�t;X3� � 0. Then d�b1;X2� � 1 and d�b1;X3� � 0 for other-

wise Y
�x1; z0;x2;X1�
�b1; y0��b3; t� � 4Es; s. Then d�b3;X2� � 1 and d�b3;X1� � 0 for otherwise

Y
�x1; z0;x2;X1�
�b1; t;b3;y0� � 4Es; s. Then for each y A Y3 ÿ fb3g, d�y;X2 ÿ fug�V 1 as Y

�x1;u;X1�
�b1;y;b2�

0 4Es; s. By (9), this shows that e�X2 ÿ fug;Y1 UY3�V 2�sÿ 1� � 1. This implies
that there exists w A X2 ÿ fug such that d�w;Y1 UY3� � 3. As before, we can
readily see that G K 4Es; s, a contradiction. Hence d�t;X3� � 1 and d�t;X2� � 0.
Then Y

�x1; z0;x2;X1�
�b1; t; y0� � 4Es; s. This completes Part I.

Part II. For every x A X3, d�x;Y1�V 1 and d�x;Y2�V 1.

We need the following structure lemma. To state the lemma, we construct the
following graphs ®rst.

For each odd integer sV 3, Gs is a bipartite graph of order 4s with a bipartition
�A;B� such that jAj � jBj � 2s and d�x� � 1 for all x A A and d�y� � 0 or d�y� �
2 for all y A B.

For each integer sV 4 with s1 1 �mod 3�, Hs is a bipartite graph of order 4s

with a bipartition �A;B� and a ®xed vertex y0 A B such that jAj � jBj � 2s, d�x� �
1 for all x A A, d�y0� � 2, and d�y� � 0 or d�y� � 3 for all y A Bÿ fy0g.

For each integer sV 2 with s1 2 �mod 3�, Is is a bipartite graph of order 4s
with a bipartition �A;B� and two ®xed vertices x0 A A and y0 A B such that
d�x0;Bÿ fy0g� � 0, d�y0;Aÿ fx0g� � 0, d�x� � 1 for all x A Aÿ fx0g, and d�y�
� 0 or d�y� � 3 for all y A Bÿ fy0g.

Lemma. Let H � �X ;Y ; E� be a bipartite graph of order 4s with jX j � jY j � 2s

and sV 2. Suppose that d�x�U 1 for all x A X and d�y�U 3 for all y A Y . Then

H K 2Es; s unless H is isomorphic to one of Gs, Hs and Is.

Proof of the Lemma. Suppose H Q 2Es; s. We shall prove that H is isomorphic to
one of Gs;Hs and Is. Enumerate Y � fu1; u2; . . . ; u2sg such that

3V d�u1�V d�u2�V � � � V d�ur� > 0 and d�ur�1� � d�ur�2� � � � � � d�u2s� � 0:

�11�
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If
Pr

i�1 d�ui�U s, let N�fu1; u2; . . . ; urg�JX1 JX with jX1j � s and Y1 �
fur�1; . . . ; ur�sg. Then H K 2Es; s � f�X1;Y1�; �X ÿ X1;Y ÿ Y1�g, a contradiction.
Therefore we may let t be the least integer in f1; 2; . . . ; rg such that

P t
i�1 d�ui� > s.

Similarly, it is easy to see that H K 2Es; s if
P tÿ1

i�1 d�ui� � s. Therefore we
have

P tÿ1
i�1 d�ui�U sÿ 1. Hence d�u1�V d�u2�V � � � V d�ut�V 2. Moreover, as

d�ut�U 3, we see that
P tÿ1

i�1 d�ui� � sÿ 1 or
P tÿ1

i�1 d�ui� � sÿ 2. In the latter case,
d�ut� � 3. We divide the proof into the following two cases.

Case a:
P tÿ1

i�1 d�ui� � sÿ 1.
In this case, we claim

d�x� � 1 for all x A X ; and d�y� � 0 or d�y�V 2 for all y A Y : �12�
Proof of (12). Suppose that d�u� � 1 for some u A Y ÿ fu1; u2; . . . ; utg. Let X1 �
N�fu1; u2; . . . ; utÿ1; ug� and X2 � X ÿ X1. Clearly, jX1j � jX2j � s. As d�x�U 1
for all x A X and by (11), we see that N�X2�J fut; ut�1; . . . ; ut�sÿ1g and
d�ut�s� � 0. Let Y1 � fut; ut�1; . . . ; ut�sg ÿ fug and Y2 � Y ÿ Y1. Then H
K 2Es; s � f�X1;Y1�; �X2;Y2�g, a contradiction. Similarly, we can show that H K
2Es; s if d�x� � 0 for some x A X as we can take X1 � N�fu1; u2; . . . ; utÿ1g�U fxg
in the ®rst place. So (12) holds.

