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Abstract. Erdos and Moser posed the problem of determining, for each integer n > 0, the
greatest integer v(n) such that all tournaments of order n contain the transitive subtourna-
ment of order v(n) (denoted 7T, ,). It is known that v(n) = 3 for 4 <n <7, v(n) = 4 for
8 <n<13,v(n) =5for 14 <n <27, and v(n) > 6 for n > 27. Moreover, the uniqueness of
the tournaments free of 774 of orders 6 and 7, and free of 775 and TTg of orders 13 and 27,
respectively, has been established. Here we prove that the tournaments of orders 12 and 26,
free of TTs and TTs, respectively, are also unique. Then, we see that all tournaments of
order 54 contain 777 (improving the best lower bound known for v(n)). Finally, with the
aid of a computer, we obtain the orders cv(r) and guv(s) of the biggest transitive tournaments
contained, respectively, in all circulant tournaments of order r < 55 and in each Galois
tournament of order s < 1000, i.e., in the tournament with set of vertices the Galois field of
order s (whenever it exists) and edge directions induced by the quadratic residues. We get
better upper bounds of v(n), for n < 991.

1. Introduction and Notation

Along this paper, the graphs we consider are directed and without loops or mul-
tiple edges. Given a digraph G, let V(G) — or G, if there is no confusion — and
E(G) denote the sets of its vertices and edges, respectively. A succession of three
vertices ej, ez, e3, of G forms a directed triangle if ejey, ere3, e3¢ € E(G). A tour-
nament T is a digraph such that each couple of vertices, u and v, is joined by
exactly one edge, either uv or vu; T' is a subtournament of T if T' is a tournament
with V(T') « V(T) and E(T') < E(T). A tournament is transitive if it is free of
directed triangles; since there exists a unique transitive tournament of order n,
isomorphisms excepted, we denote it by 77T;,.

Let n be an odd integer and let 4 be a set of nonzero elements of the ring Z,
of integers mod. n such that |[4] = (n — 1)/2 and —x ¢ A, for all x € 4. Then, the
digraph T defined as V(7T) = Z, and xy € E(T) if and only if y — x € 4, for all
x,y € V(T), is a tournament called the circulant tournament of order n induced by
A. Similarly, since there exists a unique field F of order m for any integer m of the
form p”, with p prime and r a positive integer, let G be the digraph such that
V(G) = F and, for all x,y € V(G), xy € E(G) if and only if there exists a nonzero
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ze F with y — x = 22, It is easy to see that G is a tournament (that we call Galois
tournament) if and only if m = 3 (mod. 4).

Erdés and Moser [2] posed the problem of determining, for each positive integer
n, the greatest integer v(n) such that all tournaments of order n contain 77, It is
well known that v(1) =1, v(2) =v(3) =2, v(n) =3 for 4 <n <7, v(n) =4 for
8 <n<13, v(n) =5 for 14 <n <27, and |log,(n/55)| < v(n) < 2[log,(n)] +1
forn > 282, 6, 7].

The uniqueness of the tournaments of orders 7, 13, and 27, free of TTy, TTs,
and TTyg, respectively, has been proved [6,7]. Then, for k = 4, 5, and 6, the largest
tournament free of 7T} is unique. Moreover, it has also been proved that there
exists a unique tournament of order 6 free of 7T.

In this paper, after presenting some properties of the tournaments free of 774
(Section 2), we prove that the tournaments of orders 12 and 26, free of 775 and
TTg, respectively, are also unique. We show a tournament of order 31 free of 775
and see that all tournaments of order 54 contain 777, implying v(n) = 6 for
28 <n <31, and v(n) > [log,(n/54)| + 7 for n > 32; this improves the best lower
bound known for v(n) (Sections 3 and 4). Finally, since for each integer n < 31,
the exact values of v(n) are induced from circulant or Galois tournaments, in the
last Section (5) we obtain, using a computer, the orders co(r) (r < 55) and gv(s)
(s < 1000) of the biggest transitive tournaments contained, respectively, in all cir-
culant tournaments of order r and in each Galois tournament of order s. We get
better upper bounds of v(n), for n < 991.

Let us introduce some concepts. Suppose that G is a tournament.

Let x, x1, X2, ..., x, € V(G) and W = {x|, x2, ..., x,}. Define N (x) =
{v € V(G)|xy € E(G)}, N;(x) = {y € V(G)|yx € E(G)}, NE(x1,x2,...,%x,) =
N&r(W) = ﬂz‘rzl N(Jg(xf)a and N(_?(x17x27"' ax") = NE(W) = mirzl NE(XI‘)§ Né(x)
and N (x) are called the outset of x and the inset of x, respectively. For the sake
of clarity, we will omit the subscript G when the tournament G considered in a
given context is clear. Given R, S < V(G), we say that R covers S or S is covered
by R whenever S « N/ (R). The set of directed triangles of G is represented by
DT(G). If x,y,z € V(G) form a directed triangle with xy, yz,zx € E(G), let xyz
denote such a triangle. For a subtournament G’ of G and abc € DT (G"), a center
of abc in G' is any vertex of G’ that covers or is covered by {a, b, c}.

Given the integer n, let V,(G) = {u € V(G)||[NT(u)| = n}; G is an n-regular (or
regular) tournament if V' (G) = V,(G). If H < V(G), denote by <H ) — or simply
H, if there is no confusion — the subtournament of G induced by H. The tourna-
ment G is defined as: V(G¢) = V(G) and xy € E(G°) if and only if yx € E(G).
Let Aut(G) denote the group of automorphisms of G. Finally, P ~ Q means that
the tournaments P and Q are mutually isomorphic.

2. Tournaments Free of 774

In this section we present some properties of the tournaments free of 77, of orders
5,6, and 7.
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Let ST7 be the circulant tournament of order 7 induced by the set of quadratic
residues (mod. 7), that is, {1,2,4}. It is well known that S77 is the unique tour-
nament of order 7 free of 7T, [6]. We denote by STy the tournament obtained
when a vertex x is eliminated from S77; note that ST§ is independent of the vertex
x selected. Fori =0,1,2,3, let 7; be the set of the directed triangles in S7¢ which
have exactly i vertices with outsets of order 3 (Fig. 1). Clearly, |75| =1 and
| 73| = 1; let Tj (resp., T3) denote the unique element of F (resp., 73). It is easy to
verify that:

ST = ST, \ (0}

4 <t

\ //\ ‘

2<— 5

Fig. 1. 7y = {356}, 71 = {156,235,463}, 75 = {126,245,134}, and 73 = {124}

3

P2.1. STy is the unique tournament of order 6 free of TTy [6].

