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Abstract. Let Y � �X ; fRig0UiUD� denote a symmetric association scheme with DV 3, and
assume Y is not an ordinary cycle. Suppose Y is bipartite P-polynomial with respect to the
given ordering A0; A1; . . . ;AD of the associate matrices, and Q-polynomial with respect to
the ordering E0; E1; . . . ;ED of the primitive idempotents. Then the eigenvalues and dual
eigenvalues satisfy exactly one of (i)±(iv).

(i)

y0 > y1 > y2 > y3 > � � � > yDÿ3 > yDÿ2 > yDÿ1 > yD;

y�i � yi �0U iUD�:
(ii) D is even, and

y0 > yDÿ1 > y2 > yDÿ3 > � � � > y3 > yDÿ2 > y1 > yD;

y�i � yi �0U iUD�:
(iii) y�0 > y0, and

y0 > y1 > y2 > y3 > � � � > yDÿ3 > yDÿ2 > yDÿ1 > yD;

y�0 > y�1 > y�2 > y�3 > � � � > y�Dÿ3 > y�Dÿ2 > y�Dÿ1 > y�D:

(iv) y�0 > y0, D is odd, and

y0 > yDÿ1 > y2 > yDÿ3 > � � � > y3 > yDÿ2 > y1 > yD;

y�0 > y�D > y�2 > y�Dÿ2 > � � � > y�Dÿ3 > y�3 > y�Dÿ1 > y�1 :

1. Introduction

Let Y � �X ; fRig0UiUD� be a P- and Q-polynomial association scheme, with
eigenvalues y0; y1; . . . ; yD and dual eigenvalues y�0 ; y

�
1 ; . . . ; y�D. We want to ®nd the
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permutations s; t of 0; 1; . . . ;D for which

ys0 > ys1 > ys2 > � � � > ysD;

y�t0 > y�t1 > y�t2 > � � � > y�tD:

In this paper we focus on the case where Y is bipartite, and prove the following
theorem.

1.1 Theorem. Let Y � �X ; fRig0UiUD� denote a symmetric association scheme with

DV 3, and assume Y is not an ordinary cycle. Suppose Y is bipartite P-polynomial

with respect to the given ordering A0;A1; . . . ;AD of the associate matrices, and Q-

polynomial with respect to the ordering E0;E1; . . . ;ED of the primitive idempotents.

Then the eigenvalues and dual eigenvalues satisfy exactly one of (i)±(iv).

(i)

y0 > y1 > y2 > y3 > � � � > yDÿ3 > yDÿ2 > yDÿ1 > yD;

y�i � yi �0U iUD�:
(ii) D is even, and

y0 > yDÿ1 > y2 > yDÿ3 > � � � > y3 > yDÿ2 > y1 > yD;

y�i � yi �0U iUD�:
(iii) y�0 > y0, and

y0 > y1 > y2 > y3 > � � � > yDÿ3 > yDÿ2 > yDÿ1 > yD;

y�0 > y�1 > y�2 > y�3 > � � � > y�Dÿ3 > y�Dÿ2 > y�Dÿ1 > y�D:

(iv) y�0 > y0, D is odd, and

y0 > yDÿ1 > y2 > yDÿ3 > � � � > y3 > yDÿ2 > y1 > yD;

y�0 > y�D > y�2 > y�Dÿ2 > � � � > y�Dÿ3 > y�3 > y�Dÿ1 > y�1 :

2. Preliminaries

A D-class symmetric association scheme is a pair Y � �X ; fRig0UiUD�, where X is
a non-empty ®nite set, and where:

(i) fRig0UiUD is a partition of X � X ;
(ii) R0 � fxxjx A Xg;
(iii) Rt

i � Ri for 0U i UD, where Rt
i � fyxjxy A Rig;

(iv) there exist integers ph
ij such that for all x; y A X with xy A Rh, the number of

z A X with xz A Ri and zy A Rj is ph
ij .

The constants ph
ij are called the intersection numbers of Y . By a scheme, we

mean a symmetric association scheme.
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The Bose-Mesner Algebra M
Let Y � �X ; fRig0UiUD� denote a scheme, and let MatX �R� denote the algebra
of matrices over R with rows and columns indexed by X . For each integer i

�0U i UD�, let Ai denote the matrix in MatX �R� with x; y entry

�Ai�xy �
1 if xy A Ri,

0 otherwise

�
�x; y A X �: �1�

From (1) we obtain:

A0 � I ; �2�
At

i � Ai �0U iUD�; �3�

AiAj �
XD

h�0
ph

ijAh �0U i; j UD�; �4�

A0 � A1� � � � � AD � J; �5�
where I is the identity matrix, and J is the all 1's matrix. We refer to Ai as the ith

associate matrix for Y (0U i UD).
By (2)±(4), A0; . . . ;AD is a basis for a subalgebra M of MatX �R�. M is known

as the Bose-Mesner algebra for Y .
By [2, p. 45], the algebra M has a second basis E0; . . . ;ED such that

E0 � jX jÿ1J; �6�
Et

i � Ei �0U iUD�; �7�
EiEj � dijEi �0U i; j UD�; �8�

E0 � E1� � � � � ED � I : �9�
We refer to Ei as the ith primitive idempotent for Y �0U iUD�.

By the Krein parameters of Y , we mean the real scalars fqh
ij j0U h; i; j UDg

satisfying

Ei � Ej � jX jÿ1
XD

h�0
qh

ijEh �0U i; j UD�; �10�

where � denotes the entry-wise matrix product [1, p. 64]. In [2, p. 49], it is shown
that

qh
ij V 0 �0U h; i; j UD�: �11�

The Dual Bose-Mesner Algebra M �

Let Y � �X ; fRig0UiUD� denote a scheme, and ®x any x A X . For each integer i

(0U i UD), let E�i � E�i �x� denote the diagonal matrix in MatX �R� with y; y
entry

�E�i �yy �
1 if xy A Ri,

0 otherwise

�
�y A X�: �12�
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From (12) we obtain

E�ti � E�i �0U iUD�; �13�
E�i E�j � dijE

�
i �0U i; j UD�; �14�

E�0 � E�1� � � � � E�D � I : �15�
We refer to Ei as the ith dual idempotent for Y with respect to x (0U i UD).

