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Abstract. ErdoÈs and Moser posed the problem of determining, for each integer n > 0, the
greatest integer v�n� such that all tournaments of order n contain the transitive subtourna-
ment of order v�n� (denoted TTv�n�). It is known that v�n� � 3 for 4U nU 7, v�n� � 4 for
8U nU 13, v�n� � 5 for 14U nU 27, and v�n�V 6 for n > 27. Moreover, the uniqueness of
the tournaments free of TT4 of orders 6 and 7, and free of TT5 and TT6 of orders 13 and 27,
respectively, has been established. Here we prove that the tournaments of orders 12 and 26,
free of TT5 and TT6, respectively, are also unique. Then, we see that all tournaments of
order 54 contain TT7 (improving the best lower bound known for v�n�). Finally, with the
aid of a computer, we obtain the orders cv�r� and gv�s� of the biggest transitive tournaments
contained, respectively, in all circulant tournaments of order rU 55 and in each Galois
tournament of order s < 1000, i.e., in the tournament with set of vertices the Galois ®eld of
order s (whenever it exists) and edge directions induced by the quadratic residues. We get
better upper bounds of v�n�, for nU 991.

1. Introduction and Notation

Along this paper, the graphs we consider are directed and without loops or mul-
tiple edges. Given a digraph G, let V�G� ± or G, if there is no confusion ± and
E�G� denote the sets of its vertices and edges, respectively. A succession of three
vertices e1; e2; e3, of G forms a directed triangle if e1e2; e2e3; e3e1 A E�G�. A tour-

nament T is a digraph such that each couple of vertices, u and v, is joined by
exactly one edge, either uv or vu; T 0 is a subtournament of T if T 0 is a tournament
with V�T 0�HV�T� and E�T 0�HE�T�. A tournament is transitive if it is free of
directed triangles; since there exists a unique transitive tournament of order n,
isomorphisms excepted, we denote it by TTn.

Let n be an odd integer and let A be a set of nonzero elements of the ring Zn

of integers mod. n such that jAj � �nÿ 1�=2 and ÿx B A, for all x A A. Then, the
digraph T de®ned as V�T� � Zn and xy A E�T� if and only if yÿ x A A, for all
x; y A V�T�, is a tournament called the circulant tournament of order n induced by

A. Similarly, since there exists a unique ®eld F of order m for any integer m of the
form pr, with p prime and r a positive integer, let G be the digraph such that
V�G� � F and, for all x; y A V�G�, xy A E�G� if and only if there exists a nonzero
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z A F with yÿ x � z2. It is easy to see that G is a tournament (that we call Galois

tournament) if and only if m1 3 (mod. 4).
ErdoÈs andMoser [2] posed the problem of determining, for each positive integer

n, the greatest integer v�n� such that all tournaments of order n contain TTv�n�. It is
well known that v�1� � 1, v�2� � v�3� � 2, v�n� � 3 for 4U nU 7, v�n� � 4 for
8U nU 13, v�n� � 5 for 14U nU 27, and blog2�n=55�cU v�n�U 2blog2�n�c � 1
for nV 28 [2, 6, 7].

The uniqueness of the tournaments of orders 7, 13, and 27, free of TT4, TT5,
and TT6, respectively, has been proved �6; 7�. Then, for k � 4, 5, and 6, the largest
tournament free of TTk is unique. Moreover, it has also been proved that there
exists a unique tournament of order 6 free of TT4.

In this paper, after presenting some properties of the tournaments free of TT4

(Section 2), we prove that the tournaments of orders 12 and 26, free of TT5 and
TT6, respectively, are also unique. We show a tournament of order 31 free of TT7

and see that all tournaments of order 54 contain TT7, implying v�n� � 6 for
28U nU 31, and v�n�V blog2�n=54�c � 7 for nV 32; this improves the best lower
bound known for v�n� (Sections 3 and 4). Finally, since for each integer nU 31,
the exact values of v�n� are induced from circulant or Galois tournaments, in the
last Section (5) we obtain, using a computer, the orders cv�r� �rU 55� and gv�s�
�s < 1000� of the biggest transitive tournaments contained, respectively, in all cir-
culant tournaments of order r and in each Galois tournament of order s. We get
better upper bounds of v�n�, for nU 991.

Let us introduce some concepts. Suppose that G is a tournament.
Let x, x1, x2, . . . , xr A V�G� and W � fx1, x2, . . . , xrg. De®ne N�G �x� �

fy A V�G�jxy A E�G�g, NÿG �x� � fy A V�G�jyx A E�G�g, N�G �x1; x2; . . . ; xr� �
N�G �W� �7r

i�1 N�G �xi�, and NÿG �x1; x2; . . . ; xr� � NÿG �W� �7r

i�1 NÿG �xi�; N�G �x�
and NÿG �x� are called the outset of x and the inset of x, respectively. For the sake
of clarity, we will omit the subscript G when the tournament G considered in a
given context is clear. Given R;S HV�G�, we say that R covers S or S is covered

by R whenever S HN�G �R�. The set of directed triangles of G is represented by
DT�G�. If x; y; z A V�G� form a directed triangle with xy; yz; zx A E�G�, let xyz

denote such a triangle. For a subtournament G 0 of G and abc A DT�G 0�, a center

of abc in G 0 is any vertex of G0 that covers or is covered by fa; b; cg.
Given the integer n, let Vn�G� � fu A V�G�jjN��u�j � ng; G is an n-regular (or

regular) tournament if V�G� � Vn�G�. If H HV�G�, denote by hHi ± or simply
H, if there is no confusion ± the subtournament of G induced by H. The tourna-
ment Gc is de®ned as: V�Gc� � V�G� and xy A E�Gc� if and only if yx A E�G�.
Let Aut(G) denote the group of automorphisms of G. Finally, PAQ means that
the tournaments P and Q are mutually isomorphic.

2. Tournaments Free of TT4

In this section we present some properties of the tournaments free of TT4 of orders
5, 6, and 7.
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Let ST7 be the circulant tournament of order 7 induced by the set of quadratic
residues (mod. 7), that is, f1; 2; 4g. It is well known that ST7 is the unique tour-
nament of order 7 free of TT4 [6]. We denote by ST6 the tournament obtained
when a vertex x is eliminated from ST7; note that ST6 is independent of the vertex
x selected. For i � 0; 1; 2; 3, letTi be the set of the directed triangles in ST6 which
have exactly i vertices with outsets of order 3 (Fig. 1). Clearly, jT0j � 1 and
jT3j � 1; let T0 (resp., T3) denote the unique element ofT0 (resp.,T3�. It is easy to
verify that:

P2.1. ST6 is the unique tournament of order 6 free of TT4 [6].