P2.2. 1) V(STG) = Vz(ST(,) U V3(ST(,) with |V2(ST6)| = |V3(ST(,)| =3.
Moreover, 1i) if x € V3(STg) (resp., x € V2(ST)), then (Nt (x)> € 71(STs) (resp.,
(N~ (x)) € 75(ST¢)).

P2.3. STs contains exactly eight directed triangles: |7o| =1, |71| =3, |72| =3,
and |73 = 1.

P2.4. {Ty, T5} is the unique bipartition of V (STg) such that each component forms a
directed triangle.

P2.5. Let T € DT (STs). Theni) T covers (resp., is covered by) a vertex t if and only
if TeJ, (resp., T € 71); moreover, when it exists, t is unique. In particular, ii)
every T € DT (STg) has at most one center in STg.

P2.6. Let abe E(Ty) (resp., abe E(T3)). Then, there exists c € V(T3) (resp.,
c € V(Ty)) such that abc € DT (STs).

Given a tournament R isomorphic to ST, let 7;(R) denote the family of
directed triangles of R corresponding to Z; in ST, for i = 0,1,2,3, and let T;(R)
denote the triangle of R corresponding to 7}, for j =0, 3.
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Let ST be the tournament obtained when a vertex y is eliminated from S75; it
is easy to see that ST is independent of the vertex y selected. Also, let Q75 and
RT; be the tournaments shown in Fig. 2. It is not difficult to prove that:

Fig. 2. The tournaments of order 5 free of 774

Lemma 2.1. The tournaments STs, QTs, and RTs are not isomorphic to each other
and they are the unique tournaments of order 5 free of TTj.

P2.7. All subtournaments of STg of order 5 are isomorphic to STs.
P2.8. If H € {STs, QTs,RTs} then H ~ H".
P2.9. The tournament RTs is 2-regular.

P2.10. Let H € {STs,QTs}. Then, |Vi(H)| =1, |V2(H)| =3, and |V3(H)| = 1.
Moreover, if xe Vi(H) (resp., xe V3(H)), we have (N~ (x)) e DT(H) (resp.,
(N*(x)) e DT(H)).

3. Tournaments Free of TT5

The uniqueness of the tournament of order 13 not containing the transitive sub-
tournament of order 5 is well known [6]. In this section we prove that there also
exists only one tournament of order 12 free of this sobtournament.

Let ST)3 be the circulant tournament of order 13 induced by the set
{1,2,3,5,6,9}. This tournament satisfies [6]:

P3.1. ST3 is the unique tournament of order 13 free of TTs.

P3.2. For x € V(ST3) we have {N*(x)) ~ STs and (N~ (x)) ~ STs.
Moreover,

P33. If x,y € V(STi3) with y € NT(x) then |[N~(x) N N*(y)| < 4 (since by P2.2-i
and P3.2 (Nt (x)> =~ STg, INT(y)] = 6, and [NT(x) NN (y)| =2 or 3).

Now let us consider the tournaments of order 12 free of T'Ts.
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Lemma 3.1. Let G be a tournament of order 12 free of TTs and let x € V(G). Then,
(NT(x)) (and {N~(x))) is isomorphic to STg, STs, QTs or RTs.

Proof. By P2.1 and the Lemma 2.1 we only need to see that |[N"(x)| =5 or 6.
Clearly, |[NT(x)| <7 and [N~ (x)| <7. If |[NT(x)|=7, then <N*t(x)) ~ ST,
[N~ (x)| =4, and (N~ (x)) contains 773; in this case, in [5, 6] it is proved that G
contains 77s. Hence, [Nt (x)| < 6. We similarly deduce |N/.(x)| <6, that is,
IN~(x)| < 6. Thus, [N"(x)| =5 or 6.

Lemma 3.2. Let G be a tournament of order 12 free of TTs, and let x € V5(G).
Then, (Nt (x)) # QTs.

Proof. Let us proceed by contradiction. Suppose that (N*t(x)> ~ QTs. Let
Nt (x)={a,b,c,d,e} with NT(d,x) =N (e)NNT(x)={a,b,c} and abce
DT(G) (Fig. 3,a).

Fig. 3. There exists x € V(G) with {<NT(x)> ~ QTs. a: N*(x) and N~ (x); b, ¢: Case
abc e 71 (N*(d)); d, e: Case abc = To(N*(d)); 1, g: Case abc = T3(N*(d))
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Since [N~ (d)| =5 or 6 (Lemma 3.1), we have [N (d,x)| =3 or 4; but
(N~(d,x)) is free of TT5 (as G is free of TTs), implying |N~(d,x)| =3 and
(N~ (d,x)y e DT(G). Then, let N~ (x) = {j, k,I,m,n,s} with (N~ (d,x))> = jki
and N*(d) NN~ (x) = {m,n,s}. Thus, {<N*(d)) ~ ST and abc € DT(N*(d)). By
P2.3 there are four cases.

Case I abc € 7,(N*(d)).

Assume that m is the center of abc in (N (d)) (P2.5-i), that is, a,b,c € N~ (m).
Applying P2.2-i in <N (d)) we have n,s € N*(m). Also by P2.2-i [N~ (m, x)| =2
or 3 (as (N~ (x)) ~ ST); because [N~ (m)| =5 or 6 (Lemma 3.1) and a,b,c,
de N~ (m)NN*(x), we have [N~ (m,x)| =2 and [N~ (m)| = 6. Hence, e € Nt (m),
and since {a,b,c,m,x} = N~ (e) and {{a,b,c,m,x}) ~ QTs, by P2.7 [N~ (e)| = 5,
(N*(e)y ~ STs, and N*(e) = {d,j, k,I,n,s}. Finally, as mns ¢ DT(N~(x)), by
P2.4 and P2.5-i there exists the center r of jk/ in (N~ (x)), that is not m (because n,
se€ Nt(m) and |[N~(m, x)| = 2); this means r = s or r = n. Then, r and d are cen-
ters of jkl in (N*(e)), contradicting P2.5-ii.

Case II. abc € 71(N*(d)).

Assume that m is the center of abc in <N*(d)) (by P2.5-i a,b,c e N*(m))
and se NT(n). From P2.2-i we get n, se N~ (m). Since |N~(n)N{a,b,c}| =
IN“(n) NNT(d)| =2, by symmetry we can also assume b,ce N~ (n); as m is
the unique center of abc in (N*t(d)) (P2.5-ii), we have a € N*(n) (Fig. 3,b).
By P2.2-ii {(N*(n,d)y e DT(N*(d)), that is, se N*(a). Also P2.2-ii implies
se N~ (c) (as a,ne N*(c) but {a,n,s}>¢ DT(N*(d))) and se N*(b) (as ¢,
me N*t(s) but ({b,c,m}> ¢ DT(N*(d))).

