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Abstract. Let Y = (X, {R;},.,.p) denote a symmetric association scheme with D > 3, and
assume Y is not an ordinary cycle. Suppose Y is bipartite P-polynomial with respect to the
given ordering Ay, A1,...,Ap of the associate matrices, and Q-polynomial with respect to
the ordering Ey, E),...,Ep of the primitive idempotents. Then the eigenvalues and dual
eigenvalues satisfy exactly one of (i)—(iv).

(i)
Op>00>0,>05>--->0p_3>0p_>0p_ >0D,
0:=0; (0<i<D).
(if) D is even, and
00>0D—1 >02>01),3>‘“>03 >01)72>0| >01),
0 =0, (0<i<D).
(iii) 65 > 0o, and
Op >0, >0,>03>--->0p_3>0p_r>0p_ >HD7
Oy >0 >0;>0;>--->05 5>0,,>0, >0
(iv) 0y > 6, D is odd, and

00>9D71>62>0D73>"'>03>0D72>91>0D7
0y >0 >05>0p ,>--->0,_,>0; >0, >0

1. Introduction

Let Y = (X,{Ri}y-;<p) be a P- and Q-polynomial association scheme, with

eigenvalues 6y, 0, ..., 0p and dual eigenvalues 6,0y, . ..,0,. We want to find the
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permutations g,7 of 0,1, ..., D for which

00'0>001 >002>"'>00D7

* * * *
00 >0,>0,>--->0,

In this paper we focus on the case where Y is bipartite, and prove the following
theorem.

1.1 Theorem. Let ¥ = (X, {R;},.,.p) denote a symmetric association scheme with
D > 3, and assume Y is not an ordinary cycle. Suppose Y is bipartite P-polynomial
with respect to the given ordering Ay, Ay, ..., Ap of the associate matrices, and Q-
polynomial with respect to the ordering Ey, E1, ..., Ep of the primitive idempotents.
Then the eigenvalues and dual eigenvalues satisfy exactly one of (1)—(iv).

(1)
00>61>02>93>"'>0D—3>0D—2>6D—1>0D,

0;=0; (0<i<D).

(i1) D is even, and
00>9D71>02>9D73>"'>93>9D—2>01>9D7

0;=0; (0<i<D,).

(iii) 05 > 0o, and
60>01>02>63>"'>HD—3>0D2>0D1>0D7
0y >07 >0,>0;>--->0,5>0,,>0, >0

(iv) 0y > 0o, D is odd, and

Oy >0p_1>0,>0p3>--->0;>0p_ >0 >0p,
Oy >0,>05>0, ,>--->0, ,>0;>0,,>0.

2. Preliminaries

A D-class symmetric association scheme is a pair ¥ = (X, {Ri}y;~p), Where X is
a non-empty finite set, and where:

(i) {Ri}g<;<p is a partition of X x X;

(ii) Ro = {xx|x e X};

(iii) RE=R;for0<i < D where R} = {yx|xy € R;};

(iv) there exist integers p ! such that for all x,y € X with xy € R;, the number of
z € X with xz € R; andzyeR 1sp

The constants p,-j are called the intersection numbers of Y. By a scheme, we
mean a symmetric association scheme.
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The Bose-Mesner Algebra M

Let Y = (X,{Ri}¢<;<p) denote a scheme, and let Maty(IR) denote the algebra
of matrices over IR with rows and columns indexed by X. For each integer i
(0 <i < D), let A; denote the matrix in Maty (IR) with x, y entry

1 if xye R,

A). = x,y€eX). 1
(Ai)sy { 0 otherwise (oy e X) "
From (1) we obtain:

Ao =1, (2)
Al = 4 (0 <i<D), 3)

D
44;=3" phdy (0<ij<D), )

h=0
Ao+ A+ +Ap =1, (5)

where I is the identity matrix, and J is the all 1’s matrix. We refer to 4; as the i”"
associate matrix for Y (0 <i < D).

By (2)-(4), Ao, ..., Ap is a basis for a subalgebra M of Maty(IR). M is known
as the Bose-Mesner algebra for Y.

By [2, p. 45], the algebra M has a second basis Ey, ..., Ep such that

Ey=|x|7, (6)
E'=E (0<i<D), (7

EE; =0,;E; (0<i,j<D), (8)
Ey+E+--+Ep=1. )

We refer to E; as the i primitive idempotent for Y (0 <i < D).
By the Krein parameters of Y, we mean the real scalars {qf}|0 <h,i,j< D}
satisfying

D
EoE=|X|""> qiE, (0<ij<D) (10)
h=0

where o denotes the entry-wise matrix product [1, p. 64]. In [2, p. 49], it is shown
that

gh >0 (0<hij<D). (11)

The Dual Bose-Mesner Algebra M~
Let Y = (X,{Ri}y<;<p) denote a scheme, and fix any x € X. For each integer i
(0<i<D), let Ef = E}(x) denote the diagonal matrix in Maty(IR) with y,y
entry
X 1 if xyeR;,
E)y =y BTER e, (12)

0 otherwise
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From (12) we obtain

E'=E  (0<i<D), (13)
E/Ef =6;E; (0<ij<D), (14)
Eg+Ej+ - +Ep=1 (15)

We refer to E; as the i’ dual idempotent for Y with respect to x (0 <i < D).