Suppose d�utÿ1� � 3. Then d�ui� � 3 for all i A f1; 2; . . . ; tÿ 1g, s1 1 �mod 3�
and 2s1 2 �mod 3�. Together with (12), this implies that there exists y0 A Y such
that d�y0� � 2. If there exists another vertex y 00 A Y ÿ fy0g with d�y 00� � 2,
let X1 � N�fu1; u2; . . . ; utÿ2; y0; y 00g�, X2 � X ÿ X1, Y1 � futÿ1; ut; . . . ; ut�sgÿ
fy0; y 00g and Y2 � Y ÿ Y1. Then by (11), we see that N�X2�JY1 and thus
f�X1;Y1�; �X2;Y2�g � 2Es; s, a contradiction. Hence d�y� � 0 or d�y� � 3 for all
y A Y ÿ fy0g, and consequently, H GHs.

Next, assume d�utÿ1� � 2, By (11) and (12), d�ut� � d�ut�1� � � � � � d�ur� � 2.
As jN�fu1; u2; . . . ; utg�j � s� 1 < 2s � jX j and by (12), we see r > t. If d�u1� � 3,
let X1 � N�fu2; u3; . . . ; ut�1g�, X2 � X ÿ X1, Y1 � fu1; ut�2; . . . ; ut�sg and Y2 �
Y ÿ Y1. Then we see that f�X1;Y1�; �X2;Y2�g � 2Es; s, a contradiction. Hence
d�u1� � 2. This shows d�y� � 0 or d�y� � 2 for all y A Y and sÿ 1 �P tÿ1

i�1 d�ui�
1 0 �mod 2�. Hence H GGs.

Case b:
P tÿ1

i�1 d�ui� � sÿ 2.
In this case, d�ut� � 3. By (11), d�ui� � 3 for all i A f1; 2; . . . ; tg and therefore

s1 2 �mod 3� and 2s1 1 �mod 3�. As before, it is easy to see that if there exists
y0 A Y with d�y0� � 2, or there exist two distinct vertices y0; y 00 A Y with d�y0� �
d�y 00� � 1, or there exist two distinct vertices x0; x

0
0 A X with d�x0� � d�x 00� � 0,

then H K 2Es; s, a contradiction. Therefore there exist x0 A X and y0 A Y such that
d�x� � 1 for all x A X ÿ fx0g, and d�y� � 0 or d�y� � 3 for all y A Y ÿ fy0g.
Furthermore, d�x0;Y ÿ fy0g� � 0 and d�y0;X ÿ fx0g� � 0. Thus H G Is. This
proves the lemma. r

We now turn back to the proof of the theorem. As D�G�U 3 and by the as-
sumption of Part II and (2), we have

d�x;Y3 UY4�U 1 for all x A X3 UX4: �13�
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Moreover, for each i A f1; 2g we have e�X3 UX4;Yi�V 2s� 1 and therefore
there exists bi A Yi such that d�bi;X3 UX4� � 3 and d�bi;X1 UX2� � 0. We divide
the proof into the following two cases.

Case 1: There exists w A X3 UX4 such that H � �X3 UX4 ÿ fwg;Y3 UY4�Q 2Es; s.
By the lemma, H GGs;Hs or Is. We enumerate Y3 UY4 � fy0; y1; . . . ; yt;

yt�1; . . . ; y2sÿ1g with d�yt�1;H� � � � � � d�y2sÿ1;H� � 0 such that

(i) when s1 1 �mod 2� and H GGs, t � sÿ 1 and d�yi;H� � 2 for all i A
f0; 1; . . . ; tg;

(ii) when s1 1 �mod 3� and H GHs, t � �2sÿ 2�=3, d�y0;H� � 2 and
d�yi;H� � 3 for all i A f1; 2; . . . ; tg;

(iii) when s1 2 �mod 3� and H G Is, t � �2sÿ 1�=3, d�y0;H�U 1 and
d�yi;H� � 3 for all i A f1; 2; . . . ; tg.
Moreover, when s1 2 �mod 3� and H G Is, let x0 A X3 UX4 ÿ fwg be such that
d�x0;H ÿ y0� � 0 and d�y0;H ÿ x0� � 0. We may also assume that when the
neighbor of w in N�w;H� (if any) is of degree 2 in H, then w is adjacent to y0. This
might happen when H GGs or Hs. We claim

s1 1 �mod 3�; H GHs and wy0 A E: �14�
Proof of (14). Suppose (14) false. Then wy0 B E if s1 1 �mod 3� and H GHs.
Choose an arbitrary vertex z0 from X3 UX4 ÿ fwg such that if H GGs with
s1 1 �mod 2� and wy0 A E then z0 y0 B E, and if H G Is with s1 2 �mod 3� then
z0 0 x0. Then d�z0;H� � d�z0;Y1� � d�z0;Y2� � 1. Note that we have at least
four di¨erent choices for z0 if H l I2 and three di¨erent choices for z0 if H G I2. It
is easy to see that H ÿ z0 � w is isomorphic to none of Gs, Hs and Is. By the
lemma, H ÿ z0 � wK 2Es; s � f�X 03;Y 03�; �X 04;Y 04�g. Therefore �X1 UX2 U fz0g;
Y1 UY2�Q 2Es; s.