On the other hand, since <{{m,n,s}> ¢ DT(N~(x)), by P2.4 and P2.5-i there
exists the center r of jk/ in (N~ (x)), different from s, because s e N*(n) N N~ (m).
If r=m, then j, k, l e N*(m) (as n, se N~ (m)) and |[N*(m)| =|{a,b,c,j, k,I,x}|
=7, which is not possible. Thus, r=n and j,k,/ e N~ (n) (Fig. 3,c). Since
INT(m) NN~ (x)| = 2, by symmetry we can assume k,/ € N*(m); then, j € N~ (m),
as n is the unique center of jk/. Hence, (N~ (m, x)) = {{n,s,j}> € DT(N(x)), by
P2.2, and je N*(s). From P2.2-ii ke N~ (s) (as j,me N*(s) but {j,k,m}> ¢
DT(N~(x))) and / € N*(s) (as /,n,s € N*(k)).

Note that e € N*(n) N N~ (m) N N*(s), because [N~ (n)| = {b,¢,d,j, k,I}| =6,
INT(m)| = |{a,b,c,k,I,x}| =6, and, if ee N~ (s), we would have (N~ (s)) =
Ha,b,d,e k,n}) ~ STs with d and e centers of abn, contradicting P2.5-ii.

Finally, since <N*(s)> = {{c,e,j,I,m,x}> ~ ST and x is the unique center
of mlj in {N*(s)), then there exists ¢t e {m,l,j} NN~ (e), implying [N~ (e)| >
{a,b,c,n,s,x,t}| =7, which is a contradiction.

Case III. abc = To(N*(d)).

By P24 {{m,n,s}) = T3(N*(d)); suppose, without loss of generality, that
mns = T5(N*t(d)) and <N *(d)) (~STs) is as in Fig. 3,d. Since |[N*(e) N{j, k,}|
> 2 (as otherwise {{d,e,x} U[N~(e)N{j, k,1}]> would contain 77Ts), by symme-
try we can assume k,/ € Nt (e). Because {mmns,jkl} = {To(N~(x)), T5(N~(x))}
(P2.4), from P2.6 there exists r € {m,n,s} with rkl € DT(N~(x)); again by sym-



On Tournaments Free of Large Transitive Subtournaments 187

metry, assume r = m. Note that m,n,s € Nt (e), because te {m,n,s} NN (e)
implies {{z,x,e} U [NT(t)N{a,b,c}|> ~ TTs.

Hence, N*(e) = {d,k,l,m,n,s}. Since {{d,n,s}> ¢ DT(N*(e)), by P2.4 and
P2.5-i there exists the center p € {d,n,s} of mkl in (N*(e)), that is not d, as
de NT(k)NN~(m). If p=n, sincen € N*(m), ne N*(k,I) as well; so, [N~ (n)| =
4 in {N*(e)> ~ STs, contradicting P2.2-i. Thus, p =35, and (as me N*(s))
k, I, me N*t(s), implying se V3(N (x)). From P2.4 mns= T;(N (x)) and
jkl = To(N~(x)); then, me V3(N~(x)), n, k, je€ N (m), and njk e DT(N~(x))
(Fig. 3,e).

We have Nt (m) = {a,b,j,k,n,x} with ne V3(N*(m)) and x € Vo(N*(m)),
and by P2.5-i there exists ¢ € {a, j, k} center of bnx in (N ' (m)). Since a e N*(n) N
N (b)andje N*(n) NN~ (x),thent = kand b € N* (k). Hence, {{s,m, k,x,b}> ~
TTs, a contradiction.

Case IV. abc = T5(N*(d)).

By P2.4 {{m,n,s}) = To(N*(d)); assume, without loss of generality, that
(N*t(d)) is as in Fig. 3,f. Since jkI,mns e DT(N~(x)), then mns = T3(N~(x))
or mns = To(N~(x)). In the latter, for ze {m,n,s} we have 5<|NT(¢)] =
INF(0) NN ()] + [{xH + INF() 0 {a, b, e} + IN*(1) N {e}] = 4 + [N+ (1) N {e},
that is, ee N7(¢) and [N~ (e)| = |{a, b, ¢, m, n, s, x}| = 7, which is impossible.
Hence, mns = T5(N~(x)) and jkl = To(N—(x)); by symmetry of STz we can
assume that (N~ (x)) is as in Fig. 3,g.

First let us see that if he {m,n,s} with N*(h)N{j k,I} = N*(e), then
e € N~ (h). Suppose, without loss of generality, that 2 = m and N*(m) N{j, k,[} =
{k, 1} =« N*(e) with ee N*(m). Then, <N*(m))={c, e, k, I, n, x}> ~ ST.
Because {{c¢,/,n}) ¢ DT(G), by P2.4 and P2.5-i there exists the center ¢ € {c,/,n}
of xek in {(N*(m)). Since ce N"(x)NN~(e) and I e N*(e) NN~ (x), then t =n
and ee N*(n). Thus, N~ (e) ={a,b,c,m,n,x}, that is, N (n)N{j k,1} =
{j,k} = N*(e) with e € N*(n). Repeating the previous arguments in 7, s, and xej
(instead of m, n, and xek, resp.), we obtain e € N*(s), that is not possible.

Note that |[N*t(e) N{j,k,I1}| =2, as otherwise {{d,e,x} U[N~(e)N{j,k,I}]>
would contain TTs; by symmetry suppose, without loss of generality, that k,
[ € N*(e). From the previous paragraph we have ¢ € N~ (m). Also by that para-
graph we must have j € N~ (e), as otherwise, applying it in » and s, instead of m,
we would deduce n,s € N*(e), implying [N*(e)| = |{d,j, k,I,m,n,s}| = 7. Then,
(N~ (m)) =<{a,b,d,e,j,s}>~ STg; since {{a,e,j}>¢ DT(N (m)) and a, je€
N7 (s), by P2.2-ii e € N~ (s). Note that b € N (k), as otherwise, {{b,j,e,m,k}> ~
TTs. Hence, {{k,d,b,c,s}>~ TTs or {{c,e,n k,s}>~ TTs, if ce N*(k) or
¢ € N~ (k), respectively. O

Lemma 3.3. Let G be a tournament of order 12 free of TTs. Then, there exists
x € V(G) with (Nt (x)) ~ STs or (N~ (x)) ~ STs.

Proof. Let us proceed by contradiction. Since G is free of 775, by P2.8 and
Lemmas 3.1 and 3.2 we can assume that (N ' (r)> ~ RTs and {(N~(s)) ~ RTs, for
all r € V5(G) and for all s € V(G). Clearly, | Vs(G)| = |Vs(G)| = 6. Let x € V5(G),
that is, (Nt (x)) ~ RTs. We have:
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1. If je Nt (x) with [N~ (j,x)| = 3, then <N~ (j)> ~ ST (since (N~ (j)> ~ RT5s
implies |N~(j, x)| = 2) and <N~ (j,x))> € DT(N~(x)).

