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Abstract
The DP-coloring is a generalization of the list coloring, introduced by Dvořák and
Postle. Let H = (L, H) be a cover of a graph G and PDP (G,H) be the number of
H-colorings of G. The DP color function PDP (G,m) of G, introduced by Kaul and
Mudrock, is the minimum value of PDP (G,H) where the minimum is taken over
all possible m-fold covers H of G. For the family of n-vertex connected graphs, one
can deduce that trees maximize the DP color function, from two results of Kaul and
Mudrock. In this paper we obtain tight upper bounds for the DP color function of
n-vertex 2-connected graphs. Another concern in this paper is the canonical labeling
in a cover. It is well known that if an m-fold cover H of a graph G has a canonical
labeling, then PDP (G,H) = P(G,m) in which P(G,m) is the chromatic polynomial
of G. However the converse statement of this conclusion is not always true. We give
examples that for some m and G, there exists an m-fold cover H of G such that
PDP (G,H) = P(G,m), but H has no canonical labelings. We also prove that when
G is a unicyclic graph or a theta graph, for each m ≥ 3, if PDP (G,H) = P(G,m),
then H has a canonical labeling.

Keywords DP-coloring · DP color function · 2-Connected graph · Ear
decomposition · Canonical labeling
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1 Introduction

All graphs considered in this paper are finite and simple. The set of natural numbers
is N = {1, 2, 3, . . .}. For m ∈ N, let [m] = {1, . . . ,m}. For any graph G, let V (G)
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and E(G) be its vertex set and edge set respectively. For any v ∈ V (G), let NG(v)

denote the set of neighbors of v in G and dG(v) denote the degree of v in G. A
proper m-coloring of G is a mapping c : V (G) → [m] such that c(u) �= c(v)

whenever uv ∈ E(G). In 1912, Birkhoff [3] introduced a function P(G,m) which
counts the number of proper m-colorings of G, it is a polynomial in m and called
chromatic polynomial of G. The book by Dong, Koh and Teo [4] gives an overview
for chromatic polynomial problems.

Since it is difficult to get a simple expression for the chromatic polynomial of
an arbitrary graph, the bounds for the chromatic polynomials of graphs are of par-
ticular interest. For n-vertex connected graphs, the upper bound for their chromatic
polynomials can be found in [4].

Theorem 1.1 [4, Theorem 15.3.2] Let G be a connected graph with n vertices. Then
for all m ∈ N,

P(G,m) ≤ m(m − 1)n−1,

where equality holds for m ≥ 3 if and only if G is a tree.

For the family of 2-connected graphs, Tomescu obtained the following result.

Theorem 1.2 [20, Theorem 2.1] Let G be a 2-connected graph with n vertices, where
n ≥ 3. Then for all m ∈ N with m ≥ 3,

P(G,m) ≤ (m − 1)n + (−1)n(m − 1),

where equality holds if and only if G ∼= Cn; or G ∼= K (2, 3) for the case that n = 5
and m = 3.

In [10], Felix gave a survey on the upper bounds for the chromatic polynomials of
graphs of given order and size. Recently, some authors focus on the upper bounds for
the chromatic polynomials of n-vertex graphs with chromatic number k, they obtained
some inspired results, see [7–9, 11, 16, 17] for example.

In this paper we obtain analogous results to that in Theorems 1.1 and 1.2, in the
context of DP-coloring. The DP-coloring (also called corresponding coloring) is a
generalization of the list coloring, introduced by Dvořák and Postle [6].

Definition 1.3 [6] Let G be a graph. If X ,Y ⊆ V (G), we use G[X ] for the subgraph
of G induced by X , and we use EG(X ,Y ) for the subset of E(G) with one endpoint
in X and one endpoint in Y . Given a set S, P(S) is the power set of S.