By (14)±(15), E�0 ; . . . ;E�D is a basis for a subalgebra M � �M ��x� of MatX �R�.
M � is known as the dual Bose-Mesner algebra for Y with respect to x.

For each integer i �0U iUD�, let A�i � A�i �x� denote the diagonal matrix in
MatX �R� with y; y entry

�A�i �yy � jX j�Ei�xy �y A X �: �16�
We note that A�0 ; . . . ;A�D form a second basis for M � [8, p. 379].

By (16), we obtain

A�0 � I ; �17�
A�ti � A�i �0U i UD�; �18�

A�i A�j �
XD

h�0
qh

ijA
�
h �0U i; j UD�; �19�

A�0 � A�1� � � � � A�D � jX jE�0 : �20�
We refer to A�i as the ith dual associate matrix of Y with respect to x (0U iUD).

Eigenvalues and Dual Eigenvalues

Let Y � �X ; fRig0UiUD� denote a scheme. By [8, pp. 377, 379], there exist real
scalars pi� j�, qi� j� (0U i; j UD) which satisfy

Ai �
XD

j�0
pi� j�Ej �0U iUD�; �21�

Ei � jX jÿ1
XD

j�0
qi� j�Aj �0U i UD�; �22�

A�i �
XD

j�0
qi� j�E�j �0U iUD�; �23�

E�i � jX jÿ1
XD

j�0
pi� j�A�j �0U i UD�: �24�

We refer to pi� j� (resp. qi� j�) as the j th eigenvalue (resp. j th dual eigenvalue) asso-
ciated with Ai (resp. A�i ). For simplicity, we de®ne

ki :� pi�0� �0U i UD�; �25�
mi :� qi�0� �0U i UD�: �26�
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In [2, p. 45] it is shown that

p0� j� � 1 �0U j UD�; �27�
ki V pi� j� �0U i; j UD�; �28�

and dually,

q0� j� � 1 �0U j UD�; �29�
mi V qi� j� �0U i; j UD�: �30�

By [2, p. 45] and the construction,

mi � rank�Ei� �0U i UD�; �31�
ki � rank�E�i � �0U iUD�: �32�

And the following useful identities are from [1, p. 65].

qh
ij �

mimj

jX j
XD

r�0

1

k2
r

pr�i�pr� j�pr�h� �0U h; i; j UD�; �33�

ph
ij �

kikj

jX j
XD

r�0

1

m2
r

qr�i�qr� j�qr�h� �0U h; i; j UD�: �34�

The Terwilliger Algebra T(x)

Let Y � �X ; fRig0UiUD� denote a scheme, ®x any x A X , and write M � �M ��x�.
By the Terwilliger algebra for Y with respect to x, we mean the sub-algebra T �
T�x� of MatX �R� generated by M and M �. The following result gives some rela-
tions in T .

2.1 Lemma [8, p. 379]. Let Y � �X ; fRig0UiUD� denote a scheme. Fix x A X

and write A�i � A�i �x�, E�i � E�i �x� �0U i UD�. Then for all integers h; i; j

�0U h; i; j UD�,
ph

ij � 0 if and only if E�i AjE
�
h � 0; �35�

qh
ij � 0 if and only if EiA

�
j Eh � 0: �36�

We now consider the modules for T . Let V denote the vector space RjX j (row
vectors), where the coordinates are indexed by X . Then T acts on V by right
multiplication. We endow V with the inner product

hu; vi � uvt �u; v A V�: �37�

By a T-module, we mean a subspace W of V such that WT JW . A T-module W is
said to be irreducible whenever W 0 0, and W contains no T-modules other than
0 and W . Let W denote a T-module. Then by [4, Lem. 3.3],

WL :� fv A V jhv;wi � 0 for all w A Wg �38�
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is also a T-module. It follows that V can be decomposed into an orthogonal direct
sum of irreducible T-modules.

2.2 Lemma [8, p. 381]. Let Y � �X ; fRig0UiUD� denote a scheme. Fix x A X , and

write E�i � E�i �x� (0U i UD), T � T�x�.
(i) There exists a unique irreducible T-module W0 containing VE0 and VE �0 .

(ii) dim�W0Ei� � dim�W0E
�
i � � 1 �0U i UD�.

We refer to W0 as the trivial T-module.

Proof. Existence is shown in [8], and uniqueness follows from (6) and (12), since
rank�E�0 � � rank�E0� � 1. r

2.3 Lemma. Let Y � �X ; fRig0UiUD� denote a scheme. Fix x A X , and write E�i �
E�i �x� (0U iUD), T � T�x�. Let W be any irreducible T-module distinct from W0.

Then W JWL
0 .

Proof. Fix any vectors u A W and v A W0. We must show that hu; vi � 0. It fol-
lows from Lemma 2.2 that the T-module W0E

�
0 T is nonzero. Since W0 is irredu-

cible and contains this T-module, W0E�0 T �W0. So for some w A W0 and B A T ,
we may write v � wE �0 B. Observe W VW0 � 0, since W, W0 are irreducible. So
WE�0 � 0, otherwise W, W0 have nonzero intersection by Lemma 2.2(i). It follows
that

hu; vi � hu;wE�0 Bi �39�
� huBtE�0 ;wi; �40�

which is zero, since uBtE�0 A WTE�0 �WE�0 � 0, and we are done. r

2.4 Lemma. Let Y � �X ; fRig0UiUD� denote a scheme. Fix x A X , write E�i � E�i �x�
(0U i UD), and let W0 be as in Lemma 2.2. Then

(i) dim�WL
0 Ei� � mi ÿ 1 �0U iUD�.

(ii) WL
0 E0 � 0.

(iii) dim�WL
0 E�i � � ki ÿ 1 �0U i UD�.