12. If yoe V3(N~(x)) then {N*t(y9)) ~ STs (because {(N*(y9)> ~ RTs implies
2=[N"(x)NN"(yo)])-

B. If je N*(x) and yy,y2,y3 € N~ (x,j), then |{y1,y2,y3} N V6(G)| > 2 (since by
(11) KN~ (j)> ~ STg and {{y1,y2, 3} is a directed triangle in (N~ (j)) that covers
x, that is, j € Vs(G) and {{y1,y2,v3}> € 72(N~(j)) (P2.5), following the stated
from (12) applied in <N~ (j))).

Let Nt(x) ={a,b,c,d,e}, N~ (x) = {m,n,s,u,v,w}, and mns = T3(N~(x)),
as in Fig. 4. We consider two cases.

\¢ s
\\i/%\j4¢v e ;\\e

Fig. 4. <NT(x)) = {{a,b,c,d,e}> ~ RTs and (N~ (x)) = {{m,n,s,u,v,w}> ~ ST

Case I. There exists p € NT(x) with (N~ (p,x)> = T3(N~(x)).

Assume p = a; by (11) |N~(a)| = 6. Since x is the center of mns in (N~ (a))
(={d, e, m, n, s, x}>), then mns = 7,(N~(a)) and |{m, n, s} N V3(N~(a))| = 2,
say m, ne V3(N (a)), implying s, xe Vo(N (a)). From P2.5-ii |[N*t(e)N
{m, n, s}| <2, thatis,e € V(N (a)). Thus,d € V3(N~(a)) and mnd = T3(N~(a)).
Since <Nt (n)> = {a, d, s, u, v, x}> ~ STs and {{a, d, s} ¢ DT(N"(n)) with q,
s€ N~ (u),byP2.2-iid € N*(u). Finally, by (12) 6 = |[NT(m)| = |N*(m) NN~ (a)|+
{a, v,w}| = 6; then, b, ¢, d, ue N~ (m) with b, ¢, u e N~ (d), implying m € V(G)
with (N~ (m)) # RTs, a contradiction.

Case II. If there exists pe NT(x) with (N (p,x)>e DT(N (x)), then
(N~ (p,3)> € Zo(N~(x)) UZ3 (N~ (x)) U Z3(N~ (x)).

Let B = (V5(G)). Since |V(B)| = 6, there exists g € V(B) such that [N3(g9)| >
3, and by (/12) |[Nz(g)| = 3 with Nz (g) = V2(N~(g)); we can assume x = g. Then,
INT(k,x)| =2, for all ke N~(x), and there are 12 edges from N~ (x) to N*(x);
by (I1) there exist j,/ e NT(x) with (N(j,x)>,{N~(I,x)y> e DT(N~(x)), say
a=jandb=1 Let T, = <N (a,x)) and T, = (N~ (b, x)); since G is free of TT5s
then T, # T}, and by case I we get T, # T3(N~(x)) and T} # T53(N~(x)). Because
u,v,we Vs(G) (as {u,v,w} = Vo(N~(x))), then (I3) implies T,, Tp € 72(N~(x));
hence, there exists /i, € V3(N~(x)) with i, € V(T,) NV (Tp), say hy = m.
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Since a,b € V5(G) — by (I1) —, then N*(m) = {a,b,n,v,w, x} with a, b, v, w, x €
Vs(G), and there exists a unique vertex fy € Vs5(G) with f. € N~ (m), that is,
Je=u

Note that m € Vs(G¢) with inset of order 1 in (V5(G°)). Since Lemma 3.3
holds in G if and only if it holds in G¢, we can assume that there exists j € Vs(G)
withinset of order 1 in {¥V5(G), thatis, | N5 ()| = 1. Then, because ) ", _ 5 [Nz (¥)| =
|E(B)| = 15 and by (/2) [Nz (¢)| < 3 (for all £ € V'(B)), besides x, there exist three
vertices y,z, g € Vs(G) with inset of order 3 in {(V5(G)).

Finally, applying in y the same arguments used for x, if %, # h, then,
as [Nt (hy)NVs(G)| =|N*(h,)NVs5(G)| =5 and |V5(G)]| =6, we must have
IN*(hy, hy)| >4, implying that {{hy,h,} UNT(hy,h,)> contains TTs. Hence,
hy, = hy, that implies f, = f,. Similarly we deduce h. = h, = h, and f. = f, = f..
Then, {x,y,z,q} = N™(hy, f) and {{hy, fx, x,y,2,q}) contains TTs. O

We denote by ST}, the tournament obtained when a vertex z is eliminated
from ST3. Since ST)3 is a circulant tournament with ST, ~ ST}3, then ST}, is
independent of the vertex z selected and ST}, ~ ST>.

Theorem 3.4. Let G be a tournament of order 12 free of TTs. Then, G is isomorphic
to ST,

Proof. By lemmas 3.2 and 3.3 we know that there exists xe€ V(G) with
(NT(x)) ~ STs5 or (N~ (x)» ~ STs. Clearly, we can assume that (N ' (x)) ~ STs;
then, (N~ (x)) ~ ST¢. Let N*(x) = {a,b,c,d, e}, as in Fig. 5.

Cio

Fig. 5. There exists x € V(G) with (N*(x)> ~ STs and, hence, (N~ (x)> ~ STs

Since |[N~(d)| = 5, xe N~(d), and {e} = N~ (d) N N*(x), we have |N~(d, x)|
> 3, that implies (N~ (d, x)) € DT(G) (as G is free of TTs) and [N~ (d)| = 5. Let
N~ (x) ={m,n,s,j, k, 1} with jkl = (N~ (d,x)>, {m,n,s} = NT(d)NN(x), and
s € N*(n). Note that:
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tl. <N (d)) ~ STs (because (N (d)) & QTs — Lemma 3.2 — and N (d) =
{e,j,k,l,x} with j k,l € N~ (x)).
Q2. [INT(e)N{j,k,[}| =2 - by (t1).

Since {N*(d)) ~ STc with abc e DT(N*(d)), by P2.3 there are four cases.

Case I abc € 75(N*t(d)).
Assume that m is the center of abc in N*(d) —P2.5—; then, a,b,c € N~ (m) and

(
n,s € N*(m) (Fig. 6,a). Since 6 > |N~(m)| = [{a,b,c,d}| + |N~(m,x)| = 6, we
have (N~ (m)) =~ STs and [N~ (m,x)| = 2.