• A cover of a graph G is a pairH = (L, H) consisting of a graph H and a function
L : V (G) → P(V (H)) satisfying the following four requirements:

1. the set {L(u) : u ∈ V (G)} is a partition of V (H);
2. for every u ∈ V (G), the graph H [L(u)] is complete;
3. if EH (L(u), L(v)) is nonempty, then u = v or uv ∈ E(G);
4. if uv ∈ E(G), then EH (L(u), L(v)) is a matching (the matching may be

empty).
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• A cover H = (L, H) is m-fold if |L(u)| = m for each u ∈ V (G), andH is full if
for each uv ∈ E(G), EH (L(u), L(v)) is a perfect matching.

• An H-coloring of G is an independent set in H of size |V (G)|.
• The DP-chromatic number of G, denoted by χDP (G), is the smallest m ∈ N such
that G admits an H-coloring for every m-fold cover H of G.

In 2021, Kaul and Mudrock [14] gave the definition of DP color function.

Definition 1.4 [14] LetH = (L, H) be a cover of a graph G. We denote PDP (G,H)

the number ofH-colorings ofG. TheDP color function ofG, denoted by PDP (G,m),
is the minimum value of PDP (G,H) where the minimum is taken over all possible
m-fold covers H of G.

By the definition of chromatic polynomial and DP color function, PDP (G,m) ≤
P(G,m) holds for any graph G and m ∈ N. LetH = (L, H) be an m-fold cover of a
graph G. We say thatH has a canonical labeling if it is possible to name the vertices
of H so that L(u) = {(u, j) : j ∈ [m]} for each u ∈ V (G) and (u, j)(v, j) ∈ E(H)

for each j ∈ [m] whenever uv ∈ E(G). It is well known that if H has a canonical
labeling, then PDP (G,H) = P(G,m) holds for each m ∈ N. So there is a natural
question as following.

Question 1.5 Suppose that H = (L, H) is a full m-fold cover of a graph G and
PDP (G,H) = P(G,m). Does H have a canonical labeling?

By finding two examples, we give a negative answer to this question. But,
considering our examples are only for some small m, we have the following question.

Question 1.6 Suppose thatH = (L, H) is a fullm-fold cover of a graphG, does there
exist some M ∈ N such that for each m ≥ M , if PDP (G,H) = P(G,m), thenH has
a canonical labeling?

Question 1.6 is closely related to (but not equivalent to) the Problem 3 in [5]. In
order to compare DP color functions with chromatic polynomials, Dong and Yang
[5] defined a class of graphs called DP∗. It denotes the set of graphs G for which
there exists M ∈ N such that for every m-fold cover H = (L, H) of G, if H has no
canonical labelings, then PDP (G,H) > P(G,m) holds for all m ≥ M . Then, for
each graph G ∈ DP∗, PDP (G,m) = P(G,m) holds when m ≥ M . And they posed
the following question, i.e., the Problem 3 in [5].

Question 1.7 [5] For a graph G, is it true that if there exists an M ∈ N such that
PDP (G,m) = P(G,m) holds for all m ≥ M , then G ∈ DP∗?

In [5], some types of graphs have been proved belonging to DP∗. For example, if
a graph G contains a spanning tree T such that for each e ∈ E(G)\E(T ), �(e) is odd
and e is contained in a cycle C of length �(e)with the property that �(e′) < �(e) holds
for each e′ ∈ E(C)\(E(T ) ∪ {e}), then G ∈ DP∗, where �(e) = ∞ if e is a bridge
of G, and �(e) is the length of a shortest cycle in G containing e otherwise. By the
definition of DP∗, we have the following result.
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Proposition 1.8 If a graph G ∈ DP∗, then there exists an M ∈ N such that for any full
m-fold coverH of G with PDP (G,H) = P(G,m), where m ≥ M,H has a canonical
labeling.