(iv) WL
0 E�0 � 0.

Proof of (i). Immediate from (31) and Lemma 2.2(ii). r

Proof of (ii). Immediate from part (i) and lines (26), (29). r

Proof of (iii). Immediate from (32) and Lemma 2.2(ii). r

Proof of (iv). Immediate from part (iii) and lines (25), (27). r

3. The P-Polynomial Property

Let Y � �X ; fRig0UiUD� denote a scheme. We say that Y is P-polynomial (with
respect to the given ordering A0; . . . ;AD of the associate matrices) whenever DV 1,
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and for all integers h; i; j�0U h; i; j UD�,
ph

ij � 0 if one of h, i, j is greater than the sum of the other two, �41�
ph

ij 0 0 if one of h, i, j equals the sum of the other two. �42�
When Y is P-polynomial, we set

yi :� p1�i� �0U i UD�; �43�
ci :� pi

1iÿ1 �1U i UD�; �44�
ai :� pi

1i �0U i UD�; �45�
bi :� pi

1i�1 �0U i UDÿ 1�; �46�

and de®ne c0 � cD�1 � bD � bÿ1 � 0. We note a0 � 0; c1 � 1, and

ai � bi � ci � k �0U iUD�; �47�

where k :� k1. Moreover, by (25) and (28),

y0 � k �48�
V yi �0U i UD�: �49�

For the remainder of this section, Y � �X ; fRig0UiUD� will denote a scheme which
is P-polynomial with respect to the given ordering A0; . . . ;AD of the associate
matrices.

3.1 Lemma [1, p. 190].

yi 0 yj if i0 j �0U i; j UD�: �50�

3.2 Lemma [2, p. 45]. For any integers i; j �0U i; j UD�,
cj�1pj�1�i� � ajpj�i� � bjÿ1pjÿ1�i� � yipj�i�; �51�

where pÿ1�i�, pD�1�i� are indeterminants.

3.3 Lemma [2, p. 45]. For any integers i; j �0U i; j UD�,

cjqi� j ÿ 1� � ajqi� j� � bjqi� j � 1� � yiqi� j�; �52�

where qi�ÿ1�; qi�D� 1� are indeterminants.

3.4 Lemma. For any integer i �0U iUD�,
(i)

yi

k
� qi�1�

qi�0� : �53�
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(ii) Suppose DV 2, and that i 0 0. Then qi�0� > qi�1�. Moreover,

1� yi

b1
� qi�1� ÿ qi�2�

qi�0� ÿ qi�1� : �54�

Proof of (i). Set j � 0 in (52) and simplify, noting a0 � c0 � 0, b0 � k. r

Proof of (ii). The ®rst assertion follows from (49), (50), and (53). To get (54), set
j � 1 in (52) to obtain

c1qi�0� � a1qi�1� � b1qi�2� � yiqi�1�: �55�

Use (47) to eliminate a1, then simplify using (53), noting that c1 � 1. r

3.5 Lemma. Fix any x A X and write E�i � E�i �x� �0U i UD�. Then for any integer

i �0U iUD�,

jX jE �1 EiE
�
1 � qi�0�E�1 � qi�1�E�1 A1E

�
1 � qi�2�E�1 A2E

�
1 : �56�

In particular,

jX jE�1 E0E
�
1 � E�1 � E�1 A1E

�
1 � E�1 A2E�1 : �57�

Proof. By (22),

jX jE�1 EiE
�
1 � E�1

XD

j�0
qi� j�Aj

 !
E�1 : �58�

To get (56), simplify (58) using (35) and (41). To obtain line (57), set i � 0 in (56)
and apply (29). r

3.6 Lemma [8, p. 383]. Fix any x A X , and let W denote an irreducible T�x�-module.

Then there exist unique integers r; d �0U r; d UD� such that

WE�i 0 0 iff rU i U r� d �0U iUD�: �59�

The scalars r and d are known as the endpoint and the diameter of W,
respectively.

4. The Q-Polynomial Property

Let Y � �X ; fRig0UiUD� be any scheme. We say that Y is Q-polynomial (with
respect to an ordering E0; . . . ;ED of the primitive idempotents) whenever DV 1,
and for all integers h; i; j �0U h; i; j UD�,

qh
ij � 0 if one of h; i; j is greater than the sum of the other two; �60�

qh
ij 0 0 if one of h; i; j equals the sum of the other two: �61�

328 J.S. Caughman, IV



When Y is Q-polynomial, we set

y�i :� q1�i� �0U i UD�; �62�
c�i :� qi

1iÿ1 �1U iUD�; �63�
a�i :� qi

1i �0U i UD�; �64�
b�i :� qi

1i�1 �0U iUDÿ 1�; �65�

and de®ne c�0 � c�D�1 � b�D � b�ÿ1 � 0. We note a�0 � 0 and c�1 � 1 [1, p. 67]. Also,

a�i � b�i � c�i � m �0U iUD�; �66�

where m :� m1. Moreover, by (26) and (30),

y�0 � m �67�
V y�i �0U iUD�: �68�

For the remainder of this section, Y � �X ; fRig0UiUD�will denote a scheme which is
Q-polynomial with respect to the ordering E0; . . . ;ED of the primitive idempotents.

4.1 Lemma [1, p. 193].

y�i 0 y�j if i0 j �0U i; j UD�: �69�

4.2 Lemma [2, p. 49]. For any integers i; j �0U i; j UD�,
c�j�1qj�1�i� � a�j qj�i� � b�jÿ1qjÿ1�i� � y�i qj�i�; �70�

where qÿ1�i�; qD�1�i� are indeterminants.

4.3 Lemma [2, p. 49]. For any integers i; j �0U i; j UD�,
c�j pi� j ÿ 1� � a�j pi� j� � b�j pi� j � 1� � y�i pi� j�; �71�

where pi�ÿ1�; pi�D� 1� are indeterminants.