It is clear that there exists y 0 A Y 03 UY 04 such that d�y 0;X 03 UX 04�V 2.
Note that d�u;Y1 UY2� � 0. If z0 B N�b1�, then z0 B N�b2� for otherwise

f�X1 U fug;Y1 U fb2g ÿ fb1g�; �X2 U fz0g ÿ fug;Y2 U fb1g ÿ fb2g�g � 2Es; s.
Similarly, we see that if z0 B N�b2� then z0 B N�b1�. Hence if we must have
z0 A N�fb1; b2g� for any appropriate choice of z0, then H G I2 and N�b1� �
N�b2� � N�y1�. In this situation, let X1 � fc1g, X2 � fu; c2g, N�y1� � fd1; d2; d3g,
Y1 � fa1; b1g and Y2 � fa2; b2g. We may assume N�w;Y3 UY4�J fy0; y2g.
Then G K 4E2;2 � f�fd1; d2g; fy0; y2g�; �fd3; ug; fa1; a2g�; �fc1; c2g; fb1; b2g�;
�fx0;wg; fy1; y3g�g, a contradiction.

Therefore z0 B N�fb1; b2g�. Let N�z0;Y1 UY2� � fz1; z2g with z1 A Y1 and z2 A
Y2. If d�z1;X2� � 0, then f�X1 U fz0g;Y1 U fb2g ÿ fz1g�, �X2;Y2 U fz1g ÿ fb2g�g
� 2Es; s, a contradiction. It follows that d�z1;X2�V 1 and d�z1;X 03 UX 04�U 1.
W.l.o.g., say d�z1;X 04� � 0. Let X 01 � X1 U fz0g and Y 01 � Y1 ÿ fz1g. Clearly,
�X 01 ;Y 01� � Es; sÿ1. Let Y 0 � f�X 01;Y 01�; �X2;Y2�; �X 03;Y 03�; �X 04;Y 04 U fz1g�g. As b2z0
B E, we have d�b2;X

0
1� � d�b2;X1� � 0. Since d�y 0;X 03 UX 04�V 2, we have either

d�y 0;X 01� � 0 or d�y 0;X2� � 0. As in the proof of (2), we must have y 0 A Y 03. Then
we apply the proof of Part I to Y 0 to obtain G K 4Es; s, a contradiction. This
proves (14).

362 H. Wang



Let H 0 � H � w. By (14), d�y0;H
0� � 3. Clearly, tV 2 as sV 4. We may as-

sume w.l.o.g. that N�b1� � fd1; d2; d3gJN�fy0; y1; y2g� such that d�b1;N�y0��
U d�b1;N�y1��U d�b1;N�y2��. Let i be the smallest integer in f0; 1; 2g such that
N�b1�VN�yi� 6�q. W.l.o.g., say d1 A N�b1�VN�yi�. Then d�d1;Y1� � d�d1;Y2�
� 1. Let fw1;w2;w3;w4;w5gJY3 UY4 be a set of ®ve isolated vertices of H 0. It is
easy to see that R � �N�fy0; y1; y2g� ÿ fd1g; fy0; yj; b1;w1;w2;w3;w4;w5g�K
2E4;4 where yj � y2 if d1 A N�y2� and yj � y1 if d1 B N�y2�. Clearly, S � H 0 ÿ
�V�R�U fd1g� is isomorphic to none of Gsÿ4;Hsÿ4 and Isÿ4 as d�y;S� � 0 or
d�y� � 3 for all y A V�S�V �Y3 UY4� and d�x;S� � 1 for all x A V�S�V �X3 UX4�.
By the lemma, S K 2Esÿ4; sÿ4. Hence RUS K 2Es; s. Let i A f0; 1; 2g ÿ f0; jg. As
d�yi;X1 UX2� � 0, it follows that f�X1 U fd1g;Y1 U fyig ÿ fb1g�; �X2;Y2�g �
2Es; s. Therefore G K 4Es; s.