P2.2. i) V�ST6� � V2�ST6�UV3�ST6� with jV2�ST6�j � jV3�ST6�j � 3.
Moreover, ii) if x A V3�ST6� �resp., x A V2�ST6��, then hN��x�i AT1�ST6� �resp.,

hNÿ�x�i AT2�ST6��.

P2.3. ST6 contains exactly eight directed triangles: jT0j � 1, jT1j � 3, jT2j � 3,
and jT3j � 1.

P2.4. fT0;T3g is the unique bipartition of V�ST6� such that each component forms a

directed triangle.

P2.5. Let T A DT�ST6�. Then i) T covers �resp., is covered by� a vertex t if and only

if T AT2 �resp., T AT1�; moreover, when it exists, t is unique. In particular, ii)
every T A DT�ST6� has at most one center in ST6.

P2.6. Let ab A E�T0� �resp., ab A E�T3��. Then, there exists c A V�T3� �resp.,
c A V�T0�� such that abc A DT�ST6�.

Given a tournament R isomorphic to ST6, let Ti�R� denote the family of
directed triangles of R corresponding to Ti in ST6, for i � 0; 1; 2; 3, and let Tj�R�
denote the triangle of R corresponding to Tj , for j � 0; 3.

Fig. 1. T0 � f356g,T1 � f156; 235; 463g, T2 � f126; 245; 134g, and T3 � f124g
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Let ST5 be the tournament obtained when a vertex y is eliminated from ST6; it
is easy to see that ST5 is independent of the vertex y selected. Also, let QT5 and
RT5 be the tournaments shown in Fig. 2. It is not di½cult to prove that:

Lemma 2.1. The tournaments ST5, QT5, and RT5 are not isomorphic to each other

and they are the unique tournaments of order 5 free of TT4.

P2.7. All subtournaments of ST6 of order 5 are isomorphic to ST5.

P2.8. If H A fST5;QT5;RT5g then H AH c.

P2.9. The tournament RT5 is 2-regular.

P2.10. Let H A fST5;QT5g. Then, jV1�H�j � 1, jV2�H�j � 3, and jV3�H�j � 1.

Moreover, if x A V1�H� �resp., x A V3�H��, we have hNÿ�x�i A DT�H� �resp.,
hN��x�i A DT�H��.

3. Tournaments Free of TT5

The uniqueness of the tournament of order 13 not containing the transitive sub-
tournament of order 5 is well known [6]. In this section we prove that there also
exists only one tournament of order 12 free of this sobtournament.

Let ST13 be the circulant tournament of order 13 induced by the set
f1; 2; 3; 5; 6; 9g. This tournament satis®es [6]:

P3.1. ST13 is the unique tournament of order 13 free of TT5.

P3.2. For x A V�ST13� we have hN��x�iAST6 and hNÿ�x�iAST6.

Moreover,

P3.3. If x; y A V�ST13� with y A N��x� then jNÿ�x�VN��y�jU 4 �since by P2.2-i
and P3.2 hN��x�iAST6, jN��y�j � 6, and jN��x�VN��y�j � 2 or 3�.

Now let us consider the tournaments of order 12 free of TT5.

Fig. 2. The tournaments of order 5 free of TT4
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Lemma 3.1. Let G be a tournament of order 12 free of TT5 and let x A V�G�. Then,
hN��x�i �and hNÿ�x�i� is isomorphic to ST6, ST5, QT5 or RT5.

Proof. By P2.1 and the Lemma 2.1 we only need to see that jN��x�j � 5 or 6.
Clearly, jN��x�jU 7 and jNÿ�x�jU 7. If jN��x�j � 7, then hN��x�iAST7,
jNÿ�x�j � 4, and hNÿ�x�i contains TT3; in this case, in [5, 6] it is proved that G

contains TT5. Hence, jN��x�jU 6. We similarly deduce jN�Gc�x�jU 6, that is,
jNÿ�x�jU 6. Thus, jN��x�j � 5 or 6.

Lemma 3.2. Let G be a tournament of order 12 free of TT5, and let x A V5�G�.
Then, hN��x�iEQT5.

Proof. Let us proceed by contradiction. Suppose that hN��x�iAQT5. Let
N��x� � fa; b; c; d; eg with N��d; x� � Nÿ�e�VN��x� � fa; b; cg and abc A
DT�G� (Fig. 3,a).

Fig. 3. There exists x A V�G� with hN��x�iAQT5. a: N��x� and Nÿ�x�; b, c: Case
abc AT1�N��d ��; d, e: Case abc � T0�N��d ��; f, g: Case abc � T3�N��d ��
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Since jNÿ�d�j � 5 or 6 (Lemma 3.1), we have jNÿ�d; x�j � 3 or 4; but
hNÿ�d; x�i is free of TT3 (as G is free of TT5), implying jNÿ�d; x�j � 3 and
hNÿ�d; x�i A DT�G�. Then, let Nÿ�x� � f j; k; l;m; n; sg with hNÿ�d; x�i � jkl

and N��d�VNÿ�x� � fm; n; sg. Thus, hN��d �iAST6 and abc A DT�N��d ��. By
P2.3 there are four cases.

Case I. abc AT2�N��d��.
Assume that m is the center of abc in hN��d�i (P2.5-i), that is, a; b; c A Nÿ�m�.

Applying P2.2-i in hN��d �i we have n; s A N��m�. Also by P2.2-i jNÿ�m; x�j � 2
or 3 (as hNÿ�x�iAST6); because jNÿ�m�j � 5 or 6 (Lemma 3.1) and a; b; c;
d A Nÿ�m�VN��x�, we have jNÿ�m; x�j � 2 and jNÿ�m�j � 6. Hence, e A N��m�,
and since fa; b; c;m; xgHNÿ�e� and hfa; b; c;m; xgiAQT5, by P2.7 jNÿ�e�j � 5,
hN��e�iAST6, and N��e� � fd; j; k; l; n; sg. Finally, as mns B DT�Nÿ�x��, by
P2.4 and P2.5-i there exists the center r of jkl in hNÿ�x�i, that is not m (because n;
s A N��m� and jNÿ�m; x�j � 2); this means r � s or r � n. Then, r and d are cen-
ters of jkl in hN��e�i, contradicting P2.5-ii.

Case II. abc AT1�N��d��.
Assume that m is the center of abc in hN��d �i (by P2.5-i a; b; c A N��m��

and s A N��n�. From P2.2-i we get n, s A Nÿ�m�. Since jNÿ�n�V fa; b; cgj �
jNÿ�n�VN��d�jV 2, by symmetry we can also assume b; c A Nÿ�n�; as m is
the unique center of abc in hN��d �i (P2.5-ii), we have a A N��n� (Fig. 3,b).
By P2.2-ii hN��n; d �i A DT�N��d ��, that is, s A N��a�. Also P2.2-ii implies
s A Nÿ�c� �as a; n A N��c� but hfa; n; sgi B DT�N��d ��� and s A N��b� �as c;
m A N��s� but hfb; c;mgi B DT�N��d ���.