4.4 Lemma. For any integer i �0U iUD�,
(i)

y�i
m
� pi�1�

pi�0� : �72�

(ii) Suppose DV 2, and that i 0 0. Then pi�0� > pi�1�. Moreover,

1� y�i
b�1

� pi�1� ÿ pi�2�
pi�0� ÿ pi�1� : �73�

Proof. Similar to the proof of Lemma 3.4. r
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4.5 Lemma. Fix any x A X , and write A�i � A�i �x�, E�i � E�i �x� �0U i UD�. Then

for any integer i �0U iUD�,

jX jE1E�i E1 � pi�0�E1 � pi�1�E1A
�
1E1 � pi�2�E1A

�
2E1: �74�

In particular,

jX jE1E
�
0 E1 � E1 � E1A

�
1E1 � E1A

�
2E1: �75�

Proof. Similar to the proof of Lemma 3.5. r

4.6 Lemma [8, p. 385]. Fix any x A X , and let W denote an irreducible T�x�-
module. Then there exist unique integers r�; d � �0U r�; d �UD� such that

WEi 0 0 iff r�U iU r� � d � �0U iUD�: �76�

The scalars r� and d � are known as the dual endpoint and the dual diameter of
W, respectively.

5. A Computation in T�x� for P-Polynomial Schemes

In this section, Y � �X ; fRig0UiUD� will denote a scheme with DV 2 which is P-
polynomial with respect to the given ordering A0; . . . ;AD of the associate matrices.

5.1 De®nition. Fix any x A X , write E�1 � E�1 �x�, and pick any nonzero v A VE �1
such that vE0 � 0. By the type of v, we mean the element c A RU fyg such that

vA2vt

kvk2 �
b1

c� 1
; �77�

where we interpret c �y whenever vA2vt � 0.

5.2 Theorem. Fix any x A X , write E�1 � E�1 �x�, and pick any non-zero v A VE�1 such
that vE0 � 0. Then

kvEik2
kvk2 �

mi�k ÿ yi��cÿ yi�
kjX j�c� 1� �0U i UD�; �78�

where c denotes the type of v.

5.3 Remark. With the notation of Theorem 5.2, suppose c �y. Then we take
limits to obtain

kvEik2
kvk2 �

mi�k ÿ yi�
kjX j �0U i UD�: �79�
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Proof of Theorem 5.2. Line (78) holds for i � 0, since vE0 � 0 by assumption, and
since k � y0 by (48). Now assume i > 0. Observe v � vE�1 by construction, so

kvEik2 � hvE �1 Ei; vE�1 Eii �80�
� vE�1 EiE

�
1 vt; �81�

by (7), (8), (13), and (37). Eliminate E�1 A1E
�
1 in (56) using (57) to obtain

jX jE�1 EiE
�
1 � �qi�0� ÿ qi�1��E�1 ÿ �qi�1� ÿ qi�2��E�1 A2E

�
1 � qi�1�jX jE �1 E0E�1 :

�82�
Eliminate E�1 EiE

�
1 in (81) using (82) and simplify using (77), Lemma 3.4(ii) and the

assumption that vE0 � 0 to obtain

kvEik2 � jX jÿ1�qi�0� ÿ qi�1��cÿ yi

c� 1
kvk2: �83�

By (53) and (26),

qi�0� ÿ qi�1� � mi�k ÿ yi�
k

: �84�

Now simplify (83) using (84) to obtain the result. r

5.4 Theorem. Let ysec and ymin denote the second greatest and minimal of y0; . . . ; yD,
respectively, and let Esec, Emin denote the associated primitive idempotents. Fix x A X ,
write E�1 � E�1 �x�, and pick any non-zero v A VE�1 such that vE0 � 0. Let c denote

the type of v. Then

(i) Suppose c0y. Then cV ysec or cU ymin.

(ii) vEsec � 0 i¨ c � ysec.
(iii) vEmin � 0 i¨ c � ymin.

(iv) Let E denote a primitive idempotent of Y other than E0, Esec, or Emin. Then

vE 0 0.

Proof of (i). For convenience, set msec :� mi, where Ei � Esec, and de®ne mmin

similarly. Suppose ysec > c > ymin. Applying Theorem 5.2, (49), (50),

0U
kvEseck2
kvk2

kvEmink2
kvk2 �85�

� msec

jX j
mmin

jX j
�k ÿ ysec��k ÿ ymin�

k2�c� 1�2 �cÿ ysec��cÿ ymin� �86�

< 0; �87�
a contradiction. We conclude that cV ysec or cU ymin. r

Proof of (ii). By Theorem 5.2, c � ysec i¨ kvEseck2 � 0 i¨ vEsec � 0. r

Proof of (iii). Similar. r

Proof of (iv). kvEk2 is never zero, by Theorem 5.2 and part (i) above. r
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5.5 Corollary. Fix x A X , write E�1 � E�1 �x�, and pick any non-zero v A VE�1 such

that vE0 � 0. Then vEi � 0 for at most one i �1U iUD�.
Proof. Immediate from Theorem 5.4(ii)±(iv). r

6. A Computation in T(x) for Q-Polynomial Schemes

In this section, Y � �X ; fRig0UiUD� will denote a scheme with DV 2 which is Q-
polynomial with respect to the ordering E0; . . . ;ED of the primitive idempotents.

6.1 De®nition. Fix any x A X , write A�2 � A�2�x�, E�0 � E�0 �x�, and pick any non-
zero v A VE1 such that vE�0 � 0. By the dual type of v, we mean the element
c� A RU fyg such that

vA�2vt

kvk2 �
b�1

c� � 1
; �88�

where we interpret c� �y whenever vA�2vt � 0.

6.2 Theorem. Fix any x A X , write E�i � E�i �x� �0U i UD�, and pick any non-zero

v A VE1 such that vE�0 � 0. Then

kvE�i k2
kvk2 �

ki�mÿ y�i ��c� ÿ y�i �
mjX j�c� � 1� �0U i UD�; �89�

where c� denotes the dual type of v.