By (14)—(15), Ej, ..., Ej}, is a basis for a subalgebra M* = M*(x) of Maty(R).
M* is known as the dual Bose-Mesner algebra for Y with respect to x.

For each integer i (0 < i< D), let A7 = A7 (x) denote the diagonal matrix in
Maty (IR) with y, y entry

(47),, = [XI(E),, (yeX). (16)

We note that A4, ..., A}, form a second basis for M* [8, p. 379].
By (16), we obtain

A =1, (17)
AT = A (0 <i<D), (18)
D
ATd; =Y qha; (0<ij<D), (19)
h=0
Ay + A+ + Ap = |X|E;. (20)

We refer to A4 as the i dual associate matrix of 'Y with respect to x (0 <i < D).

Eigenvalues and Dual Eigenvalues
Let Y = (X,{Ri}y-;<p) denote a scheme. By [8, pp. 377, 379], there exist real
scalars p;(7), gi(j) (0 < i,j < D) which satisfy

Ai = Zi; Pi(J)E; (0<i<D), (21)
E=|x|"" ]XD(; ¢:(j)4; (0<i<D), (22)
A7 = ﬁ; qi(J)Ef (0<i<D), (23)
E=|x|" ip,-(j)/l; (0<i<D). (24)

We refer to p;(j) (resp. ¢i(j)) as the j” eigenvalue (resp. j"

ciated with 4; (resp. 4}). For simplicity, we define
ki=p(0) (0<i<D), (25)
m;:=¢q;(0) (0<i<D). (26)

dual eigenvalue) asso-
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n [2, p. 45] it is shown that

po(j) = 0<j<D), (27)
ki=pi(j) (0<i,j<D), (28)
and dually,

q(J) =1 (0=j=<D), (29)
m; =z qi(j) (0<ij<D) (30)

By [2, p. 45] and the construction,
m; =rank(E;) (0 <i< D), (31)
ki =rank(E’) (0<i<D). (32)

And the following useful identities are from [1, p. 65].

_ iy .
i/ |X| Zkzpr pr P; (h) (0 <h, ,] < D), (33)
kik; 2 N .
= Tx] > aa (et (0<hij<D) (34)
r=0""T

The Terwilliger Algebra T(x)

Let Y = (X, {Ri}y<;<p) denote a scheme, fix any x € X, and write M* = M*(x).
By the Terwilliger algebra for Y with respect to x, we mean the sub-algebra T =
T(x) of Maty(R) generated by M and M*. The following result gives some rela-
tions in 7.

2.1 Lemma [8, p. 379]. Let Y = (X,{Ri}o.,.p) denote a scheme. Fix xe X
and write A} = A¥(x), Ef = E(x) (0<i< D). Then for all integers h, i, j
(OSh,l,JSD)’

ph=0 if andonlyif EjA;E; =0, (35)
q;’, =0 if and only if E,-A;‘Eh =0. (36)

We now consider the modules for 7. Let ¥ denote the vector space R (row
vectors), where the coordinates are indexed by X. Then T acts on V' by right
multiplication. We endow V' with the inner product

uyvy =w' (w,ve V). (37)

By a T-module, we mean a subspace W of V' such that WT < W. A T-module W is
said to be irreducible whenever W # 0, and W contains no T-modules other than
0 and W. Let W denote a T-module. Then by [4, Lem. 3.3],

Li={veV[Kv,w)=0forallwe W} (38)
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is also a T-module. It follows that V" can be decomposed into an orthogonal direct
sum of irreducible T-modules.

2.2 Lemma [8, p. 381]. Let Y = (X, {Ri}y-;<p) denote a scheme. Fix x € X, and
write E} = Ef(x) (0<i< D), T =1T(x).

(i) There exists a unique irreducible T-module Wy containing VEy and VE;.

(ii) dim(WyE;) = dim(WyE}) =1 (0<i< D).

We refer to W as the trivial T-module.

Proof. Existence is shown in [8], and uniqueness follows from (6) and (12), since
rank(Ej) = rank(Ey) = 1. O

2.3 Lemma. Let Y = (X, {R;},,.p) denote a scheme. Fix x € X, and write E} =
Ei(x)(0<i<D),T=T(x). Let W be any irreducible T-module distinct from Wj.
Then W < Wg*.

Proof. Fix any vectors u € W and v € W,. We must show that <u,v) = 0. It fol-
lows from Lemma 2.2 that the T-module W,E;T is nonzero. Since W is irredu-
cible and contains this T-module, WyE;T = W). So for some we Wy and Be T,
we may write v = wEjB. Observe W N Wy =0, since W, W, are irreducible. So
WE; = 0, otherwise W, W, have nonzero intersection by Lemma 2.2(i). It follows
that
u,vy = u,wE;B) (39
= (uB'E;,w), (40

which is zero, since uB'Ej € WTE; = WE; = 0, and we are done. O
2.4 Lemma. Let Y = (X, {R;}y-;~p) denote a scheme. Fix x € X, write E = E(x)
(0 <i< D), andlet Wy be as in Lemma 2.2. Then

(i) WitEy=0.

(iii) dim(WgtE}) =ki—1 (0<i<D).

(

1

iv) WiE; =0.

Proof of (i). Immediate from (31) and Lemma 2.2(ii).
Proof of (ii). Immediate from part (i) and lines (26), (29).
Proof of (iii). Immediate from (32) and Lemma 2.2(ii).
Proof of (iv). Immediate from part (iii) and lines (25), (27).