On the other hand, since hfm; n; sgi B DT�Nÿ�x��, by P2.4 and P2.5-i there
exists the center r of jkl in hNÿ�x�i, di¨erent from s, because s A N��n�VNÿ�m�.
If r � m, then j, k, l A N��m� �as n, s A Nÿ�m�� and jN��m�jVjfa; b; c; j; k; l; xgj
� 7, which is not possible. Thus, r � n and j; k; l A Nÿ�n� (Fig. 3,c). Since
jN��m�VNÿ�x�jV 2, by symmetry we can assume k; l A N��m�; then, j A Nÿ�m�,
as n is the unique center of jkl. Hence, hNÿ�m; x�i � hfn; s; jgi A DT�Nÿ�x��, by
P2.2, and j A N��s�. From P2.2-ii k A Nÿ�s� �as j;m A N��s� but hfj; k;mgi B
DT�Nÿ�x��� and l A N��s� �as l; n; s A N��k��.

Note that e A N��n�VNÿ�m�VN��s�, because jNÿ�n�jV jfb; c; d; j; k; lgj � 6,
jN��m�jV jfa; b; c; k; l; xgj � 6, and, if e A Nÿ�s�, we would have hNÿ�s�i �
hfa; b; d; e; k; ngiAST6 with d and e centers of abn, contradicting P2.5-ii.

Finally, since hN��s�i � hfc; e; j; l;m; xgiAST6 and x is the unique center
of mlj in hN��s�i, then there exists t A fm; l; jgVNÿ�e�, implying jNÿ�e�jV
jfa; b; c; n; s; x; tgj � 7, which is a contradiction.

Case III. abc � T0�N��d ��.
By P2.4 hfm; n; sgi � T3�N��d ��; suppose, without loss of generality, that

mns � T3�N��d �� and hN��d �i �AST6� is as in Fig. 3,d. Since jN��e�V f j; k; lgj
V 2 (as otherwise hfd; e; xgU �Nÿ�e�V f j; k; lg�i would contain TT5), by symme-
try we can assume k; l A N��e�. Because fmns; jklg � fT0�Nÿ�x��, T3�Nÿ�x��g
(P2.4), from P2.6 there exists r A fm; n; sg with rkl A DT�Nÿ�x��; again by sym-
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metry, assume r � m. Note that m; n; s A N��e�, because t A fm; n; sgVNÿ�e�
implies hft; x; egU �N��t�V fa; b; cg�iATT5.

Hence, N��e� � fd; k; l;m; n; sg. Since hfd; n; sgi B DT�N��e��, by P2.4 and
P2.5-i there exists the center p A fd; n; sg of mkl in hN��e�i, that is not d, as
d A N��k�VNÿ�m�. If p � n, since n A N��m�, n A N��k; l� as well; so, jNÿ�n�j �
4 in hN��e�iAST6, contradicting P2.2-i. Thus, p � s, and �as m A N��s��
k, l, m A N��s�, implying s A V3�Nÿ�x��. From P2.4 mns � T3�Nÿ�x�� and
jkl � T0�Nÿ�x��; then, m A V3�Nÿ�x��, n, k, j A N��m�, and njk A DT�Nÿ�x��
(Fig. 3,e).

We have N��m� � fa; b; j; k; n; xg with n A V3�N��m�� and x A V2�N��m��,
and by P2.5-i there exists t A fa; j; kg center of bnx in hN��m�i. Since a A N��n�V
Nÿ�b� and j A N��n�VNÿ�x�, then t � k and b A N��k�. Hence, hfs;m; k; x; bgiA
TT5, a contradiction.

Case IV. abc � T3�N��d ��.
By P2.4 hfm; n; sgi � T0�N��d ��; assume, without loss of generality, that

hN��d �i is as in Fig. 3, f. Since jkl;mns A DT�Nÿ�x��, then mns � T3�Nÿ�x��
or mns � T0�Nÿ�x��. In the latter, for t A fm; n; sg we have 5U jN��t�j �
jN��t� V Nÿ�x�j � jfxgj � jN��t�V fa, b, cgj � jN��t�V fegj � 4� jN��t�V fegj,
that is, e A N��t� and jNÿ�e�jV jfa, b, c, m, n, s, xgj � 7, which is impossible.
Hence, mns � T3�Nÿ�x�� and jkl � T0�Nÿ�x��; by symmetry of ST6 we can
assume that hNÿ�x�i is as in Fig. 3,g.

First let us see that if h A fm; n; sg with N��h�V f j; k; lgHN��e�, then
e A Nÿ�h�. Suppose, without loss of generality, that h � m and N��m�V f j; k; lg �
fk, lgHN��e� with e A N��m�. Then, hN��m�i � hfc, e, k, l, n, xgiAST6.
Because hfc; l; ngi B DT�G�, by P2.4 and P2.5-i there exists the center t A fc; l; ng
of xek in hN��m�i. Since c A N��x�VNÿ�e� and l A N��e�VNÿ�x�, then t � n

and e A N��n�. Thus, Nÿ�e� � fa; b; c;m; n; xg, that is, N��n�V f j; k; lg �
f j; kgHN��e� with e A N��n�. Repeating the previous arguments in n, s, and xej

(instead of m; n, and xek, resp.), we obtain e A N��s�, that is not possible.
Note that jN��e�V f j; k; lgjV 2, as otherwise hfd; e; xgU �Nÿ�e�V f j; k; lg�i

would contain TT5; by symmetry suppose, without loss of generality, that k,
l A N��e�. From the previous paragraph we have e A Nÿ�m�. Also by that para-
graph we must have j A Nÿ�e�, as otherwise, applying it in n and s, instead of m,
we would deduce n; s A N��e�, implying jN��e�j � jfd; j; k; l;m; n; sgj � 7. Then,
hNÿ�m�i � hfa; b; d; e; j; sgiAST6; since hfa; e; jgi B DT�Nÿ�m�� and a, j A
N��s�, by P2.2-ii e A Nÿ�s�. Note that b A N��k�, as otherwise, hfb; j; e;m; kgiA
TT5. Hence, hfk; d; b; c; sgiATT5 or hfc; e; n; k; sgiATT5, if c A N��k� or
c A Nÿ�k�, respectively. r

Lemma 3.3. Let G be a tournament of order 12 free of TT5. Then, there exists

x A V�G� with hN��x�iAST5 or hNÿ�x�iAST5.