6.3 Remark. With the notation of Theorem 6.2, suppose c� �y. Then we take
limits to obtain

kvE�i k2
kvk2 �

ki�mÿ y�i �
mjX j �0U iUD�: �90�

Proof of Theorem 6.2. Similar to the proof of Theorem 5.2. r

6.4 Theorem. Fix any x A X , and write E�i � E�i �x� �0U iUD�. Let y�sec and y�min

denote the second greatest and minimal of y�0 ; . . . ; y�D, respectively, and let E�sec and

E�min denote the associated dual idempotents. Pick any non-zero v A VE1 such that

vE�0 � 0. Let c� denote the dual type of v. Then

(i) Suppose c�0y. Then c�V y�sec or c�U y�min.

(ii) vE�sec � 0 i¨ c� � y�sec.

(iii) vE�min � 0 i¨ c� � y�min.

(iv) Let E� denote a dual idempotent of Y other than E�0 ; E�sec or E �min. Then
vE�0 0.

Proof. Similar to the proof of Theorem 5.4. r
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6.5 Corollary. Fix x A X , write E�i � E�i �x� �0U i UD�, and pick any non-zero

v A VE1 such that vE�0 � 0. Then vE �i � 0 for at most one i �1U iUD�.
Proof. Immediate from Theorem 6.4(ii)±(iv). r

7. A Matrix Result

Let v � �v0; . . . ; vD� be a ®nite sequence of real numbers. First assume the terms of
v are non-zero. By the number of sign changes of v, we mean the number of indices
i �0U iUDÿ 1� such that vivi�1 < 0. If v has one or more terms which are zero,
we count sign changes by ®rst deleting the zero terms of v and then counting the
sign changes of the resulting sequence. The following is a reworking of a result
found in [5, p. 143].

7.1 Theorem. Let D denote a nonnegative integer, and suppose B is any real

�D� 1� � �D� 1� matrix of the form:

a0 c1 0

b0 a1 c2

b1
. .

. . .
.

. .
.

aDÿ1 cD

0 bDÿ1 aD

0BBBBBBBB@

1CCCCCCCCA
where bici�1 > 0 �0U iUDÿ 1�.
(i) B has D� 1 distinct eigenvalues. In particular, the maximal eigenspaces for B

are 1-dimensional.

(ii) Fix any i �1U iUD� 1�, let y denote the ith greatest eigenvalue of B, and let v
denote an associated (left) eigenvector. Then v has exactly i ÿ 1 sign changes.

Proof of (i). We ®rst show that B is diagonalizable. To this end, set

K :� diag�1; kÿ1=21 ; k
ÿ1=2
2 ; . . . ; k

ÿ1=2
D �; �91�

where

ki :� b0 . . . biÿ1
c1 . . . ci

�0U i UD�: �92�

One readily checks that KBKÿ1 is real and symmetric; it follows by elementary
linear algebra that B is diagonalizable. It remains to show that the minimal poly-
nomial of B has degree D� 1. But this is immediate, since the tridiagonal form of
B implies that I ; B; B2; . . . ;BD are linearly independent. r

Proof of (ii). Set

L :� diag�1; b0; b0b1; . . . ; b0 . . . bDÿ1�; �93�
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and observe

Lÿ1BL �

a0 b0c1 0

1 a1 b1c2

1 . .
. . .

.

. .
.

aDÿ1 bDÿ1cD

0 1 aD

0BBBBBBBB@

1CCCCCCCCA
:

Note that B and Lÿ1BL have the same eigenvalues, and in particular, y is the ith

greatest eigenvalue for Lÿ1BL. Let S denote the maximal (left) eigenspace of
Lÿ1BL associated with y and note that S is 1-dimensional. Observe that vL A S,
and so vL must span S. By [5, p. 143], there exists a vector in S which has exactly
i ÿ 1 sign changes, so vL must have i ÿ 1 sign changes. Observe that by (93), the
ith coordinate of vL equals the ith coordinate of v times a positive scalar, so v and
vL have the same number of sign changes. r

8. P- and Q-Polynomial Schemes

In this section, let Y � �X ; fRig0UiUD� denote a scheme which is P-polynomial
with respect to the given ordering A0; . . . ;AD of the associate matrices and Q-
polynomial with respect to the ordering E0; . . . ;ED of the primitive idempotents.
We begin with a slight modi®cation of a result of Godsil [5, p. 264].

8.1 Theorem. The following are equivalent:

(i) y�1 � y�sec.

(ii) y0 > y1 > y2 > y3 > . . . > yDÿ3 > yDÿ2 > yDÿ1 > yD:
(iii) y1 � ysec.

(iv) y�0 > y�1 > y�2 > y�3 > . . . > y�Dÿ3 > y�Dÿ2 > y�Dÿ1 > y�D.

Proof. (i)) (ii). Consider the vector v :� �y0 ÿ y1, y1 ÿ y2; . . . ; yDÿ1 ÿ yD�.
Observe the ®rst coordinate of v is positive by (48)±(50), and no coordinate is zero
by (50), so it remains to show v has no sign changes. To this end, consider the
matrix

C �

y�0 ÿ b�0 ÿ c�1 c�1 0

b�1 y�0 ÿ b�1 ÿ c�2 c�2

b�2
. .

. . .
.

. .
. . .

.
c�Dÿ1

0 b�Dÿ1 y�0 ÿ b�Dÿ1 ÿ c�D

0BBBBBBBB@

1CCCCCCCCA
:

Observe by (11), (61), (63), and (65),

b�i c�i > 0 �0U iUDÿ 1�; �94�
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so C satis®es the assumptions of Theorem 7.1. By [2, p. 130], the eigenvalues of C

are y�1 ; y
�
2 ; . . . ; y�D; in particular, y�1 is the maximal eigenvalue of C. Setting i � 1 in

(71),

c�j yjÿ1 � a�j yj � b�j yj�1 � y�1yj �0U j UD�: �95�

Using this and (66), (67), one readily shows

vC � y�1v: �96�

Now v has no sign changes by Theorem 7.1, and we are done.
(ii)) (iii). Immediate.
(iii)) (iv). Similar to the argument for (i)) (ii), replacing (ai; bi; ci; y

�
i ; yi) by

(a�i ; b
�
i ; c
�
i ; yi; y

�
i ).