O o0ooo

3. The P-Polynomial Property

Let Y = (X,{Ri}o-;~p) denote a scheme. We say that Y is P-polynomial (with
respect to the given ordering Ay, . .., Ap of the associate matrices) whenever D > 1,
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and for all integers 4, i, j(0 < h,i,j < D),
p{} =0 if one of h, i, j is greater than the sum of the other two,
pf’j # 0 if one of h, i, j equals the sum of the other two.

When Y is P-polynomial, we set

0::=pi1(i) (0<i<D),
ci=pl,, (1<i<D),
aj=py; (0<i<D),
bi=piy (0<i<D-1),
and define ¢o = cp1 =bp =b_; =0. Wenote qp =0,c¢; = 1, and

ai+bi+ci=k (0<i<D),
where k := k;. Moreover, by (25) and (28),
Oy =k
>0; (0<i<D).

327

(48)
(49)

For the remainder of this section, ¥ = (X, {R;}, ;) will denote a scheme which
is P-polynomial with respect to the given ordering Ao,...,Ap of the associate

matrices.

3.1 Lemma [1, p. 190].
Oi#0; if i#j (0<ij<D).

3.2 Lemma [2, p. 45]. For any integers i,j (0 <i,j < D),
1P (i) + appi(i) + bj-1pi-1(i) = Oip; (i),

where p_i(i), pp+1(i) are indeterminants.

3.3 Lemma [2, p. 45]. For any integers i, j (0 < i,j < D),
¢iqi(j = 1) + ajqi(j) + bjqi(j + 1) = 0iqi (),

where gi(—1),q;(D + 1) are indeterminants.

3.4 Lemma. For any integer i (0 <i < D),

(1)

(53)
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(i) Suppose D =2, and that i # 0. Then ¢;(0) > g;(1). Moreover,

L+ 0 qi(1) — 4:i(2)
by qi(0) — qi(1)"

(54)

Proof of (i). Set j =0 in (52) and simplify, noting ayp = ¢ = 0, by = k. O
Proof of (ii). The first assertion follows from (49), (50), and (53). To get (54), set
j =11n (52) to obtain

a14i(0) + a1qi(1) + b14i(2) = 0iq:(1). (55)

Use (47) to eliminate a, then simplify using (53), noting that ¢; = 1. O

3.5 Lemma. Fix any x € X and write E} = E}(x) (0 < i < D). Then for any integer
i(0<i<D),
X|EEE] = gi(O)E; + q,(1)Ej A\ E{ + qi(2)E{ A (56)
In particular,
|X|E{EoE] = E{ + E{ A\E[ + E{ A2E}. (57)
Proof. By (22),

D
| X|ETEEy :ET< qi(j)A]) Ey. (58)
=0

J

To get (56), simplify (58) using (35) and (41). To obtain line (57), set i = 0 in (56)
and apply (29). O

3.6 Lemma [8, p. 383]. Fix any x € X, and let W denote an irreducible T (x)-module.
Then there exist unique integers r, d (0 < r,d < D) such that

WE! #0 iff r<i<r+d (0<i<D). (59)

The scalars r and d are known as the endpoint and the diameter of W,
respectively.

4. The Q-Polynomial Property

Let Y = (X, {Ri}y<;<p) be any scheme. We say that Y is Q-polynomial (with
respect to an ordering Ey, ..., Ep of the primitive idempotents) whenever D > 1,
and for all integers 4, i, j (0 < h,i,j < D),

q,{} = 0 if one of h,i,j is greater than the sum of the other two, (60)

qg # 0 if one of h,i,j equals the sum of the other two. (61)
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When Y is Q-polynomial, we set

07 ==q(i) (0<i<D), (62)
¢ =qi,, (1<i<D), (63)
a=q), (0<i<D), (64)
b =qj,, (0<i<D-1), (65)

and define ¢; = ¢, | = by = b*; = 0. We note ¢y = 0 and ¢ = 1[I, p. 67]. Also,
ar+b+c;=m (0<i<D), (66)

where m := m;. Moreover, by (26) and (30),

>0 (0<i<D) (68)

For the remainder of this section, ¥ = (X, {R;} ;. p) will denote a scheme which is
Q-polynomial with respect to the ordering Ey, . .., Ep of the primitive idempotents.

4.1 Lemma [1, p. 193].
0; #0: if i#j (0<ij<D). (69)

4.2 Lemma (2, p. 49]. For any integers i, j (0 <i,j < D),

g1 (i) +a;qi(i) + b7 1) = 07 (i), (70)
where q_1(i), qp+1(i) are indeterminants.
4.3 Lemma [2, p. 49]. For any integers i, j (0 <i,j < D),

¢;pi(j — 1) +a;pi(j) + b;pi(j + 1) = 0;pi(J), (71)
where p;(—1), pi(D + 1) are indeterminants.