In Sect. 2, we obtain tight upper bounds for the DP color function of n-vertex
2-connected graphs, and give two new proofs for the upper bounds for the DP
color function of n-vertex connected graphs. In Sect. 3, we give two examples that
PDP (G,H) = P(G,m) but H has no canonical labelings, and also give positive
answers to Question 1.6 for unicyclic graphs and theta graphs.

We also note that Kaul, Mudrock, and their coauthors obtain lots of results on
DP color function, see [2, 12, 13, 15, 18, 19] for example, they study the asymp-
totics of P(G,m) − PDP (G,m) for a fixed graph G, they develop techniques to
evaluate PDP (G,m) for some classes of graphs such as chordal graphs, unicyclic
graphs, theta graphs, Cartesian product graphs, joint graphs, vertex-gluings graphs,
and clique-gluings graphs, etc. Zhang and Dong [22] give some sufficient conditions
for graphs belong to DP≈ (DP<, respectively) where DP≈ (DP<, respectively) is the
set of graphs G for which there exists an M ∈ N such that PDP (G,m) = P(G,m)

(PDP (G,m) < P(G,m), respectively) holds for all m ≥ M . Their results extend
Dong and Yang’s results in [5].

2 Bounds for DP Color Function of 2-Connected Graphs

In [14], the authors obtained an upper bound for the DP color function of an arbitrary
graph, by using a probabilistic argument.

Lemma 2.1 [14] For any graph G and all m ∈ N,

PDP (G,m) ≤ m|V (G)|(m − 1)|E(G)|

m|E(G)| .

For a connected graph, Kaul and Mudrock [14] gave the following result.

Lemma 2.2 [14] For any connected graph G and all m ∈ N,

PDP (G,m) = m|V (G)|(m − 1)|E(G)|

m|E(G)|

if and only if G is a tree.

Combining Lemmas 2.1 and 2.2, one can obtain the following result easily.

Theorem 2.3 Let G be a connected graph with n vertices. Then for all m ∈ N,

PDP (G,m) ≤ m(m − 1)n−1

where equality holds for m ≥ 2 if and only if G is a tree.
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By considering the effect of the edge or vertex deletion on the DP color function,
we will give two new proofs for Theorem 2.3.

Theorem 2.4 Let G be a graph with n vertices and u, v be two distinct vertices in
V (G) with uv /∈ E(G). If G ′ = G + {uv}, then for all m ∈ N,

PDP (G ′,m) ≤ PDP (G,m)
m − 1

m
.

Proof Suppose thatH = (L, H) is an arbitrary fullm-fold cover ofG. Let L ′ = L and
H ′ = H + E(L(u), L(v)) where E(L(u), L(v)) is a perfect matching between L(u)

and L(v) chosen uniformly at random from the m! possible perfect matchings, then
H′ = (L ′, H ′) is a full m-fold cover of G ′. Let t = PDP (G,H) and I = {I1, . . . , It }
be the set of all H-colorings of G.

For each i ∈ [t], let Ei be the event that Ii is also an H′-coloring of G ′. When
Ii ∩ L(u) is not adjacent to Ii ∩ L(v) in H ′, the event Ei occurs, so

Pr [Ei ] = 1 − 1

m
.

Let Xi be the random variable that is one if Ei occurs and zero otherwise. Let X =∑t
i=1 Xi , then X is the random variable which equals PDP (G ′,H′). By the linearity

of expectation, the expectation of X is

E[X ] =
t∑

i=1

E[Xi ] = PDP (G,H)

(

1 − 1

m

)

.

Then, combining the arbitrariness ofH = (L, H), we have

PDP (G ′,m) ≤ PDP (G,m)
m − 1

m
.

The proof is complete. ��
Corollary 2.5 Let G be a graphwith n vertices and u, v be two distinct vertices in V (G)

with uv /∈ E(G). If G ′ = G + {uv}, then for all m ∈ N and m ≥ max{2, χDP (G)},

PDP (G ′,m) < PDP (G,m).