(iv)) (i). Immediate. r

8.2 Lemma. Let a; b; g; d denote integers such that

0U aG g; aG d; b G g; b G dUD: �97�
Then

�yaÿg ÿ yb�d��ya�g ÿ ybÿd� � �yaÿd ÿ yb�g��ya�d ÿ ybÿg�; �98�
�y�aÿg ÿ y�b�d��y�a�g ÿ y�bÿd� � �y�aÿd ÿ y�b�g��y�a�d ÿ y�bÿg�; �99�
�yaÿg ÿ yb�d��y�a�g ÿ y�bÿd� � �y�aÿd ÿ y�b�g��ya�d ÿ ybÿg�: �100�

Proof. Multiply out using the formulas given in [8, pp. 370±372]. r

9. The Bipartite Case

9.1 De®nition. Let Y � �X ; fRig0UiUD� be any scheme. Suppose Y is P-polynomial
with respect to the given ordering A0; . . . ;AD of the associate matrices. We say
that Y is bipartite if there exists a bipartition

X � X� UXÿ �101�
such that the restrictions of R1 to X� and Xÿ are empty.

Observe that if Y is bipartite, then there can be no cycles of odd length, from
which it follows that

ai � 0 �0U i UD�: �102�

For the remainder of this section, let Y � �X ; fRig0UiUD� denote a scheme
which is bipartite P-polynomial with respect to the given ordering A0; . . . ;AD of
the associate matrices.
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9.2 Lemma [2, p. 82]. Suppose the primitive idempotents of Y are ordered so that

y0 > y1 > � � � > yD. Then

yi � ÿyDÿi �0U i UD�; �103�
mi � mDÿi �0U i UD�: �104�

We next show that any Q-polynomial ordering of the primitive idempotents of
Y also has the above property.

9.3 De®nition. Suppose Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then for any integer i �0U iUD�, we de®ne i 0 to be
the unique integer (0U i 0UD) such that yi 0 � ÿyi. Note that mi0 � mi by Lemma
9.2.

9.4 Lemma. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then

pj�i 0� � �ÿ1� j
pj�i� �0U i; j UD�: �105�

Proof. Consider the polynomials Pj�x� �0U j UD� de®ned recursively such that
P0�x� � 1, P1�x� � x, and

xPj�x� � bjÿ1Pjÿ1�x� � cj�1Pj�1�x� �1U j UDÿ 1�: �106�
Observe Pj�x� is an even function when j is even, and an odd function when j is
odd. So it follows that

Pj�yi0 � � �ÿ1� jPj�yi� �0U i; j UD� �107�
since yi 0 � ÿyi. But by (51), (102), and (106), we see that

pj�i� � Pj�yi� �0U i; j UD�; �108�
and so the result now follows. r

9.5 Lemma. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then

qh0
ij 0 � qh

ij �0U h; i; j UD�: �109�

Proof. For any integers h; i; j �0U h; i; j UD�, we have

qh 0
ij 0 �

mimj 0

jX j
XD

r�0

1

k2
r

pr�i�pr� j 0�pr�h0�; �110�

� mimj

jX j
XD

r�0

1

k2
r

pr�i��ÿ1�rpr� j��ÿ1�rpr�h�; �111�

� qh
ij ; �112�

by (33) and (105). r
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9.6 Theorem. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then

yi � ÿyDÿi �0U i UD�; �113�
mi � mDÿi �0U i UD�: �114�

Proof. In view of De®nition 9.3, it su½ces to show

i 0 � Dÿ i �0U iUD�: �115�

Let D1 denote the (undirected) graph with vertex set I � f0; 1; . . . ;Dg, where for
any distinct i, j A I, i is adjacent to j if and only if qi

1j 0 0. By the de®nition of Q-
polynomial, it follows that for any i, j A I, i is adjacent to j precisely when
ji ÿ jj � 1. In particular, D1 is simply a path. By Lemma 9.5, the map i N i 0

induces a nontrivial automorphism of D1. But the only nontrivial automorphism
of D1 is the map i N Dÿ i, and (115) follows. Line (114) follows in view of (104).

r

For the remainder of this section, we note some important properties of
bipartite graphs which will be useful in the proof of our main theorem.

9.7 Lemma. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Fix x A X , write T � T�x�, and let W0 denote the

trivial T-module, as in Lemma 2.2. Then mD � 1. In particular,

WL
0 ED � 0: �116�

Proof. The ®rst statement is immediate from (114), (26) and (29). Now (116) fol-
lows by Lemma 2.4(i). r

9.8 Lemma. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then

(i) [7, p. 301] mV k.

(ii) y�0 V y0.

Proof of (ii). Immediate from (48), (67), and (i). r

9.9 Lemma [1, p. 316]. Suppose DV 2, and set t :� bD=2c (i.e., the greatest integer

less than or equal to D=2). Then 1
2

Y :� �X�; fRig0UiUt� is a P-polynomial scheme,
where X� is from (101), and where

Ri � fyzjy; z A X�; yz A R2ig �0U iU t�: �117�
We refer to 1

2
Y as a halved scheme of Y.

9.10 Lemma. Suppose that Y is Q-polynomial with respect to the ordering E0; . . . ;ED

of the primitive idempotents. Then
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(i) [2, p. 142] The eigenvalues of 1
2

Y are f0; . . . ; ft, where

fi :� y2
i ÿ k

c2
�0U iU t�: �118�

(ii) [1, p. 328] 1
2

Y is Q-polynomial with respect to the ordering E0; . . . ;Et, where Ei

denotes the primitive idempotent for 1
2

Y associated with fi�0U iU t�.
(iii) [2, p. 241] With respect to the Q-polynomial structure in (ii), the dual eigen-

values are f�0 ; f
�
1 ; . . . ; f�t , where

f�i :� y�2i �0U iU t�: �119�

10. The Proof of the Main Theorem

In this section, Y � �X ; fRig0UiUD� will denote a scheme with DV 3 which is not
a cycle. We also assume Y is bipartite P-polynomial with respect to the given
ordering A0; . . . ;AD of the associate matrices and Q-polynomial with respect to
the ordering E0; . . . ;ED of the primitive idempotents.