L n <— k
s < m —>» n A »~ /7/
AAR v XN
R2Ve
// “ S x\\) 1
/ \ \‘\ \\
o > b ? \‘L/
(a) (b} (c)
(N"(e))
///////// n < j s —> j
R S AN A
A\\<’\ / VL ‘ \Lk/ 2
/& A ﬁ\\\ \1)‘\ Vo / \L /
b \( a ( ¢ e \‘\ V ¢
— 7 s < k a < d
(d) (e) (f)
¢ < ) . (N'(m))
~ =4

Fig. 6. There exists x € V(G) with (N (x)> ~ STs. a, b: Case abc € 75(N*(d)); ¢: Case
abc = T5(N*(d)); d: Case abc = To(N'(d)); e, f, g, h: Case abc € 71(N"(d))
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Let us see the edge directions in <N (x)). Since jkl e DT(N~(x)) and
mns ¢ DT(N~(x)), by P2.4 and P2.5 there exists the center y € {m,n, s} of jk/ in
{N~(x)), whichis neither n (asn € N*(m) N N~ (s)) nor m (because [N~ (m, x)| =2
and s,n e Nt (m)), that is, s =y. Then, j,k,/ € N*(s) and from P2.5-ii we get
NT(m)N{j, k, I} # &; by symmetry, we can assume j € N*(m) (Fig. 6,b). Hence,
P2.2 implies k,/ € N~ (m) and jns = (Nt (m)NN~(x)) e DT(N(x)), and since
j,s€ N~ (k), also by P2.5-iin e N* (k).

Now, consider the set N*(e). Inasmuch as (N (d))» ~ STs in G° — by (¢1) and
P2.8 — and j,k,/ € N;.(s), then we obtain a case similar to the present one if
we take G¢ and d instead of G and x, respectively, in which e plays the same
role. Thus, we can assume that |[N*(e)] =6 in G. Note that m e N~ (e), since
N=(m) = {a, b, ¢, d, k, [}. Then, because 6 = |[N*(e)| = [{a, d}| + |[N*(e) N
{J,k, I} + |NT(e) N {n,s}|, by (£2) we get n,s € N*(e). Also, j € N*(e), as other-
wise {{j,e,k,d,n}> ~ TTs.

Finally, since N*(m)={e,j,n,s,x} with n;s,je N~ (x)NN*t(e), then
(N*t(m)) # RTs (P2.9) and {(N*(m))> = STs (P2.5-ii), a contradiction.

Case II. abc = T5(N*(d)).

Here we have {{m,n,s}> = To(N"(d)). Assume that (N *(d)) is as in Fig. 6,c.
Note that e e N (m), as otherwise, since ¢, d, e,m,x € N~ (a) with ¢,d,e € N*(x) N
N~ (m), by P2.5-ii and P2.9 (N~ (a)) ~ QTs, contradicting Lemma 3.2. Also we
must have |[N*(e)| =35, because [N (e)| =6 implies by (#2) that n,s e N*(e)
(as b,c,m,x e N~ (e)) and {{e,d,a,n,s}y ~ TTs.

By P2.4 the triangle mns e {To(N~(x)), T3(N~(x))}. If mns = To(N~(x)),
then, for all z € {m, n, s}, 5 < |[Nt(z)| = INT(z) N N~ (x)| + {x}| + [NT(z) N
{a, b, c,d}| + |INT(z) N {e}| = 4 + |[N*(z) N {e}], that is, e € N*(2),
implying |[N—(e)|=|{b, ¢, m,n, s, x}U[N—(e)N{j, k, I}]|=7 - by (2) -
contradicting Lemma 3.1.

Hence, mns = T5(N~(x)) and jkI = To(N~(x)). Since jlk = T3(N/.(x)), if now
we consider G, d, x, jlk, msn, and acb instead of G, x, d, abc, mns, and jki,
respectively, by (¢1) we obtain a case similar to the present one in which e plays
the same role. This implies [N (e)| = [NZ.(e)| = 5, a contradiction.

Case III. abc = To(N*(d)).

In this case, mns = T5(NT(d)). Assume that (N*(d)) is as in Fig. 6,d. Since
by (¢1) KN~ (d)) ~ ST, taking G, d, x, jlk, and msn, instead of G, x, d, abc, and
mmns, resp., we get a case similar to the present one or to case II. Hence, we must
have jlk = Ty(N¢.(x)), that is, jkl = T3(N~(x)), implying mns = To(N~(x)).
Because e and the set {m, n, s} play the same role in both situations, we can
assume |N*(e) N {m, n, s}| = 2.

Since (N~ (a)) = {{c,d,e,n,s,x}> ~ STs with x the center of ced and c,
d e N~ (n), by P2.5-iiwe have e € N*(n), implyingm, s € N*(e) and {{e, d,s,a,m})
~ TTs, a contradiction.

Case IV. abc € 71(N*(d)).
Here we see G ~ STj,. Assume that m is the center of abc in {(N*(d)); then,
a,b,ce Nt (m)-byP2.5-and n,s e N~ (m).



192 A. Sanchez-Flores

Let us begin proving that the edge directions in (N~ (x)) are as in Fig. 6,e.
Since {{m,n,s}> ¢ DT(N~(x)), by P2.4 and P2.5-i there exists the center r e
{m,n,s} of jkl in (N~ (x)), different from s, as se€ N~ (m)N N (n). We have
INT(m)N{j,k,I1}| <2 (because a,b,c,x € N*(m)) and n,s € N~ (m), then r =n
with j,k,/ € N~ (n) and there exists ¢ € {j,k,/} N N~ (m); by symmetry, we can
assume ¢ =j. Thus, s,n,j € N~ (m,x), and by P2.2 the triangle sjn € DT (N~ (x))
and k,l € N*(m). Finally, because {{m,k,j}> ¢ DT(N~(x)) and m, j € N*(s), by
P2.2-ii we get k € N~ (s), that implies s,n,/ € N*(k) and sin €e DT(N~(x)).

Now, we will prove that the set N (e) and its edge directions are as in Fig. 6, .
Considering G¢ with d and x, instead of G, x, and d, resp., we obtain a case similar
to the present one, by (1), in which e plays the same role. Hence, we can assume
INT(e)] = 6in G.

Since N*(m) = {a,b, ¢, k,l,x}, then N~ (m) = {d, e, j,n, s}; because {{j,d,e}>
¢ DT(N~(m)) and j,d € N~ (n), by P2.5-ii and P2.9 the vertex ¢ € N*(n). Then, as
6 = IN*(e)] = [{a,d,m}| + IN* () N{j.k. I} + [N* () N{s} = 5 + [N*(e) N {s}],
it follows that se N*(e). Also je N*(e), because s is the center of ned in
(N~ (m)) and n,d € N*(j). Finally, let us see that k € N*(e), that implies — by
(12) — 1 e N~ (e). Since {(Nt(m))y = {a,b,c,k,l,x}> ~ STg, and x is the center
of abc in {(N*(m)), by P2.5-ii there exists re N*(k)N{a,b,c}; then, N*(k) =
{r,d,l,n,s,x}, implying e € N~ (k).