Proof. Let us proceed by contradiction. Since Gc is free of TT5, by P2.8 and
Lemmas 3.1 and 3.2 we can assume that hN��r�iART5 and hNÿ�s�iART5, for
all r A V5�G� and for all s A V6�G�. Clearly, jV5�G�j � jV6�G�j � 6. Let x A V5�G�,
that is, hN��x�iART5. We have:
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l1. If j A N��x� with jNÿ� j; x�jV 3, then hNÿ� j�iAST6 �since hNÿ�j�iART5

implies jNÿ� j; x�j � 2� and hNÿ� j; x�i A DT�Nÿ�x��.

l2. If y0 A V3�Nÿ�x�� then hN��y0�iAST6 (because hN��y0�iART5 implies
2 � jNÿ�x�VN��y0�j).

l3. If j A N��x� and y1; y2; y3 A Nÿ�x; j�, then jfy1; y2; y3gVV6�G�jV 2 (since by
(l1) hNÿ� j�iAST6 and hfy1; y2; y3gi is a directed triangle in hNÿ� j�i that covers
x, that is, j A V5�G� and hfy1; y2; y3gi AT2�Nÿ� j�� (P2.5), following the stated
from (l2) applied in hNÿ� j�i).

Let N��x� � fa; b; c; d; eg, Nÿ�x� � fm; n; s; u; v;wg, and mns � T3�Nÿ�x��,
as in Fig. 4. We consider two cases.

Case I. There exists p A N��x� with hNÿ�p; x�i � T3�Nÿ�x��.
Assume p � a; by (l1) jNÿ�a�j � 6. Since x is the center of mns in hNÿ�a�i

�� hfd, e, m, n, s, xgi�, then mns �T2�Nÿ�a�� and jfm, n, sgVV3�Nÿ�a��j � 2,
say m, n A V3�Nÿ�a��, implying s, x A V2�Nÿ�a��. From P2.5-ii jN��e�V
fm, n, sgjU 2, that is, e A V2�Nÿ�a��. Thus, d A V3�Nÿ�a�� and mnd � T3�Nÿ�a��.
Since hN��n�i � hfa, d, s, u, v, xgiAST6 and hfa, d, sg B DT�N��n�� with a,
s A Nÿ�u�, by P2.2-ii d A N��u�. Finally, by �l2� 6 � jN��m�jV jN��m�VNÿ�a�j�
jfa, v;wgj � 6; then, b, c, d, u A Nÿ�m� with b, c, u A Nÿ�d �, implying m A V6�G�
with hNÿ�m�iERT5, a contradiction.

Case II. If there exists p A N��x� with hNÿ�p; x�i A DT�Nÿ�x��, then
hNÿ�p; x�i AT0�Nÿ�x��UT1�Nÿ�x��UT2�Nÿ�x��.

Let B � hV5�G�i. Since jV�B�j � 6, there exists g A V�B� such that jNÿB �g�jV
3, and by �l2� jNÿB �g�j � 3 with NÿB �g� � V2�Nÿ�g��; we can assume x � g. Then,
jN��k; x�j � 2, for all k A Nÿ�x�, and there are 12 edges from Nÿ�x� to N��x�;
by �l1� there exist j; l A N��x� with hNÿ� j; x�i; hNÿ�l; x�i A DT�Nÿ�x��, say
a � j and b � l. Let Ta � hNÿ�a; x�i and Tb � hNÿ�b; x�i; since G is free of TT5

then Ta 0Tb, and by case I we get Ta 0T3�Nÿ�x�� and Tb 0T3�Nÿ�x��. Because
u; v;w A V5�G� (as fu; v;wg � V2�Nÿ�x��), then �l3� implies Ta;Tb AT2�Nÿ�x��;
hence, there exists hx A V3�Nÿ�x�� with hx A V�Ta�VV�Tb�, say hx � m.

Fig. 4. hN��x�i � hfa; b; c; d; egiART5 and hNÿ�x�i � hfm; n; s; u; v;wgiAST6
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Since a; b A V5�G� ± by �l1� ±, then N��m� � fa; b; n; v;w; xg with a; b; v;w; x A
V5�G�, and there exists a unique vertex fx A V5�G� with fx A Nÿ�m�, that is,
fx � u.

Note that m A V5�Gc� with inset of order 1 in hV5�Gc�i. Since Lemma 3.3
holds in G if and only if it holds in Gc, we can assume that there exists j A V5�G�
with inset of order 1 inhV5�G�i, that is, jNÿB � j�j � 1. Then, because

P
r A B jNÿB �r�j �

jE�B�j � 15 and by �l2� jNÿB �t�jU 3 (for all t A V�B�), besides x, there exist three
vertices y; z; q A V5�G� with inset of order 3 in hV5�G�i.

Finally, applying in y the same arguments used for x, if hy 0 hx then,
as jN��hx�VV5�G�j � jN��hy�VV5�G�j � 5 and jV5�G�j � 6, we must have
jN��hx; hy�jV 4, implying that hfhx; hygUN��hx; hy�i contains TT5. Hence,
hy � hx, that implies fy � fx. Similarly we deduce hz � hq � hx and fz � fq � fx.
Then, fx; y; z; qgHN��hx; fx� and hfhx; fx; x; y; z; qgi contains TT5. r

We denote by ST12 the tournament obtained when a vertex z is eliminated
from ST13. Since ST13 is a circulant tournament with ST c

13 AST13, then ST12 is
independent of the vertex z selected and ST c

12 AST12.

Theorem 3.4. Let G be a tournament of order 12 free of TT5. Then, G is isomorphic

to ST12.

Proof. By lemmas 3.2 and 3.3 we know that there exists x A V�G� with
hN��x�iAST5 or hNÿ�x�iAST5. Clearly, we can assume that hN��x�iAST5;
then, hNÿ�x�iAST6. Let N��x� � fa; b; c; d; eg, as in Fig. 5.

Since jNÿ�d �jV 5, x A Nÿ�d �, and feg � Nÿ�d �VN��x�, we have jNÿ�d; x�j
V 3, that implies hNÿ�d; x�i A DT�G� (as G is free of TT5) and jNÿ�d�j � 5. Let
Nÿ�x� � fm; n; s; j; k; lg with jkl � hNÿ�d; x�i, fm; n; sg � N��d�VNÿ�x�, and
s A N��n�. Note that:

Fig. 5. There exists x A V�G� with hN��x�iAST5 and, hence, hNÿ�x�iAST6
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t1. hNÿ�d �iAST5 �because hNÿ�d �iEQT5 ± Lemma 3.2 ± and Nÿ�d � �
fe; j; k; l; xg with j; k; l A Nÿ�x��.
t2. jN��e�V f j; k; lgj � 2 ± by �t1�.