10.1 Lemma. [9, Th. 1], [6, Th. 5.1]. Suppose y�0 � y0. Then Y is an antipodal 2-
cover, and exactly one of the following must occur:

(i) D � 3, and for some integer k V 3,

�c0; c1; c2; c3� � �0; 1; k ÿ 1; k�: �120�
(ii) D � 4, and for some positive real number g,

�c0; c1; c2; c3; c4� � �0; 1; 2g; 4gÿ 1; 4g�: �121�
(iii) D � 5, and for some positive real number g,

�c0; c1; c2; c3; c4; c5� � �0; 1; g2 � g; k ÿ g2 ÿ g; k ÿ 1; k�; �122�
where k � g3 � 3g2 � g.

(iv) D is arbitrary, and

ci � i �0U i UD�: �123�
Proof. By (48) and (67), m � k. By a result of Yamazaki [9, Th. 1], Y is 2-
homogeneous in the sense of Nomura [6, Def. 3.1]. Nomura's classi®cation of
these schemes [6, Th. 5.1] provides the intersection arrays. From these arrays, one
easily computes that kD � 1, which implies that Y is an antipodal 2-cover. r

10.2 Lemma. Suppose y�0 � y0. Then

y�i � yi �0U iUD�: �124�

Proof. Setting a � i, b � Dÿ i, g � ÿ1, d � 0 in (100),

�yi�1 ÿ yDÿi��y�iÿ1 ÿ y�Dÿi� � �y�i ÿ y�Dÿiÿ1��yi ÿ yDÿi�1�; �125�
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for �1U i UDÿ 1�. By Lemma 10.1, Y is an antipodal 2-cover. So by [2, p. 243],

y�i � ÿy�Dÿi �0U iUD�: �126�
Now by (113) and (126), line (125) becomes

�yi�1 � yi��y�iÿ1 � y�i � � �y�i � y�i�1��yi � yiÿ1�; �127�
for �1U iUDÿ 1�. By assumption, y�0 � y0. So by (62) and (53) with i � 1,
y�1 � y1. Observe that for any i �0U i U bD

2
c�, the coe½cient of y�i�1 is yi � yiÿ1,

which is nonzero by (50), (113). So by a simple induction on (127), we see that

yi � y�i 0U iU
D

2

� �� �
: �128�

Line (124) follows by (113) and (126). r

10.3 Lemma. Suppose y�0 � y0. Then one of the following must occur:

(i) D � 3, and for some integer k V 3,

�y0; y1; y2; y3� � �k; 1;ÿ1;ÿk�: �129�
(ii) D � 4, and for some positive real number g,

�y0; y1; y2; y3; y4� � �4g; 2
���
g
p
; 0;ÿ2 ���

g
p
;ÿ4g�: �130�

(iii) D � 4, and for some positive real number g,

�y0; y1; y2; y3; y4� � �4g;ÿ2 ���
g
p
; 0; 2

���
g
p
;ÿ4g�: �131�

(iv) D � 5, and for some positive real number g,

�y0; y1; y2; y3; y4; y5� � �k; g2 � 2g; g;ÿg;ÿg2 ÿ 2g;ÿk�; �132�
where k � g3 � 3g2 � g.

(v) D is arbitrary, and

yi � Dÿ 2i �0U iUD�: �133�
(vi) D is even, and

yi � �ÿ1�i�Dÿ 2i� �0U iUD�: �134�

In particular, one of (i), (ii) holds in Theorem 1.1.

Proof. From the possible intersection arrays given in Lemma 10.1, the eigenvalues
(unordered) are readily computed. To compute the possible Q-polynomial order-
ings, observe that by (124), and (52) with i � 1,

ciyiÿ1 � aiyi � biyi�1 � y1yi 0U i UD: �135�

Certainly y0 � k, and by [3, Th. 9.6], y1 A fysec;ÿysecg if D is even, and y1 � ysec if
D is odd. Equation (135) can now be used inductively to solve for the remainder of
the Q-polynomial ordering. r
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10.4 Lemma. Fix x A X and write E�i � E �i �x� �0U i UD�.
(i) There exists a nonzero v A VE1 such that vE�0 � 0 and vE�D � 0.

(ii) y�D � y�sec or y�D � y�min.

Proof of (i). By [4, Th. 8.7], there exists an irreducible T�x�-module W with end-
point 1 and diameter Dÿ 2. We pick any nonzero u A WE�1 and show that v :� uE1

has the desired properties. Certainly v A VE1. Observe

vE�0 A WE�0 ; �136�

which is 0, since W has endpoint 1, and

vE�D A WE�D; �137�
which is 0, since W has diameter Dÿ 2. It remains to show v0 0. Observe W 0
W0, so u A W JWL

0 by Lemma 2.3(ii). Now uE0 � 0 by Lemma 2.4(ii), and
uED � 0 by Lemma 9.7. We conclude v � uE1 0 0 by Corollary 5.5, as desired.

r

Proof of (ii). By (i) and Theorem 6.4(iv), E�D � E�sec or E�D � E�min. r

10.5 Lemma. Fix x A X , write E�i � E�i �x� �0U i UD�, and suppose y�0 > y0.

(i) There exists a nonzero v A VE1 such that vE�0 � 0 and vE�1 � 0.
(ii) y�1 � y�sec or y�1 � y�min.