4.4 Lemma. For any integer i (0 < i < D),

(1)

0; _pi(1)

i . 72

0 7
(ii) Suppose D > 2, and that i # 0. Then p;(0) > p;(1). Moreover,

by pi(0) = pi(1)°
Proof. Similar to the proof of Lemma 3.4. O
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4.5 Lemma. Fix any x € X, and write Af = A} (x), Ef = Ef(x) (0 <i < D). Then
for any integer i (0 <i < D),

|X|E1El-*E1 Zpi(O)El —|—pi(l)E1ATE1 +p[(2)E1A§E1. (74)

In particular,
|X|E1E§E1 =F + E]ATEl + E1A;E1. (75)
Proof. Similar to the proof of Lemma 3.5. O

4.6 Lemma [8, p. 385]. Fix any x€ X, and let W denote an irreducible T(x)-
module. Then there exist unique integers r*, d* (0 < r*,d* < D) such that

WE; #0 iff r"<i<r +d° (0<i<D). (76)

The scalars r* and d* are known as the dual endpoint and the dual diameter of
W, respectively.

5. A Computation in T'(x) for P-Polynomial Schemes

In this section, ¥ = (X, {R;};-,.p) Will denote a scheme with D > 2 which is P-
polynomial with respect to the given ordering Ay, ..., Ap of the associate matrices.

5.1 Definition. Fix any x € X, write E; = E{(x), and pick any nonzero v € VE;
such that vEy = 0. By the zype of v, we mean the element y € RU {0} such that

UAzU’_ bl
lof> ¥+ 1

(77)

where we interpret y = oo whenever vA,v" = 0.

5.2 Theorem. Fix any x € X, write E{ = E;(x), and pick any non-zero v € VE{ such
that vEy = 0. Then

||vE,-||2 _ mi(k — 0;)(y — 0) .
X~ KX+ 1) (0<i< D), (78)

where \y denotes the type of v.
5.3 Remark. With the notation of Theorem 5.2, suppose {y = co. Then we take
limits to obtain

loE:|* _ mi(k - 6))
lol? klX]|

(0 < i< D). (79)
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Proof of Theorem 5.2. Line (78) holds for i = 0, since vEy = 0 by assumption, and
since k = 0y by (48). Now assume i > 0. Observe v = vE| by construction, so

l0E:|* = <vE{ E;, vE{ E;) (80)
=vE[EEv, (81)
by (7), (8), (13), and (37). Eliminate E; A E] in (56) using (57) to obtain
|X|EVEE} = (9:(0) — qi(1))Ey — (q:i(1) — ¢i(2)) E{ A2 E[ + ¢i(1)| X |E{ EoEy.
(82)

Eliminate E E;E] in (81) using (82) and simplify using (77), Lemma 3.4(ii) and the
assumption that vEy = 0 to obtain

— 0
El? = X" (¢ _[I‘P Dl
[0Ei||” = |X|" (4i(0) — ¢i(1)) U (o] (83)
By (53) and (26),
m; k — 9,‘
0(0) — qi(1) ="EZ 0 (54)
Now simplify (83) using (84) to obtain the result. O
5.4 Theorem. Let Oy and 0,,,, denote the second greatest and minimal of 0y, . .., 0p,

respectively, and let Ey,., E i, denote the associated primitive idempotents. Fix x € X,
write Ef = E{(x), and pick any non-zero v € VE; such that vEy = 0. Let  denote
the type of v. Then

(1)  Suppose y # 0. Then y > O or Y < .

(11) vEg. = 0 lﬂ‘P = Hsec-

(i) vE i = 0 i = Oin.

(iv) Let E denote a primitive idempotent of Y other than Ey, Eg.., or E,;,. Then
vE # 0.

Proof of (i). For convenience, set my, := m;, where E; = E,,., and define m,,;,
similarly. Suppose O > ¥ > 0,,;,. Applying Theorem 5.2, (49), (50),

0< HUEsecHz ||UEminH2

2 2 (85)
[[o]] [[o]]
_ Mgee Mypin (k — H‘Ye(,)(k — Hmin) B B ‘
- |X| |X| kz(lp + 1)2 (lp Hsec)(l// Hmm) (86)
<0, .

a contradiction. We conclude that y > 0y or ¥ < 0,,;,. O
Proof of (ii). By Theorem 5.2, Y = O iff [|[0Esec||® = 0 iff 0Eyee = 0. O
Proof of (iii). Similar. O
Proof of (iv). ||vE||2 is never zero, by Theorem 5.2 and part (i) above. O
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5.5 Corollary. Fix x € X, write Ef = E{(x), and pick any non-zero v € VE{ such
that vEy = 0. Then vE; = 0 for at most one i (1 <i < D).

Proof. Immediate from Theorem 5.4(ii)—(iv). O

6. A Computation in 7'(x) for O-Polynomial Schemes

In this section, ¥ = (X, {R;},.,.p) will denote a scheme with D > 2 which is Q-
polynomial with respect to the ordering Ey, ..., Ep of the primitive idempotents.

6.1 Definition. Fix any x € X, write 4} = 45(x), E; = E;(x), and pick any non-
zero v € VE; such that vEj = 0. By the dual type of v, we mean the element
Y e RU{oo} such that

vAsv" by
lof> ¥+ 1

where we interpret Y* = oo whenever vA43v’ = 0.

(88)

6.2 Theorem. Fix any x € X, write E} = E/(x) (0 <i < D), and pick any non-zero
v e VE; such that vE§ = 0. Then

[E;|I>  ki(m — 0]) (" — 0;)

1

o> mlX[G"+ 1)

where Y™ denotes the dual type of v.