Since hN��d �iAST6 with abc A DT�N��d ��, by P2.3 there are four cases.

Case I. abc AT2�N��d ��.
Assume that m is the center of abc in N��d � ±P2.5±; then, a; b; c A Nÿ�m� and

n; s A N��m� (Fig. 6,a). Since 6V jNÿ�m�jV jfa; b; c; dgj � jNÿ�m; x�jV 6, we
have hNÿ�m�iAST6 and jNÿ�m; x�j � 2.

Fig. 6. There exists x A V�G� with hN��x�iAST5. a, b: Case abc AT2�N��d��; c: Case
abc � T3�N��d��; d: Case abc � T0�N��d��; e, f, g, h: Case abc AT1�N��d��
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Let us see the edge directions in hNÿ�x�i. Since jkl A DT�Nÿ�x�� and
mns B DT�Nÿ�x��, by P2.4 and P2.5 there exists the center y A fm; n; sg of jkl in
hNÿ�x�i, which is neither n �as n A N��m�VNÿ�s�� nor m �because jNÿ�m; x�j � 2
and s; n A N��m��, that is, s � y. Then, j; k; l A N��s� and from P2.5-ii we get
N��m�V f j; k; lg0q; by symmetry, we can assume j A N��m� (Fig. 6,b). Hence,
P2.2 implies k; l A Nÿ�m� and jns � hN��m�VNÿ�x�i A DT�Nÿ�x��, and since
j; s A Nÿ�k�, also by P2.5-ii n A N��k�.

Now, consider the set N��e�. Inasmuch as hN��d �iAST5 in Gc ± by �t1� and
P2.8 ± and j; k; l A NÿGc�s�, then we obtain a case similar to the present one if
we take Gc and d instead of G and x, respectively, in which e plays the same
role. Thus, we can assume that jN��e�j � 6 in G. Note that m A Nÿ�e�, since
Nÿ�m� � fa, b, c, d, k, lg. Then, because 6 � jN��e�j � jfa, dgj � jN��e� V
f j; k; lgj � jN��e�V fn; sgj, by �t2� we get n; s A N��e�. Also, j A N��e�, as other-
wise hf j; e; k; d; ngiATT5.

Finally, since N��m� � fe; j; n; s; xg with n; s; j A Nÿ�x�VN��e�, then
hN��m�iERT5 (P2.9) and hN��m�iEST5 (P2.5-ii), a contradiction.

Case II. abc � T3�N��d ��.
Here we have hfm; n; sgi � T0�N��d ��. Assume that hN��d �i is as in Fig. 6,c.

Note that e A N��m�, as otherwise, since c; d; e;m; x A Nÿ�a� with c; d; e A N��x�V
Nÿ�m�, by P2.5-ii and P2.9 hNÿ�a�iAQT5, contradicting Lemma 3.2. Also we
must have jN��e�j � 5, because jN��e�j � 6 implies by �t2� that n; s A N��e�
�as b; c;m; x A Nÿ�e�� and hfe; d; a; n; sgiATT5.

By P2.4 the triangle mns A fT0�Nÿ�x��, T3�Nÿ�x��g. If mns � T0�Nÿ�x��,
then, for all z A fm, n, sg, 5 U jN��z�j � jN��z� V Nÿ�x�j � jfxgj � jN��z� V
fa, b, c, dgj � jN��z� V fegj � 4 � jN��z� V fegj, that is, e A N��z�,
implying jNÿ�e�j � jfb, c, m, n, s, xgU �Nÿ�e�V f j, k, lg�j � 7 ± by �t2� ±,
contradicting Lemma 3.1.

Hence, mns � T3�Nÿ�x�� and jkl � T0�Nÿ�x��. Since jlk � T3�N�Gc�x��, if now
we consider Gc, d, x, jlk, msn, and acb instead of G, x, d, abc, mns, and jkl,
respectively, by �t1� we obtain a case similar to the present one in which e plays
the same role. This implies jN��e�j � jN�Gc�e�j � 5, a contradiction.

Case III. abc � T0�N��d ��.
In this case, mns � T3�N��d ��. Assume that hN��d �i is as in Fig. 6,d. Since

by �t1� hNÿ�d �iAST5, taking Gc, d, x, jlk, and msn, instead of G, x, d, abc, and
mns, resp., we get a case similar to the present one or to case II. Hence, we must
have jlk � T0�N�Gc�x��, that is, jkl � T3�Nÿ�x��, implying mns � T0�Nÿ�x��.
Because e and the set fm, n, sg play the same role in both situations, we can
assume jN��e�V fm, n, sgjV 2.

Since hNÿ�a�i � hfc; d; e; n; s; xgiAST6 with x the center of ced and c;
d A Nÿ�n�, by P2.5-ii we have e A N��n�, implying m; s A N��e� and hfe; d; s; a;mgi
ATT5, a contradiction.

Case IV. abc AT1�N��d ��.
Here we see G AST12. Assume that m is the center of abc in hN��d �i; then,

a; b; c A N��m� ± by P2.5 ± and n; s A Nÿ�m�.
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Let us begin proving that the edge directions in hNÿ�x�i are as in Fig. 6,e.
Since hfm; n; sgi B DT�Nÿ�x��, by P2.4 and P2.5-i there exists the center r A
fm; n; sg of jkl in hNÿ�x�i, di¨erent from s, as s A Nÿ�m�VN��n�. We have
jN��m�V f j; k; lgjU 2 �because a; b; c; x A N��m�� and n; s A Nÿ�m�, then r � n

with j; k; l A Nÿ�n� and there exists t A f j; k; lgVNÿ�m�; by symmetry, we can
assume t � j. Thus, s; n; j A Nÿ�m; x�, and by P2.2 the triangle sjn A DT�Nÿ�x��
and k; l A N��m�. Finally, because hfm; k; jgi B DT�Nÿ�x�� and m; j A N��s�, by
P2.2-ii we get k A Nÿ�s�, that implies s; n; l A N��k� and sln A DT�Nÿ�x��.

Now, we will prove that the set N��e� and its edge directions are as in Fig. 6, f.
Considering Gc with d and x, instead of G; x, and d, resp., we obtain a case similar
to the present one, by �t1�, in which e plays the same role. Hence, we can assume
jN��e�j � 6 in G.