Case 2: �X3 UX4 ÿ fxg;Y3 UY4�K 2Es; s for all x A X3 UX4.
Then we have

�X1 UX2 U fxg;Y1 UY2�Q 2Es; s for all x A X3 UX4: �15�

We claim

For each i A f1; 2g if y A Yi and d�y;X3 UX4� � 3
then d�x;Yi� � 2 for every x A N�y�: �16�

Proof of (16). Suppose (16) false. We may assume w.l.o.g. that for some i A f1; 2g,
there exists x A N�bi� such that d�x;Yi� � 1. Let fi; jg � f1; 2g and N�x;Yj� �
fx1; x2g (maybe x1 � x2). W.l.o.g., we may assume i � 2 as d�u;Y1 UY2� � 0.
Then d�y;X2�V 1 for all y A Y1 ÿ fx1; x2g for otherwise f�X1 U fug;Y1 U
fb2g ÿ fyg�; �X2 U fxg ÿ fug;Y2 U fyg ÿ fb2g�g � 2Es; s for any y A Y1 ÿ fx1; x2g
with d�y;X2� � 0. It follows that 3sV e�Y1;X2 U fxg� � e�Y1;X3 UX4 ÿ fxg�V
s� 2s � 3s. Then we see that d�y� � 3 for all y A Y1, d�x1;X2� � d�x2;X2� � 0,
d�z;Y1� � 1 for all z A X3 UX4 ÿ fxg and d�y;X2� � 1 for all y A Y1 ÿ fx1; x2g.
Hence b1 A fx1; x2g. If there exists x 0 A N�fx1; x2g� such that x 0b2 B E, then x 00 x
and f�X1 U fx 0g;Y1 U fb2g ÿ fxrg�; �X2;Y2 U fxrg ÿ fb2g�g � 2Es; s where xr A
fx1; x2g with xrx

0 A E, a contradiction. Hence N�b2�KN�fx1; x2g�. It follows
that x1 � x2 � b1 and N�b2� � N�b1�. This also says that d�x;Y1� � 1. Then
similarly, we can show that d�y;X1� � 1 for all y A Y2 ÿ fb2g and d�z;Y2� � 1
and z A X3 UX4. Let z be an arbitrary vertex in X3 UX4 ÿN�b2�. Let y1 A Y1 and
y2 A Y2 be such that N�z;Y1 UY2� � fy1; y2g. Let z1 A X1 be such that z1 y2 A E.
If d�z1;Y2� � 1, then f�X1 U fu; xg ÿ fz1g;Y1 U fy2g ÿ fb1g�; �X2 U fz1g ÿ fug;
Y2 U fb1g ÿ fy2g�g � 2Es; s, a contradiction. Hence d�z1;Y2 ÿ fb2g�V 2 and
therefore d�z1;Y3 UY4�U 1. As �X3 UX4 ÿ fxg;Y3 UY4�K 2Es; s, we see that
there are partitions X3 UX4 U fz1g ÿ fxg � X 03 UX 04 and Y3 UY4 � Y 03 UY 04 such
that �X 03;Y 03� � Es; s and �X 04;Y 04� � Es�1; s. Let X 01 � X1 U fxg ÿ fz1g, Y 01 � Y1 U
fy2g ÿ fb1g, X 02 � X2 and Y 02 � Y2 U fb1g ÿ fy2g. Then �X 01;Y 01� � Esÿ1; s and
�X 02 ;Y 02� � Es; s. Furthermore d�u;Y 01� � 0 and d�x 0;Y 01� � 0 where x 0 A N�b1�ÿ
fxg. Then we apply the proof of Part I to Y 0 � f�X 0i ;Y 0i �j1U i U 4g to obtain
G K 4Es; s, a contradiction. This proves (16).
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By (16) and as D�G�U 3, we have N�y 0�VN�y 00� �q for any y 0 A Y1 and
y 00 A Y2 with d�y 0;X3 UX4� � d�y 00;X3 UX4� � 3. It follows that N�y 0�VN�y 00�
�q for any two distinct vertices y 0; y 00 A Y2 with d�y 0;X3 UX4� � d�y 00;X3 UX4�
� 3 for otherwise we apply the proof of (16) to Y�b1; y 0� to show that
d�z;Y1 U fy 0g ÿ fb1g� � 2 and d�z;Y2 U fb1g ÿ fy 0g� � 2 and so d�z�V 4 for
each z A N�y 0�VN�y 00�, a contradiction. Let y1; . . . ; yt be a list of vertices of Y2

with d�yi;X3 UX4� � 3 for all i A f1; 2; . . . ; tg. Then tV 1, d�z;Y2� � 2 for all
z A N�yi� and i A f1; 2; . . . ; tg, and N�yi�VN�yj� �q for 1U i < j U t. Hence
e�Y2;X3 UX4� � e�Y2;X3 UX4 ÿN�fy1; . . . ; ytg�� � e�Y2;N�fy1; . . . ; ytg��V
�2s� 1ÿ 3t� � 6t � 2s� 3t� 1. As D�G�U 3, this implies that Y2 contains at
least 3t� 1 vertices, each of which is adjacent to three vertices of X3 UX4. Hence
tV 3t� 1, a contradiction. This completes Part II.

By Part I and Part II, the theorem holds.
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