(0 <i<D), (89)

6.3 Remark. With the notation of Theorem 6.2, suppose y* = co. Then we take
limits to obtain
%12 *
[ET||” _ Ki(m —07)
o]l m|X]|

(0<i<D). (90)

Proof of Theorem 6.2. Similar to the proof of Theorem 5.2. ]

6.4 Theorem. Fix any x € X, and write Ef = Ef(x) (0 <i < D). Let 0,,. and 0,,,
denote the second greatest and minimal of 0, . .., 0}, respectively, and let E},. and
E.. denote the associated dual idempotents. Pick any non-zero v € VE| such that

vE; = 0. Let ™ denote the dual type of v. Then

) Suppose " # co. Then y* > 0,,. or y* <0,
i

(i sec
(i) vEL =0iff y* =0,.

(
(

~

111) UE;”” =0 ﬁ lp* = H:;zin'
iv) Let E* denote a dual idempotent of Y other than Ej, E,. or E

sec min* Then
vE* # 0.

Proof. Similar to the proof of Theorem 5.4. O
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6.5 Corollary. Fix x e X, write E} = Ef(x) (0 <i < D), and pick any non-zero
v € VE; such that vEj = 0. Then vE! =0 for at most one i (1 <i < D).

Proof. Immediate from Theorem 6.4(ii)—(iv). |

7. A Matrix Result

Let v = (v, ..., vp) be a finite sequence of real numbers. First assume the terms of
v are non-zero. By the number of sign changes of v, we mean the number of indices
i (0 <i< D-—1)such that v;v;4; < 0. If v has one or more terms which are zero,
we count sign changes by first deleting the zero terms of v and then counting the
sign changes of the resulting sequence. The following is a reworking of a result
found in [5, p. 143].

7.1 Theorem. Let D denote a nonnegative integer, and suppose B is any real
(D+1) x (D+ 1) matrix of the form:

ap C 0
by ar o
by
ap-1 ¢p
0 bp_1 ap

where biciy1 >0 (0<i<D-—1).

(1) B has D+ 1 distinct eigenvalues. In particular, the maximal eigenspaces for B
are 1-dimensional.

(i) Fixanyi(1 <i< D+ 1), let 0 denote the i"* greatest eigenvalue of B, and let v
denote an associated (left) eigenvector. Then v has exactly i — 1 sign changes.

Proof of (i). We first show that B is diagonalizable. To this end, set

K = diag(1,k; "2 k2 k'), (91)
where
oy i 00t (0<i<D). (92)
Cl1...Cj

One readily checks that KBK~! is real and symmetric; it follows by elementary
linear algebra that B is diagonalizable. It remains to show that the minimal poly-
nomial of B has degree D + 1. But this is immediate, since the tridiagonal form of
B implies that I, B, B, ..., B are linearly independent. O

Proof of (ii). Set

L:= diag(l,bo,bobl,...,bo...bl),l), (93)
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and observe

ao boc1 0
1 aj b]Cz

L 'BL = 1

. ap_1 bp_icp
0 1 ap
Note that B and L~'BL have the same eigenvalues, and in particular, 0 is the i”"
greatest eigenvalue for L~!BL. Let S denote the maximal (left) eigenspace of
L~'BL associated with 0 and note that S is 1-dimensional. Observe that vL € S,
and so vL must span S. By [5, p. 143], there exists a vector in .S which has exactly
i — 1 sign changes, so vL must have i — 1 sign changes. Observe that by (93), the
i™ coordinate of vL equals the i coordinate of v times a positive scalar, so v and
vL have the same number of sign changes. O

8. P- and Q-Polynomial Schemes

In this section, let ¥ = (X, {R;},.;.p) denote a scheme which is P-polynomial
with respect to the given ordering Ay, ..., Ap of the associate matrices and O-
polynomial with respect to the ordering Ey, ..., Ep of the primitive idempotents.
We begin with a slight modification of a result of Godsil [5, p. 264].

8.1 Theorem. The following are equivalent:

i) 0] =0,,.
1) >0, >0,>0;>...>0p_3>0p_r>0p_1 > 0p.
i) 0 = Oy

v) 0y >07>05>0,>...>0, >0, ,>0, >0
Proof. (i)=(ii). Consider the vector v:= (6y — 6, 6y —b0,...,0p_1 — Op).
Observe the first coordinate of v is positive by (48)—(50), and no coordinate is zero

by (50), so it remains to show v has no sign changes. To this end, consider the
matrix

* * * *
0y — b; — ¢ c 0
* * * * *
bj Oy —bi—¢; ¢
_ *
C = b3
¥
Cp-1
* * * *
0 by Oy —bpy —cp

Observe by (11), (61), (63), and (65),
bie; >0 (0<i<D-1), (94)
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so C satisfies the assumptions of Theorem 7.1. By [2, p. 130], the eigenvalues of C
are 0, 0;,....,0p; in particular, 6] is the maximal eigenvalue of C. Setting / = 1 in
(71),

C; i1+ a;‘Hj + b;tgj‘+1 = 91‘9, (0<j<D). (95)
Using this and (66), (67), one readily shows
vC = 0. (96)

Now v has no sign changes by Theorem 7.1, and we are done.

(i1) = (iii). Immediate.

(iii) = (iv). Similar to the argument for (i) = (ii), replacing (a;, b;, ¢;, 07, 0;) by
(af, bt ct,0:,07).