Since N��m� � fa; b; c; k; l; xg, then Nÿ�m� � fd; e; j; n; sg; because hf j; d; egi
B DT�Nÿ�m�� and j; d A Nÿ�n�, by P2.5-ii and P2.9 the vertex e A N��n�. Then, as
6 � jN��e�j � jfa; d;mgj � jN��e�Vf j; k; lgj � jN��e�Vfsgj � 5� jN��e�V fsgj,
it follows that s A N��e�. Also j A N��e�, because s is the center of ned in
hNÿ�m�i and n; d A N�� j�. Finally, let us see that k A N��e�, that implies ± by
�t2� ± l A Nÿ�e�. Since hN��m�i � hfa; b; c; k; l; xgiAST6, and x is the center
of abc in hN��m�i, by P2.5-ii there exists r A N��k�V fa; b; cg; then, N��k� �
fr; d; l; n; s; xg, implying e A Nÿ�k�.

We have N��e� � fa; d; j; k;m; sg. By P2.2-ii the triangle asm A DT�N��e��, as
a; s;m A N��d � and a A N��m�. Therefore, akd � hNÿ�s�VN��e�i A DT�N��e��,
and hence ajm � hNÿ�k�VN��e�i A DT�N��e��.

Next, we will see that hNÿ�s�i is as in Fig. 6,g. Note that s A V2�N��d ��,
because s A V3�N��d �� implies b; c;m A N��s� (as a; n A Nÿ�s�� and hfb; c;mgi A
DT�N��d ��, contradicting b; c A N��m�. Then, there exists h A fb; cg with
h A Nÿ�s�, that implies hNÿ�s�i � hfa; h; d; e; k; ngiAST6. Inasmuch as a;
h A N��d �, by P2.4 and P2.5 there exists the center of ekn in hNÿ�s�i, that must
be h, as d A N��e�VNÿ�n� and a A N��e�VNÿ�k�. Thus, e; k; n A N��h� (because
e A N��h��, and a; d A Nÿ�h�; this means h � b (and c A N��s�). Since a; b;
n A N��d �, we have abn A DT�Nÿ�s��. Moreover, n A N��c�, as hfc;m; ngi �
hNÿ�a�VN��d �i A DT�N��d ��.

Hence, N��a� � fb; j; k; l; sg (because Nÿ�a� � fc; d; e;m; n; xg), and it remains
to know the directions of some edges between fb; cg and f j; k; lg. Since N��m� �
fa; b; c; k; l; xg with b; k; l A N��a�, then bkl A DT�N��m��. Because hfb; c; xgi B
DT�N��m�� and b; x A N��l�, by P2.2-ii the vertex c A Nÿ�l�; thus, akc � hNÿ�l�
VN��m�i A DT�N��m�� (Fig. 6,h). Finally, since hNÿ�n�i � hfb; c; d; j; k; lgiA
ST6, then j A N��b; c�, as bjd � hN��l�VNÿ�n�i A DT�Nÿ�n�� and b; d;
k A Nÿ�c�.

We have seen that the edge directions in G or Gc are ®xed, up to iso-
morphisms, and since ST12 is free of TT5 with ST c

12 AST12, we must have
G AST12. r

Now we show a tournament of order 11 free of TT5, that is not contained in
ST13. Let ST11 be the circulant tournament of order 11 induced by the set of
quadratic residues (mod. 11), that is, f1; 3; 4; 5; 9g.
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Theorem 3.5. The tournament ST11 is free of TT5 and it is not contained in ST13.

Proof. In [4] it is proved that ST11 is free of TT5. In order to see that ST11 is not
contained in ST13, since ST11 is regular, we need only prove that no subtourna-
ment of order 11 in ST13 is regular. Let x; y A V�ST13� with y A N��x� and let
H � ST13nfx; yg. Take any vertex z A N��x; y�. Then, jN�H�z�j � 6 and jNÿH�z�j �
4, that is, H is not regular. r

4. Tournaments Free of TT6 and TT7

The uniqueness of the tournament of order 27 which does not contain transitive
subtournaments of order 6 has been established [7]. Here we see that there also
exists a unique tournament of order 26 free of these subtournaments. Using this
result, we prove that all tournaments of order 54 contain TT7, and present a
tournament of order 31 free of TT7.

Tournaments free of TT6.

Let ST27 be the Galois tournament of order 27; this is the unique tournament of
order 27 free of TT6 [7]. It is not di½cult to prove the following properties:

P4.1. If x A V�ST27� then hN��x�iAST13 and hNÿ�x�iAST13.

P4.2. If x; y A V�ST27� with y A N��x�, then jNÿ�x�VN��y�j � 7 (since by P3.2
and P4.1 jN��y�j � 13 and jN��x; y�j � 6).

P4.3. Let G be a tournament of order 26 free of TT6. Then, V�G� � V12�G�U
V13�G�, jV12�G�j � 13, and jV13�G�j � 13.

P4.4. Let G be a tournament of order 26 free of TT6, and let x A V12�G� �resp.,
x A V13�G��. Then, hN��x�iAST12 and hNÿ�x�iAST13 �resp., hN��x�iA
ST13 and hNÿ�x�iAST12�.

Lemma 4.1. Let G be a tournament of order 26 free of TT6 and let x; y A V�G� with

y A N��x�VV13�G�. Then, jN��x; y�j � 6.

Proof. By P4.4 we get hN��x�iAST12 or ST13. If hN��x�iAST13, the result is
immediate from P3.2. Suppose hN��x�iAST12 with jN��x; y�j0 6; by P2.7,
P3.2, and Theorem 3.4 the tournament hN��x; y�iAST5. Then, there exists
z A N��x; y� with jNÿ�z�VN��x; y�j � 1. Since hN��y�iAST13, P3.2 implies
jNÿ�z�VN��y�j � 6; hence, jNÿ�z; x�VN��y�j � 5, that is, jNÿ�x�VN��y�j > 4
in hNÿ�z�i (which is isomorphic to ST12 or ST13), contradicting P3.3. r

Lemma 4.2. Let G be a tournament of order 26 free of TT6 and let x; y A V12�G�.
Then, jN��x; y�j � 5.
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Proof. If v A V12�G� and z A N��v� with z A V5�N��v��, from Lemma 4.1 z A
V12�G�. Then, for all v A V12�G�, since hN��v�iAST12 and jV5�N��v��j � 6, we
have jN��v�VV12�G�jV 6. But jV12�G�j � 13 and

P
v A V12�G� jN��v�VV12�G�j �

jE�hV12�G�i�j � 13�6�, that implies jN��v�VV12�G�j � 6, for all v A V12�G�.
Hence, y A V5�N��x�� if x; y A V12�G� with y A N��x�, that is, jN��x; y�j � 5. r

Theorem 4.3. Let G be a tournament of order 26 free of TT6. Then, G is contained

in ST27. In particular, there exists a unique tournament, which we denote by ST26,
of order 26 free of TT6, up to isomorphisms.