We have N*(e) = {a,d, j, k,m,s}. By P2.2-ii the triangle asm € DT (N (e)), as
a,s,me N*(d) and a € N*(m). Therefore, akd = (<N~ (s) N N*(e)> e DT(N*(e)),
and hence ajm = (N~ (k) NN*(e)> e DT(N*(e)).

Next, we will see that (N~ (s)) is as in Fig. 6,g. Note that se Vo(N*t(d)),
because s € V3(N*(d)) implies b,c,m e N*(s) (as a,n € N~ (s)) and {{b,c,m}> €
DT(N*(d)), contradicting b,ce N*(m). Then, there exists /e {b,c} with
he N~ (s), that implies <N~ (s)) = {{a,h,d,e,k,n}) ~ STs. Inasmuch as a,
he NT(d), by P2.4 and P2.5 there exists the center of ekn in (N~ (s)), that must
beh,asde NT(e)N N~ (n) and ae N*(e) N N~ (k). Thus, e, k,n e N*(h) (because
ee N*t(h)), and a,d e N~ (h); this means h=5 (and ce N*(s)). Since a,b,
ne Nt(d), we have abne DT(N(s)). Moreover, ne Nt(c), as {{¢,m,n}) =
(N-(a) N N*(d)> e DT(N*(d)).

Hence, Nt (a) = {b, j, k,1,s} (because N~ (a) = {c,d, e,m,n, x}), and it remains
to know the directions of some edges between {b, ¢} and {;j, k,[}. Since N (m) =
{a,b,c,k,l,x} with b,k,l € N*(a), then bkl e DT(N*(m)). Because {{b,c,x}> ¢
DT(N*(m)) and b, x € N*(/), by P2.2-ii the vertex ¢ € N~ (/); thus, akc = (N~ (I)
NN*(m)y e DT(N*(m)) (Fig. 6,h). Finally, since (N~ (n)) = {{b,¢,d, j, k,I}> ~
STe, then je Nt(b,c), as bjd =<NT()NN~(n))e DT(N~(n)) and b, d,
keN(c).

We have seen that the edge directions in G or G¢ are fixed, up to iso-
morphisms, and since STy, is free of T7Ts with ST}, ~ STi,, we must have
G~ SThp. O

Now we show a tournament of order 11 free of 775, that is not contained in
STi3. Let ST; be the circulant tournament of order 11 induced by the set of
quadratic residues (mod. 11), that is, {1, 3,4,5,9}.
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Theorem 3.5. The tournament STy is free of TTs and it is not contained in ST13.

Proof. In [4] it is proved that ST}, is free of T75s. In order to see that S7); is not
contained in S773, since STy, is regular, we need only prove that no subtourna-
ment of order 11 in STj3 is regular. Let x,y € V(ST)3) with y e N*(x) and let
H = STi3\{x,y}. Take any vertex z € N (x,y). Then, |N};(z)| = 6 and [Ny (z)| =
4, that is, H is not regular. O

4. Tournaments Free of TT¢ and 77T,

The uniqueness of the tournament of order 27 which does not contain transitive
subtournaments of order 6 has been established [7]. Here we see that there also
exists a unique tournament of order 26 free of these subtournaments. Using this
result, we prove that all tournaments of order 54 contain 777, and present a
tournament of order 31 free of T7T75.

Tournaments free of TTs.

Let ST,7 be the Galois tournament of order 27; this is the unique tournament of
order 27 free of TTg [7]. It is not difficult to prove the following properties:

P4.1. If x € V(STs7) then {<N*(x)) =~ ST3 and (N~ (x)) ~ ST3.

P4.2. If x,y € V(STy;) with y € N*(x), then I[N~ (x) N N*(y)| =7 (since by P3.2
and P4.1 [NT(y)| = 13 and [N (x,y)| = 6).

P4.3. Let G be a tournament of order 26 free of TTs. Then, V(G) = V12(G)U
V13(G), |V12(G)| = 13, and |V3(G)| = 13.

P4.4. Let G be a tournament of order 26 free of TTg, and let x € V15(G) (resp.,
x € V13(G)). Then, {NT(x)> ~ ST1» and (N~ (x)) ~ STi3 (resp., {N*t(x)) ~
ST3 and <N7(X)> ~ ST]z).

Lemma 4.1. Let G be a tournament of order 26 free of TTe and let x,y € V(G) with
y € NT(x)N V13(G). Then, INT(x,y)| = 6.

Proof. By P4.4 we get (Nt (x)) ~ ST, or STy3. If (<N T(x))> ~ ST)3, the result is
immediate from P3.2. Suppose (N'(x)) ~ STy, with |[N"(x,y)| # 6; by P2.7,
P3.2, and Theorem 3.4 the tournament {N*(x,»)> ~ STs. Then, there exists
ze Nt(x,y) with [N~ (z)NNT(x,y)] = 1. Since <NT(y)> ~ ST13, P3.2 implies
IN“(z) NN*t(p)| = 6; hence, [N~ (z,x) NNt (p)| =5, that is, [N~ (x) NN (y)| > 4
in {N~(z)» (which is isomorphic to ST, or ST)3), contradicting P3.3. O

Lemma 4.2. Let G be a tournament of order 26 free of TTs and let x,y € V12(G).
Then, |IN*(x,y)| = 5.
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Proof. If ve V12(G) and ze NT(v) with ze Vs(N*(v)), from Lemma 4.1 z €
V12(G). Then, for all v e V5(G), since <N T (v)> ~ STy, and |Vs(NT(v))| = 6, we
have |N+(U) N Vlz(G)| > 6. But |V12(G)| =13 and Zve V12(G) |N+(U) N V]z(G) =
|E({V12(G)>)| = 13(6), that implies |[N*t(v) N V12(G)| =6, for all ve Via(G).
Hence, y € Vs(N*t(x)) if x,y € V12(G) with y e NT(x), thatis, [Nt (x,»)| =5. O

Theorem 4.3. Let G be a tournament of order 26 free of TTg. Then, G is contained
in ST;. In particular, there exists a unique tournament, which we denote by ST,
of order 26 free of TTg, up to isomorphisms.

Proof. Let h be a vertex not contained in V'(G), and let H be the tournament that
contains G such that V(H) = V(G)U {h} and, for each x e V(G), he N*(x) or
h e N~ (x) if, respectively, x € V12(G) or x € V13(G) (P4.3).