(iv) = (i). Immediate. [

8.2 Lemma. Let o, f3, 7,0 denote integers such that

0<oat+ypatdf+yf+o<D. (97)
Then
(Osy = Op15) Oy — Op—5) = (Ous5 — Opy) (Oris — Op—,), (98)
(0, = 0p15)(Or, = O 5) = (055 = Opy,) ) (0,15 — Op,), (99)
(Ony = Op:5) (0,1, = O 5) = (0,5 = O3 ) (Or5 — Op). (100)
Proof. Multiply out using the formulas given in [8, pp. 370-372]. O

9. The Bipartite Case

9.1 Definition. Let Y = (X, {R;},.,-p) be any scheme. Suppose Y is P-polynomial

with respect to the given ordering Ay, ..., Ap of the associate matrices. We say
that Y is bipartite if there exists a bipartition
X=X"UXx" (101)

such that the restrictions of R; to X and X~ are empty.
Observe that if Y is bipartite, then there can be no cycles of odd length, from
which it follows that

a;=0 (0<i<D). (102)
For the remainder of this section, let Y = (X,{R;},.,.p) denote a scheme

which is bipartite P-polynomial with respect to the given ordering Ay, ..., Ap of
the associate matrices.
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9.2 Lemma [2, p. 82]. Suppose the primitive idempotents of Y are ordered so that
Op > 6, >--->0p. Then

0;=—-0p_; (0<i<D), (103)
m; = mp—_; (0 <i< D) (104)
We next show that any Q-polynomial ordering of the primitive idempotents of

Y also has the above property.

9.3 Definition. Suppose Y is Q-polynomial with respect to the ordering Ey, ..., Ep
of the primitive idempotents. Then for any integer i (0 < i < D), we define i’ to be
the unique integer (0 < i’ < D) such that 8; = —0;. Note that m; = m; by Lemma
9.2.

9.4 Lemma. Suppose that Y is Q-polynomial with respect to the ordering Ey, . .., Ep
of the primitive idempotents. Then

pi(i') = (=1)p;(i) (0 <i,j<D). (105)

Proof. Consider the polynomials P;(x) (0 < j < D) defined recursively such that
Py(x) =1, Pi(x) = x, and

xPj(x) = bj-1Pj-1(x) + ¢ P (x) (1 <j<D—1). (106)

Observe P;(x) is an even function when j is even, and an odd function when ; is
odd. So it follows that

Py(0s) = (=1)'Pi(0;) (0<i,j<D) (107)

since 0 = —0;. But by (51), (102), and (106), we see that
pi(i) = Pi(6:;) (0<ij<D), (108)
and so the result now follows. O

9.5 Lemma. Suppose that Y is Q-polynomial with respect to the ordering Ey, . .., Ep
of the primitive idempotents. Then

ql =q} (0<h,ij<D). (109)

Proof. For any integers &, i, j (0 < h,i,j < D), we have

D
! nimy 1 . ./
Gy =y 2 3PP e (H), (110)
|X‘ r=0 k"
D
m;m; 1 ) . ' .
= |X|’Z;k—rzpr<z><—1>pr(])(_l)p,(h), (111)
=i (112)

by (33) and (105). O
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9.6 Theorem. Suppose that Y is Q-polynomial with respect to the ordering Ey, . .., Ep
of the primitive idempotents. Then

0= —0p; (0<i<D) (113)
m; = mp_; (0 <Z<D) (114)

Proof. In view of Definition 9.3, it suffices to show
i'=D—-i (0<i<D). (115)

Let D; denote the (undirected) graph with vertex set .# = {0, 1,..., D}, where for
any distinct i, j € .Z, i is adjacent to j if and only if ¢] ; # 0. By the definition of Q-
polynomial, it follows that for any i, je.#, i is adjacent to j precisely when
|i—j| = 1. In particular, D; is simply a path. By Lemma 9.5, the map i i
induces a nontrivial automorphism of D;. But the only nontrivial automorphism
of Dy is the map i +— D — i, and (115) follows. Line (114) follows in view of (104).

[

For the remainder of this section, we note some important properties of

bipartite graphs which will be useful in the proof of our main theorem.

9.7 Lemma. Suppose that Y is Q-polynomial with respect to the ordering Ey, ..., Ep
of the primitive idempotents. Fix x € X, write T = T(x), and let Wy denote the
trivial T-module, as in Lemma 2.2. Then mp = 1. In particular,

Wi-Ep = 0. (116)

Proof. The first statement is immediate from (114), (26) and (29). Now (116) fol-
lows by Lemma 2.4(i). O

9.8 Lemma. Suppose that Y is Q-polynomial with respect to the ordering Ey, . .., Ep

of the primitive idempotents. Then

(1) [7,p. 301l m > k.
(ii) 6y = 6o.

Proof of (ii). Immediate from (48), (67), and (i). O
9.9 Lemma [1, p. 316]. Suppose D > 2, and set t := |D/2] (i.e., the greatest integer

less than or equal to D/2). Then 1Y = (X" {%:},.,,) is a P-polynomial scheme,
where X is from (101), and where

R ={yzly,ze X", yze Ry} (0<i<i). (117)

We refer to % Y as a halved scheme of Y.