Proof. Let h be a vertex not contained in V�G�, and let H be the tournament that
contains G such that V�H� � V�G�U fhg and, for each x A V�G�, h A N��x� or
h A Nÿ�x� if, respectively, x A V12�G� or x A V13�G� (P4.3).

Let us see that H is free of TT6. Let x A V12�G� (the case x A V13�G� is similarly
analyzed in H c). Since, by de®nition, h A N�H�x�, then it is enough to prove that
hN��x�U fhgiAST13, that is, y A NÿH�h� or y A N�H�h� if y A V5�N��x�� or
y A V6�N��x��, respectively. If y A V5�N��x��, from Lemma 4.1 y A V12�G�, and
hence y A NÿH�h�. And y A V6�N��x�� implies, by Lemma 4.2, y A V13�G�, that is,
y A N�H�h�.

Since ST27 is the unique tournament of order 27 free of TT6, we have
H AST27. It is also known that Aut�ST27� is transitive in edges [7], hence, the
theorem follows. r

For tournaments of order 24 and 25, we state the following:

Conjecture. All tournaments free of TT6 of order 24 and 25 are contained in ST27.

For tournaments of order 23 the corresponding conjecture is false. Let ST23 be
the circulant tournament of order 23 induced by the set of quadratic residues
(mod. 23), that is, by the set QR23 � f1; 2; 3; 4; 6; 8; 9; 12; 13; 16; 18g.

Theorem 4.4. The tournament ST23 is free of TT6 and is not contained in ST27.

Proof. Let us see ®rst that ST23 is not contained in ST27. It is enough to see that if
A � fa; b; c; dgHV�ST27�, then H � ST27nA is not regular. We can assume b;
c A N��a� and c A N��b�. Since hN��a�iAST13 (by P4.1) and hN��a; b�iAST6

(by P3.2), there exists x A N��a; b; c� with x0 d. Then, jNÿH�x�j � 9 or 10, and
jN�H�x�j � 13 or 12, that is, H is not regular.

It remains to see that ST23 is free of TT6. Since ST23 is the Galois tournament
of order 23, the function Fr; s�z� � rz� s is an automorphism of ST23, for all
r A QR23 and for all s A Z23, that is, Aut�ST23� is transitive in edges. Then, if W is
one of the biggest transitive subtournaments of ST23, we can assume that 0; 1 A W

with �W nf0; 1g�HN��0; 1�. In this case, it is easy to verify that hN��0; 1�i �
hf2; 3; 4; 9; 13giAST5, implying that ST23 is free of TT6.

Tournaments free of TT7

It is clear that the following properties hold:
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P4.5. Let G be a tournament of order 54 free of TT7. Then, V�G� � V26�G�U
V27�G�; jV26�G�j � 27, and jV27�G�j � 27.

P4.6. Let G be a tournament of order 54 free of TT7, and let x A V26�G� �resp.,
x A V27�G��. Then, hN��x�iAST26 and hNÿ�x�iAST27 �resp., hN��x�iAST27

and hNÿ�x�iAST26�.

Lemma 4.5. Let G be a tournament of order 54 free of TT7 and let x; y A V�G� with

y A N��x�VV27�G�. Then, jN��x; y�j � 13.

Proof. By P4.6 hN��x�iAST26 or ST27. If hN��x�iAST27, the result is imme-
diate. Suppose hN��x�iAST26 with jN��x; y�j0 13; by P4.4 hN��x; y�iAST12.
Let z A V6�N��x; y��, that is, jNÿ�z�VN��x; y�j � 5. Since hN��y�iAST27,
we have jNÿ�z�VN��y�j � 13 and jNÿ�z; x�VN��y�j � 8; this means that in
hNÿ�z�i (which is isomorphic to ST26 or ST27) jNÿ�x�VN��y�j > 7, contra-
dicting P4.2. r

Lemma 4.6. Let G be a tournament of order 54 free of TT7, and let x; y A V26�G�.
Then, jN��x; y�j � 12.

Proof. If v A V26�G� and z A N��v� with z A V12�N��v��, from Lemma 4.5 z A
V26�G�. Then, for each v A V26�G�, since hN��v�iAST26 and jV12�N��v��j �
13 (P4.3), we have jN��v�VV26�G�jV 13. But jV26�G�j � 27 (P4.5) andP

v A V26�G� jN��v�VV26�G�j � jE�hV26�G�i�j � 27�13�, that implies jN��v�V
V26�G�j � 13, for all v A V26�G�. Hence, y A V12�N��x�� if x; y A V26�G� with
y A N��x�, that is, jN��x; y�j � 12. r

Theorem 4.7. Every tournament of order 54 contains TT7.

Proof. Proceed by contradiction. Suppose that there exists a tournament G of
order 54 free of TT7. Let h be a vertex not contained in V�G�, and let H be the
tournament that contains G such that V�H� � V�G�U fhg and, for each
x A V�G�, h A N��x� or h A Nÿ�x� if, respectively, x A V26�G� or x A V27�G�
(P4.5).

Let us see that H is free of TT7. Let x A V26�G� (the case x A V27�G� is similarly
analyzed in H c). Since, by de®nition, h A N�H�x�, then it is enough to prove that
hN��x�U fhgiAST27, that is, y A NÿH�h� or y A N�H�h� if y A V12�N��x�� or
y A V13�N��x��, respectively. If y A V12�N��x��, from Lemma 4.5 y A V26�G�, and
hence y A NÿH�h�. And y A V13�N��x�� implies, by Lemma 4.6, y A V27�G�, that is,
y A N�H�h�.

Finally, since there is no tournament of order 55 free of TT7 [7], we obtain a
contradiction.

Using this theorem, we could easily prove:

Theorem 4.8. v�n�V blog2�n=54�c � 7, for nV 28.
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Now we present a tournament of order 31 free of TT7. Let ST31 be the circulant
tournamentof order 31 inducedbyR � f1; 2; 3; 4; 5; 7; 8; 9; 10; 13; 14; 15; 19; 20; 25g;
ST31 is not the tournament induced by the set of quadratic residues (mod. 31).

Theorem 4.9. The tournament ST31 is free of TT7.