Let us see that H is free of T7. Let x € V12(G) (the case x € V13(G) is similarly
analyzed in H¢). Since, by definition, 4 € Nj;(x), then it is enough to prove that
(NT(x)U{h}) ~ ST3, that is, ye Ny(h) or ye Nj(h) if ye Vs(NT(x)) or
y € Ve(NT(x)), respectively. If y € Vs(N*(x)), from Lemma 4.1 y € V5(G), and
hence y € Nj;(h). And y € V(N1 (x)) implies, by Lemma 4.2, y € V13(G), that is,
y € Njy(h).

Since ST»7 is the unique tournament of order 27 free of TTy, we have
H ~ ST»;. 1t is also known that Aut(ST»7) is transitive in edges [7], hence, the
theorem follows. U

For tournaments of order 24 and 25, we state the following:

Conjecture. A/l tournaments free of TTg of order 24 and 25 are contained in STy;.

For tournaments of order 23 the corresponding conjecture is false. Let S753 be
the circulant tournament of order 23 induced by the set of quadratic residues
(mod. 23), that is, by the set QR»; = {1,2,3,4,6,8,9,12,13,16, 18}.

Theorem 4.4. The tournament ST»s is free of TTg and is not contained in ST»;.

Proof. Let us see first that S753 is not contained in S757. It is enough to see that if
A ={a,b,c,d} = V(ST2), then H = ST»;\A4 is not regular. We can assume b,
ce NT(a) and c e N*(b). Since (Nt (a)) ~ ST13 (by P4.1) and <N*(a,b)> ~ ST
(by P3.2), there exists x € N*(a,b,c) with x # d. Then, |N;(x)| =9 or 10, and
INJ;(x)| = 13 or 12, that is, H is not regular.

It remains to see that S7T»3 is free of TTg. Since ST»3 is the Galois tournament
of order 23, the function F,  (z) =rz+ s is an automorphism of ST»;, for all
r € QRy3 and for all s € Z53, that is, Aut(ST»3) is transitive in edges. Then, if W is
one of the biggest transitive subtournaments of S7%3, we can assume that 0,1 € W
with [W\{0,1}] = N*(0,1). In this case, it is easy to verify that <N*(0,1)) =
<{2,3,4,9,13}> ~ STs, implying that S7»s is free of TTs.

Tournaments free of TT

It is clear that the following properties hold:
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P4.5. Let G be a tournament of order 54 free of TT;7. Then, V(G) = Va(G)U
V21(G), [Vae(G)| = 27, and |V (G)| = 27.

P4.6. Let G be a tournament of order 54 free of TT7, and let x € Vi(G) (resp.,
x € Vy1(G)). Then, (NT(x)) =~ STa and (N~ (x)) ~ ST»7 (resp., {NT(x)) ~ ST»7
and {N~(x)) ~ ST»).

Lemma 4.5. Let G be a tournament of order 54 free of TT; and let x,y € V(G) with
y € NY(x)N Va7(G). Then, INT(x,y)] = 13.

Proof. By P4.6 (N (x)> ~ ST or ST»7. If (N*(x)> ~ ST»;, the result is imme-
diate. Suppose <N (x)) & ST with |[N1(x,p)| # 13; by P44 (N T(x,»)> ~ ST,.
Let ze Vg(N*t(x,y)), that is, [N (z2)NNT(x,y)| =5. Since {N*(y)) ~ STy,
we have [N~(z)NN*(y)| =13 and |N~(z,x) N N*(y)| = 8; this means that in
{N~(z)) (which is isomorphic to ST or ST»7) I[N~ (x)NN*(y)| > 7, contra-
dicting P4.2. O

Lemma 4.6. Let G be a tournament of order 54 free of TT, and let x,y € Vi(G).
Then, INT(x,y)| = 12.

Proof. If ve Vys(G) and ze Nt (v) with z € V(N (v)), from Lemma 4.5 z €
V26(G). Then, for each ve Vay(G), since (N (v)> &~ STy and |[Via(NT(v))| =
13 (P4.3), we have |[NT(v)NVy(G)|>13. But |V(G)| =27 (P4.5) and
D e () INT(0) N Va6(G)| = |E(KV26(G)))| = 27(13), that implies |[N¥(v)N
Va6(G)| = 13, for all ve Vy(G). Hence, y e Vip(NT(x)) if x,y e Vos(G) with
y e Nt (x), that is, [N (x,y)| = 12. O

Theorem 4.7. Every tournament of order 54 contains TTj.

Proof. Proceed by contradiction. Suppose that there exists a tournament G of
order 54 free of TT4. Let h be a vertex not contained in V(G), and let H be the
tournament that contains G such that V(H)= V(G)U{h} and, for each
xe V(G), he NT(x) or he N~ (x) if, respectively, x € Va(G) or x e Vy(G)
(P4.5).

Let us see that H is free of TT7. Let x € V56(G) (the case x € V>7(G) is similarly
analyzed in H¢). Since, by definition, 4 € N, (x), then it is enough to prove that
(NT(x)U{h}) ~ ST», that is, ye Ny(h) or ye Nj(h) if ye Via(N*(x)) or
y € Vi3(NT(x)), respectively. If y € V12(NT(x)), from Lemma 4.5 y € V5(G), and
hence y € Nj;(h). And y € V13(N"(x)) implies, by Lemma 4.6, y € V27(G), that is,
y € Ny (h).

Finally, since there is no tournament of order 55 free of 775 [7], we obtain a
contradiction.

Using this theorem, we could easily prove:

Theorem 4.8. v(n) > |log,(n/54)| + 7, for n = 28.
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Now we present a tournament of order 31 free of 777. Let ST3; be the circulant
tournament of order 31 induced by R = {1,2,3,4,5,7,8,9,10, 13,14, 15,19, 20, 25};
ST3; is not the tournament induced by the set of quadratic residues (mod. 31).

Theorem 4.9. The tournament STs; is free of TT.