9.10 Lemma. Suppose that Y is Q-polynomial with respect to the ordering Ey, . . . , Ep
of the primitive idempotents. Then
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(1) [2, p. 142] The eigenvalues of% Y are ¢y, ..., P, where

07—k
==

b, : 0<i<y). (118)

(i) [1, p. 328] % Y is Q-polynomial with respect to the ordering &\, ..., &, where &;
denotes the primitive idempotent for % Y associated with ¢,(0 <i < 1).

(i) [2, p. 241] With respect to the Q-polynomial structure in (i), the dual eigen-
values are ¢;, 47, ..., ¢;, where

¢r =05 (0<i<t). (119)

1

10. The Proof of the Main Theorem

In this section, Y = (X, {R;}y-;-p) Will denote a scheme with D > 3 which is not
a cycle. We also assume Y is bipartite P-polynomial with respect to the given
ordering Ay, ..., Ap of the associate matrices and Q-polynomial with respect to
the ordering E, ..., Ep of the primitive idempotents.

10.1 Lemma. [9, Th. 1], [6, Th. 5.1]. Suppose 0; = 0y. Then Y is an antipodal 2-
cover, and exactly one of the following must occur:

(1) D =3, and for some integer k > 3,

(COaC13627C3):(Oﬂlvk_17k)' (120)
(i) D =4, and for some positive real number y,
(00,61,02,03,64)2(0,1,2}/,4)/—1,4))). (121)

(i1) D =5, and for some positive real number 7,
(CO,C17C27C3,C4, CS) = (07 1>V2 + %k - yz - %k - 1,]{)7 (122)

where k = 3 4 372 + 7.
(iv) D is arbitrary, and

¢=1i (0<i<D). (123)

Proof. By (48) and (67), m = k. By a result of Yamazaki [9, Th. 1], Y is 2-
homogeneous in the sense of Nomura [6, Def. 3.1]. Nomura’s classification of
these schemes [6, Th. 5.1] provides the intersection arrays. From these arrays, one
easily computes that kp = 1, which implies that Y is an antipodal 2-cover. O

10.2 Lemma. Suppose 0; = 0y. Then
0:=0, (0<i<D). (124)

Proof. Settinga =i, f =D —i,y=—1,6=01n (100),
(01 — Op-i)(07_y = Op_;) = (0; — Op_;_)(0; — Op—i11), (125)
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for (1 <i< D —1). By Lemma 10.1, Y is an antipodal 2-cover. So by [2, p. 243],

0; =—0,,; (0<i<D). (126)
Now by (113) and (126), line (125) becomes
(01 + 0:) (0, + 07) = (07 +0;.,)(0: + 0;-1), (127)

for (1 <i<D—1). By assumption, §; = 6y. So by (62) and (53) with i =1,
07 = 0;. Observe that for any i (0 <i < |2]), the coefficient of 07, is 0; + 0,1,
which is nonzero by (50), (113). So by a simple induction on (127), we see that

S L o
Line (124) follows by (113) and (126). O

10.3 Lemma. Suppose 0y = 0y. Then one of the following must occur:

(i) D =3, and for some integer k > 3,

(60,01,0,,05) = (k,1,—1, k). (129)

(i1) D =4, and for some positive real number 7,
(00,01,02,03,04) = (47,2¢/7,0,=2y/7, —4y). (130)

(it1) D = 4, and for some positive real number 7,
(00,01, 02,05, 04) = (47, —=2./7,0,2\/7, —4y). (131)

(iv) D =5, and for some positive real number 7,
(0, 01,02, 03,04,05) = (k,* + 29,9, =p, =" = 27, =k), (132)

where k = 3 4 372 4+ .
(v) D is arbitrary, and

0;=D-2i (0<i<D). (133)
(vi) D is even, and
0; = (—1)'(D—2i) (0<i<D). (134)
In particular, one of (1), (ii) holds in Theorem 1.1.

Proof. From the possible intersection arrays given in Lemma 10.1, the eigenvalues
(unordered) are readily computed. To compute the possible Q-polynomial order-
ings, observe that by (124), and (52) with i = 1,

¢i0i1 +a;0; + b0 =00, 0<i<D. (135)
Certainly 00 = k; and by [3a Th. 96]9 91 € {erc, _esec} if Dis cven, and 01 = avec if

D is odd. Equation (135) can now be used inductively to solve for the remainder of
the Q-polynomial ordering. O
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10.4 Lemma. Fix x € X and write Ef = Ef(x) (0 <i < D).

(i) There exists a nonzero v e VE| such that vEj = 0 and vE}, = 0.
(ii) 05 = 0,,. or 0, =0,

sec min*

Proof of (i). By [4, Th. 8.7], there exists an irreducible 7'(x)-module W with end-
point 1 and diameter D — 2. We pick any nonzero u € WE; and show that v := uE;
has the desired properties. Certainly v € VE]. Observe

vE; € WE, (136)
which is 0, since W has endpoint 1, and
vE}, € WE}, (137)

which is 0, since W has diameter D — 2. It remains to show v # 0. Observe W #
Wo, so ue W = Wit by Lemma 2.3(ii). Now uEy =0 by Lemma 2.4(ii), and
uEp = 0 by Lemma 9.7. We conclude v = uE| # 0 by Corollary 5.5, as desired.