Proof. Let hfu0; u1; . . . ; urgi be one of the biggest transitive subtournaments of
ST31, with ui�1; . . . ; ur A N��ui�, for all i A f0; . . . ; rÿ 1g. Since Aut�ST31� is tran-
sitive in vertices, we can assume that u0 � 0. For x A Z31, let fx : Z31 7! Z31 be the
function fx�z� � zx (mod. 31). Because R � 5R, that is, R � f5r�mod:31�jr A Rg,
we have f5; f25 A Aut�ST31�. Moreover, as each r A R is in B � f1; 2; 3; 4; 8g, 5B, or
25B, we also can assume that u1 A B. It is easy verify that the sets

N��0; 2� � f3; 4; 5; 7; 9g; N��0; 3� � f4; 5; 7; 8; 10; 13g;

N��0; 4� � f5; 7; 8; 9; 13; 14; 19g; and N��0; 8� � f2; 9; 10; 13; 15g
are free of TT5. Finally, for u1 � 1, we have

N��0; 1� � f2; 3; 4; 5; 8; 9; 10; 14; 15; 20g;
hN��0; 1; 2�i � hf3; 4; 5; 9; 10; 15giAST6;

hN��0; 1; 3�i � hf4; 5; 8; 10giETT4;

hN��0; 1; 4�i � hf5; 8; 9; 14giETT4;

hN��0; 1; 5�i � hf8; 9; 10; 14; 15; 20giAST6;

hN��0; 1; 8�i � hf2; 9; 10; 15giETT4;

N��0; 1; 9� � f3; 10; 14g;
hN��0; 1; 10�i � hf4; 14; 15; 20giETT4;

hN��0; 1; 14�i � hf2; 3; 8; 15giETT4;

hN��0; 1; 15�i � hf3; 4; 9; 20giETT4;

and

hN��0; 1; 20�i � hf2; 3; 4; 8; 9; 14giAST6:

Then, rU 5 and ST31 is free of TT7. r

5. Computational Results

For small integers n �U31�, the exact values for v�n� are induced by circulant or
Galois tournaments. In this ®nal section we obtain, using a computer, the values
for cv�r� �rU 55� and gv�s� �s < 1000�. In particular, we improve on the best
upper bounds known of v�n�, for nU 991.
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Circulant Tournaments

For an odd integer n > 0, we have de®ned cv�n� as the biggest integer such that
every circulant tournament of order n contains TTcv�n�. In order to calculate cv�n�,
let T be any circulant tournament of order n induced by a set A, and let H be one
of the biggest transitive subtournaments in T; remember that jAj � �nÿ 1�=2.
Since a nonzero element x is in A if and only if ÿx B A, then there always exists a
circulant tournament T 0 isomomorphic to T with 01 A E�T 0�; thus, we can assume
01 A E�T� and essentially there are at most 2�nÿ3�=2 circulant tournaments of order
n. Also we can take 0 A H with �Hn0�HN��0�, because Aut�T� is transitive in
vertices. Using these ideas and a computer (ACER 486 at 50MHZ), we have
obtained the values of cv�n� presented in Table 1.

Given two circulant tournaments T1 and T2 of order n induced by the sets A1

and A2, respectively, they are AÂdaÂm-isomorphic [1] if there exists a unit u of Zn

such that A2 � fu � tjt A A1g; clearly, T1 and T2 are isomorphic if they are AÂ daÂm-
isomorphic. Let a�n� and a0�n� be the number of circulant tournaments of order n

free of TTcv�n��1 that are not isomorphic and are not AÂ daÂm-isomorphic, respec-
tively; then, a�n�U a0�n�. Also in Table 1 we show the values a�n��nU 55�. The
entries in boldface correspond to a0�n�, instead of a�n�. With the possible excep-
tion of these entries, in general we have a�n� � a0�n� by the following [3]:

Theorem 5.1. Let n be an odd positive integer non divisible by a square. Also, let T1

and T2 be circulant tournaments of order n. Then, T1 and T2 are isomorphic to each

other if and only if they are AÂdaÂm-isomorphic.

Observe that cv�n� is not an increasing function. Also note that the tournament
ST31 presented in section 4 is the unique circulant tournament of order 31 free of
TT7; in general, for k � 3; 4; 5; 6 (and apparently too for k � 7), the largest circu-
lant tournament free of TTk�1 is unique.

Table 1. Values of cv�n� and a�n�, nU 55. The entries in boldface correspond to a0�n�,
instead of a�n�

n 5 7 9 11 13 15 17 19 21 23 25 27 29

cv�n� 3 3 4 4 4 6 5 5 5 5 6 6 6

a�n� 1 1 3 2 1 14 1 2 1 1 16 9 4

n 31 33 35 37 39 41 43 45 47 49 51 53 55

cv�n� 6 7 7 7 7 7 7 8 7 8 8 8 8

a�n� 1 >40 >40 17 14 1 4 >40 1 >40 >40 >40 >40
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Galois Tournaments

It is well known that there exists a Galois tournament of order n if and only if
n1 3 (mod. 4) with n � pr, for p prime and r A N. In Table 2 we present our
computational results (in a Silicon Graphics Power Series 4D/3105) of the order
gv�n� of the largest transitive subtournaments of the Galois tournament of order n,
for n < 1000. Almost all these Galois tournaments are also circulant tournaments,
since they are of prime order. The tournaments of order 27 � 33, 243 � 35, and
343 � 73, are the unique Galois tournaments which are not of prime order, and
hence, they are not circulant tournaments. From Tables 1 and 2 it is clear that
gv�n� � v�n� or gv�n�V cv�n� in the Galois tournament of order nU 47 (excepting
n � 31).

Table 2. The order gv�n� of the largest transitive subtournaments of the Galois tournament
of order n < 1000. The orders 27, 243, and 343 are the unique nonprime orders

gv�n� n

3 7

4 11

5 19, 23, 27

7 31, 43, 47

8 67, 83

9 59, 71, 79, 107

11 103, 127, 131, 139, 151, 163, 167, 191, 199

12 179, 239, 251, 271

13 211, 223, 227, 263, 307, 311, 331, 343, 347, 367

14 243, 283, 443

15 379, 383, 419, 439, 463, 467, 479, 499, 547, 563, 587, 619

16 487, 571, 659

17 359, 431, 491, 503, 523, 599, 607, 631, 643, 647, 683, 691, 719, 727, 739, 743,
751, 787, 811, 827, 839, 859, 863, 883, 887, 947, 971

18 907, 967

19 823, 911, 919, 983, 991
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On the other hand, the best upper bounds known for v�n� are �2; 8�:
v�n�U b2 log2�n�c � 1 �1�

and

v�n�U ÿ 3
2
�

��������������
3n� 13

4

qj k
; n1 3 �mod: 4�; �2�

where (2) is better than (1) only for nU 59. Since v�n� is an increasing function
with v�n�U cv�n� and v�n�U gv�n�, in Table 3 we present the upper bounds C1 for
v�n�, nU 991, induced from Tables 1 and 2, compared with the bounds C2 and C3
given by (1) and (2), respectively. In general, the bounds C1 are better than C2 and
C3. However, as n increases, the di¨erence between C1 and C2 becomes smaller.
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