Proof. Let ({ugp,u,...,u,}» be one of the biggest transitive subtournaments of
STs1, with w;yq,...,u, € N* (), forall i € {0,...,r — 1}. Since Aut(ST3;) is tran-
sitive in vertices, we can assume that uy = 0. For x € Z31, let f,: Z31 — Z3; be the
function f;(z) = zx (mod. 31). Because R = 5R, that is, R = {5r(mod.31)|r € R},
we have f5, 5 € Aut(ST31). Moreover, as each r € Risin B = {1,2,3,4,8}, 5B, or
25B, we also can assume that u; € B. It is easy verify that the sets

NT(0,2) = {3,4,5,7,9}, N¥(0,3) = {4,5,7,8,10,13},

N*t(0,4)=1{5,7,8,9,13,14,19}, and NT(0,8) = {2,9,10,13,15}

are free of TTs. Finally, for u; = 1, we have

NT(0,1) ={2,3,4,5,8,9,10, 14,15,20},
(NT(0,1,2)) = <{3,4,5,9,10,15}» ~ STy,
(N*(0,1,3)) =<{4,5,8,10}> % TTy,
(NT(0,1,4)) = <{5,8,9,14}> = TTy,
(NT(0,1,5)) = <{8,9,10,14,15,20}> ~ ST,

(NT(0,1,8)) = <{2,9,10,15}> & TTy,

NT(0,1,9) = {3,10, 14},
(NT(0,1,10)) = <{4,14,15,20}> = TTy,
(NT(0,1,14)
)

>=<{2,3,8,15}> & TTy,
(Nt(0,1,15)) = <{3,4,9,20}> = TTy,
and
(NT(0,1,20)> = <{2,3,4,8,9,14} > ~ STs.
Then, r < 5 and ST5, is free of TT5. OJ

5. Computational Results

For small integers n (<31), the exact values for v(n) are induced by circulant or
Galois tournaments. In this final section we obtain, using a computer, the values
for cv(r) (r < 55) and gu(s) (s < 1000). In particular, we improve on the best
upper bounds known of v(n), for n < 991.
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Circulant Tournaments

For an odd integer n > 0, we have defined cv(n) as the biggest integer such that
every circulant tournament of order 7 contains TT,,. In order to calculate cv(n),
let T be any circulant tournament of order » induced by a set 4, and let H be one
of the biggest transitive subtournaments in 7; remember that |4| = (n—1)/2.
Since a nonzero element x is in A4 if and only if —x ¢ A4, then there always exists a
circulant tournament 7" isomomorphic to 7 with 01 € E(7”); thus, we can assume
01 € E(T) and essentially there are at most 2("~3)/2 circulant tournaments of order
n. Also we can take 0 € H with [H\0] = N*(0), because Aut(T) is transitive in
vertices. Using these ideas and a computer (ACER 486 at S0OMHZ), we have
obtained the values of cv(n) presented in Table 1.

Table 1. Values of cv(n) and «(n), n < 55. The entries in boldface correspond to o (n),
instead of a(n)

n 5 7 9 11 13 15 17 19 | 21 23 | 25 | 27 | 29

cv(n) 3 3 4 4 4 6 5 5 5 5 6 6 6

a(n) 1 1 3 2 1 14 1 2 1 1 16 9 4

n 31 33 35 |37 139 |41 | 43 | 45 |47 | 49 51 53 55

cv(n) | 6 7 7 70 71 7|7 8 7 8 8 8 8

o(n) 1| >40 | >40 | 17 | 14 1 4 | >40 1| >40 | >40 | >40 | >40

Given two circulant tournaments 77 and 7> of order n induced by the sets A4,
and A», respectively, they are Addm-isomorphic [1] if there exists a unit u of Z,
such that 4, = {u - t|t € A,}; clearly, T and T, are isomorphic if they are Adam-
isomorphic. Let a(n) and o/ (n) be the number of circulant tournaments of order n
free of TT,,y) 41 that are not isomorphic and are not Adém-isomorphic, respec-
tively; then, o(n) < o/(n). Also in Table 1 we show the values o(n)(n < 55). The
entries in boldface correspond to o(n), instead of «(n). With the possible excep-
tion of these entries, in general we have «(n) = «/(n) by the following [3]:

Theorem 5.1. Let n be an odd positive integer non divisible by a square. Also, let Ty
and T be circulant tournaments of order n. Then, T\ and T, are isomorphic to each
other if and only if they are Adam-isomorphic.

Observe that cv(n) is not an increasing function. Also note that the tournament
ST3; presented in section 4 is the unique circulant tournament of order 31 free of
TT7; in general, for k = 3,4,5,6 (and apparently too for k = 7), the largest circu-
lant tournament free of 77} is unique.
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Galois Tournaments

It is well known that there exists a Galois tournament of order » if and only if
n =3 (mod. 4) with n = p”, for p prime and r € N. In Table 2 we present our
computational results (in a Silicon Graphics Power Series 4D/3105) of the order
gv(n) of the largest transitive subtournaments of the Galois tournament of order #,
for n < 1000. Almost all these Galois tournaments are also circulant tournaments,
since they are of prime order. The tournaments of order 27 = 33, 243 = 3°, and
343 = 73, are the unique Galois tournaments which are not of prime order, and
hence, they are not circulant tournaments. From Tables 1 and 2 it is clear that
gv(n) = v(n) or gv(n) > cv(n) in the Galois tournament of order n < 47 (excepting
n=31).

Table 2. The order gv(n) of the largest transitive subtournaments of the Galois tournament
of order n < 1000. The orders 27, 243, and 343 are the unique nonprime orders

gv(n) n
3 7
4 11

5 19, 23, 27

7 31, 43, 47

8 67, 83

9 59, 71, 79, 107

11 103, 127, 131, 139, 151, 163, 167, 191, 199

12 179, 239, 251, 271

13 211, 223, 227, 263, 307, 311, 331, 343, 347, 367

14 243, 283, 443

15 379, 383, 419, 439, 463, 467, 479, 499, 547, 563, 587, 619

16 487, 571, 659

17 359, 431, 491, 503, 523, 599, 607, 631, 643, 647, 683, 691, 719, 727, 739, 743
751, 787, 811, 827, 839, 859, 863, 883, 887, 947, 971

18 907, 967

19 823,911, 919, 983, 991
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On the other hand, the best upper bounds known for v(n) are |2, §]:
v(n) < |2logy(n)] + 1 (1)

v(n)ﬁ{—%-i-\ﬁn—i—%} n=3 (mod.4), (2)

where (2) is better than (1) only for n < 59. Since v(n) is an increasing function
with v(n) < cv(n) and v(n) < gv(n), in Table 3 we present the upper bounds C1 for
v(n), n <991, induced from Tables 1 and 2, compared with the bounds C2 and C3
given by (1) and (2), respectively. In general, the bounds C1 are better than C2 and
C3. However, as n increases, the difference between C1 and C2 becomes smaller.

and

Table 3. Upper bounds for v(n), n < 991. C1: The best bounds induced from Tables 1 and
2. C2:v(n) < |2logyn] + 1.

C3:0(n) < {f§+1/3n+%}nz3 (mod. 4)

n< 31 45 47 63 83 90 | 107 127 | 181 199 | 255

Cl 6 7 7 8 8 9 9 11 11 11 12

C2 10 11 12 12 13 13 14 14 15 16 16

C3 8 10 10 12 14 15 16 18 22 23 26

n< | 271 | 362 | 367 | 443 | 511 | 619 | 659 | 724 | 971 | 991

Cl 12 13 13 14 15 15 16 17 17 19

C2 17 17 18 18 18 19 19 19 20 20

C3 27 31 31 35 37 41 43 45 52 53
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