O
Proof of (ii). By (i) and Theorem 6.4(iv), Ej, = E}. or E}, = E} . O
10.5 Lemma. Fix x € X, write E; = E(x) (0 < i < D), and suppose 05 > 0,.
(i) There exists a nonzero v € VE; such that vEj = 0 and vE} = 0.
(ii) 07 = Oy 0r 07 = O,y
Proof of (i). Observe by Lemma 2.4(i), (ii1) and lines (67), (48),
dim(Wi-Ey) = 05 — 1 (138)
>0 — 1 (139)
= dim(W;-E}). (140)
It follows that the linear transformation
Wi Er — Wi E; (141)
v — vE} (142)
has a nontrivial kernel. This means there exists a nonzero v € Wy E; such that
vE; = 0. Observe v e Wy, so vE; = 0 by Lemma 2.4(iv). O
Proof of (ii). By (i) and Theorem 6.4(iv), Ef = E;, or Ef = E, .. O

10.6 Lemma. Suppose 0y > Oy and 0} # 0,,.. Then

i) (-1)'¢;>0 (0<i<D)
(i1) D is odd.

Proof of (i). Consider the vector v = (6y,01,...,0p). Recall §y > 0 by (48), so it
suffices to show v has D sign changes. By Lemma 4.3, v is a left eigenvector for the
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tridiagonal matrix

* *
a; ¢ 0
* * *
by ai
* *

B = b ,
* *
dp-1 ¢p
* *

0 by, ap

with associated eigenvalue 0;. Observe B* satisfies the assumptions of Theorem
7.1, so we will be done by part (ii) of that theorem if we can show 6] is the minimal
eigenvalue of B*. But this is the case, since the eigenvalues of B* are 6,67, .., 0},
by [1, p. 193], and 6] is the minimum of these scalars by Lemma 10.5(ii) and our
assumptions. O

Proof of (ii). Recall 0p = —0, by (113), so 0p < 0. But (—1)”0p > 0 by (i) above,
so D must be odd. O
10.7 Lemma. Suppose 05 > 0y. Then 05 is the third greatest of 05,0, ..., 0},

Proof. We may assume 0] # 0,,.; otherwise we are done by Theorem 8.1. Now
0y =0,,, by Lemma 10.5(ii), so 0;, = 0;,, by Lemma 10.4(ii). It now suffices to
show

;>0 3<i<D-1). (143)
Settingaa =1, f=1i,y=1,0 =01n (99),

(0 — 07)(0, = 0;) = (67 — 0:,,)(6 — 0,). (144)

Both factors on the right side of (144) are negative since 0 = 0. The first factor

on the left in (144) is positive by (67), (68), so the second factor in (144) is positive
as well. Line (143) follows. ]

10.8 Lemma. Suppose 0, > 0y and 0y # 0,,.. Then with reference to Lemmas 9.9
and 9.10,

(i) ¢y is the second largest of ¢y, ¢7,...,¢;,
(i) go >y > >4,
Proof of (i). By Lemma 9.10(iii) it suffices to show

05 is the second largest of {60 < i < D, i even}. (145)

To this end, observe 6 = 0., by Lemma 10.5(ii) and our assumptions. Now 0}, #
0. since D # 1, so 05, = 0, by Lemma 10.4(ii). By this, line (68), and Lemma

10.7,
;>0 (l<i<D-1). (146)
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Line (145) follows from this, line (68), and the fact that D is odd. O
Proof of (ii). Apply Theorem 8.1 to 1 Y. O

10.9 Lemma. Suppose 0y > Oy and 0} # 0,,.. Then

0y >0p_1>60,>0p_3>--->03>0p_,>0 >0p. (147)

Proof. By Lemma 9.10(i), Lemma 10.8(ii), and since D is odd,

05> 07> > 00 1) (148)

The result now follows from this, Lemma 10.6(i), and (113). O
10.10 Lemma. Suppose 0; > 0y and 67 # 0,,.. Then

Oy >0, >0,>0, 5> >0p5>0;>0, >0 (149)

Proof. Recall D is odd by Lemma 10.6(ii), and 6] = 0, . by Lemma 10.5 (ii), so it

min
suffices to show
05 > Op 5 > 0315 (150)

for 0 <i < 253 We proceed by induction on i. First assume i = 0. Then (150)
holds by Lemmas 10.7 and 10.4 (ii). Next assume i > 0. Setting o = 2i — 1,
p=D-2i+1,y=—-1,0=—11n (100),

(02i = Op-2:) (035 = Op_;12) = (03 — Op_5,)(02i-2 — Op-2i12). (151)

The second factor in (151) is positive by the induction hypothesis, and the first and
fourth factors in (151) are positive by Lemma 10.6(i). We conclude the third factor
in (151) is positive, so the left inequality in (150) holds. Setting o = 2i+ 1,
p=D-2i+1,y=—-1,6=—11in (100),

(02is2 = Op—2:)(03; — Op_3;15) = (0315 — Op_3;:)(02i — Op—2is2). (152)

The second factor in (152) is negative by the induction hypothesis, and the first
and fourth factors in (152) are positive by Lemma 10.6(i). We conclude the third
factor in (152) is negative, so the right inequality in (150) holds, and the induction
is complete. [

Proof of Theorem 1.1. By Lemma 9.8(ii), 0, > 0,. If ;5 = 0y, then we are done by
Lemma 10.3. If 6; > 6y, and 0] = 0,,., then we are done by Theorem 8.1. If

0y > 0o, and 0 # 0., then we are done by Lemmas 10.9 and 10.10. In any case,
we are done. O
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