Proof of (i). Observe by Lemma 2.4(i), (iii) and lines (67), (48),

dim�WL
0 E1� � y�0 ÿ 1 �138�

> y0 ÿ 1 �139�
� dim�WL

0 E�1 �: �140�
It follows that the linear transformation

WL
0 E1 !WL

0 E�1 �141�
v! vE�1 �142�

has a nontrivial kernel. This means there exists a nonzero v A WL
0 E1 such that

vE�1 � 0. Observe v A WL
0 , so vE�0 � 0 by Lemma 2.4(iv). r

Proof of (ii). By (i) and Theorem 6.4(iv), E�1 � E�sec or E�1 � E�min. r

10.6 Lemma. Suppose y�0 > y0 and y�1 0 y�sec. Then

(i) �ÿ1�iyi > 0 �0U iUD�.
(ii) D is odd.

Proof of (i). Consider the vector v � �y0; y1; . . . ; yD�. Recall y0 > 0 by (48), so it
su½ces to show v has D sign changes. By Lemma 4.3, v is a left eigenvector for the
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tridiagonal matrix

B� :�

a�0 c�1 0

b�0 a�1 c�2

b�1
. .

. . .
.

. .
.

a�Dÿ1 c�D
0 b�Dÿ1 a�D

0BBBBBBBB@

1CCCCCCCCA
;

with associated eigenvalue y�1 . Observe B� satis®es the assumptions of Theorem
7.1, so we will be done by part (ii) of that theorem if we can show y�1 is the minimal
eigenvalue of B�. But this is the case, since the eigenvalues of B� are y�0 ; y

�
1 ; . . . ; y�D

by [1, p. 193], and y�1 is the minimum of these scalars by Lemma 10.5(ii) and our
assumptions. r

Proof of (ii). Recall yD � ÿy0 by (113), so yD < 0. But �ÿ1�DyD > 0 by (i) above,
so D must be odd. r

10.7 Lemma. Suppose y�0 > y0. Then y�2 is the third greatest of y�0 ; y
�
1 ; . . . ; y�D.

Proof. We may assume y�1 0 y�sec; otherwise we are done by Theorem 8.1. Now
y�1 � y�min by Lemma 10.5(ii), so y�D � y�sec by Lemma 10.4(ii). It now su½ces to
show

y�2 > y�i �3U i UDÿ 1�: �143�
Setting a � 1, b � i, g � 1, d � 0 in (99),

�y�0 ÿ y�i ��y�2 ÿ y�i � � �y�1 ÿ y�i�1��y�1 ÿ y�iÿ1�: �144�
Both factors on the right side of (144) are negative since y�1 � y�min. The ®rst factor
on the left in (144) is positive by (67), (68), so the second factor in (144) is positive
as well. Line (143) follows. r

10.8 Lemma. Suppose y�0 > y0 and y�1 0 y�sec. Then with reference to Lemmas 9.9
and 9.10,

(i) f�1 is the second largest of f�0 ; f
�
1 ; . . . ; f�t ,

(ii) f0 > f1 > � � � > ft.

Proof of (i). By Lemma 9.10(iii) it su½ces to show

y�2 is the second largest offy�i j0U i UD; i eveng: �145�

To this end, observe y�1 � y�min by Lemma 10.5(ii) and our assumptions. Now y�D 0
y�min since D0 1, so y�D � y�sec by Lemma 10.4(ii). By this, line (68), and Lemma
10.7,

y�2 V y�i �1U iUDÿ 1�: �146�
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Line (145) follows from this, line (68), and the fact that D is odd. r

Proof of (ii). Apply Theorem 8.1 to 1
2

Y . r

10.9 Lemma. Suppose y�0 > y0 and y�1 0 y�sec. Then

y0 > yDÿ1 > y2 > yDÿ3 > � � � > y3 > yDÿ2 > y1 > yD: �147�

Proof. By Lemma 9.10(i), Lemma 10.8(ii), and since D is odd,

y2
0 > y2

1 > � � � > y2
�Dÿ1�=2: �148�

The result now follows from this, Lemma 10.6(i), and (113). r

10.10 Lemma. Suppose y�0 > y0 and y�1 0 y�sec. Then

y�0 > y�D > y�2 > y�Dÿ2 > � � � > y�Dÿ3 > y�3 > y�Dÿ1 > y�1 : �149�

Proof. Recall D is odd by Lemma 10.6(ii), and y�1 � y�min by Lemma 10.5 (ii), so it
su½ces to show

y�2i > y�Dÿ2i > y�2i�2 �150�
for 0U iU Dÿ3

2
. We proceed by induction on i. First assume i � 0. Then (150)

holds by Lemmas 10.7 and 10.4 (ii). Next assume i > 0. Setting a � 2i ÿ 1,
b � Dÿ 2i � 1, g � ÿ1, d � ÿ1 in (100),

�y2i ÿ yDÿ2i��y�2iÿ2 ÿ y�Dÿ2i�2� � �y�2i ÿ y�Dÿ2i��y2iÿ2 ÿ yDÿ2i�2�: �151�
The second factor in (151) is positive by the induction hypothesis, and the ®rst and
fourth factors in (151) are positive by Lemma 10.6(i). We conclude the third factor
in (151) is positive, so the left inequality in (150) holds. Setting a � 2i � 1,
b � Dÿ 2i � 1, g � ÿ1, d � ÿ1 in (100),

�y2i�2 ÿ yDÿ2i��y�2i ÿ y�Dÿ2i�2� � �y�2i�2 ÿ y�Dÿ2i��y2i ÿ yDÿ2i�2�: �152�
The second factor in (152) is negative by the induction hypothesis, and the ®rst
and fourth factors in (152) are positive by Lemma 10.6(i). We conclude the third
factor in (152) is negative, so the right inequality in (150) holds, and the induction
is complete. r

Proof of Theorem 1.1. By Lemma 9.8(ii), y�0 V y0. If y�0 � y0, then we are done by
Lemma 10.3. If y�0 > y0, and y�1 � y�sec, then we are done by Theorem 8.1. If
y�0 > y0, and y�1 0 y�sec, then we are done by Lemmas 10.9 and 10.10. In any case,
we are done. r
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