Proof When m ≥ max{2, χDP (G)}, we have 0 < 1− 1/m < 1 and PDP (G,m) > 0,
the corollary is straightforward from Theorem 2.4. ��

By using Corollary 2.5, we give a new proof of Theorem 2.3 as follow.

proof of Theorem 2.3 Let T be a spanning tree of G, then PDP (T ,m) = m(m − 1)n

for all m ∈ N. From Proposition 2.3 in [1], χDP (G) ≤ 2 if and only if G is a tree. We
discuss the two cases as follow.
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Case 1 |E(T )| = |E(G)|. In this case, G ∼= T , PDP (G,m) = m(m − 1)n−1 for
all m ∈ N.
Case 2 |E(T )| < |E(G)|. In this case G is not a tree, so max{2, χDP (G)} =
χDP (G) ≥ 3.

When m ≥ χDP (G), then PDP (G,m) < PDP (T ,m) from Corollary 2.5. When
2 ≤ m < χDP (G), then PDP (G,m) = 0 < m(m − 1)n−1. When m = 1, then
PDP (G,m) = 0 ≤ m(m − 1)n−1.

Summarizing the above, the theorem follows. ��
Theorem 2.6 Let G be a graph with n vertices, w ∈ V (G) and dG(w) = d, then for
all m ∈ N,

PDP (G,m) ≤ m

(

1 − 1

m

)d

PDP (G − {w},m).

Proof Suppose that H′ = (L ′, H ′) is an arbitrary full m-fold cover of G − {w}, and
NG(w) = {v1, . . . , vd}. Let L(x) = L ′(x) for all x ∈ V (G − {w}), L(w) = {(w, i) :
i ∈ [m]}, and E(H) = E(H ′) ∪ (∪d

i=1EH (L(w), L(vi ))) where for each i ∈ [d],
EH (L(w), L(vi )) is a perfect matching between L(w) and L(vi ) chosen uniformly at
random from the m! possible perfect matchings for each i ∈ [d], thenH = (L, H) is
a full m-fold cover of G. Let � be the family of all H = (L, H).

Let t = PDP (G − {w},H′) and I ′ = {I ′
1, . . . , I

′
t } be the set of allH′-colorings of

G − {w}. In H , we denote X(I ′
i ) the number of vertices in L(w) that is not adjacent

to any vertices in I ′
i , then

PDP (G,H) =
t∑

i=1

X(I ′
i ).

Notice that dG(w) = d, for each vertex u ∈ L(w), in H the probability that u is not
adjacent to any vertices in I ′

i is (1 − 1
m )d , so

EH∈�[X(I ′
i )] = m

(

1 − 1

m

)d

.

Then, by the linearity of expectation, we have

EH∈�[PDP (G,H)] =
t∑

i=1

EH∈�[X(I ′
i )] = m

(

1 − 1

m

)d

PDP (G − {w},H′).

Finally, combining the arbitrariness of H′ = (L ′, H ′), we have

PDP (G,m) ≤ m

(

1 − 1

m

)d

PDP (G − {w},m).

The proof is complete. ��
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By using Theorem 2.6, we give a new proof of Lemma 2.1, along with another new
proof of Theorem 2.3 as follows.

Another proof of Theorem 2.3 Let V (G) = {v1, . . . , vn}, Gn = G, Gi = Gi+1 −
{vi+1} where i ∈ [n − 1], then G1 is a graph with one vertex and no edges. By
Theorem 2.6, for each i ∈ [n − 1], we have

PDP (Gi ,m) ≤ m

(

1 − 1

m

)di
PDP (Gi−1,m),

in which di = dGi (vi ). Then,

PDP (G,m) ≤ mn−1
(

1 − 1

m

)∑n
i=2 di

PDP (G1,m) = mn
(

1 − 1

m

)∑n
i=1 di

.

For
∑n

i=1 di = |E(G)|, we have

PDP (G,m) ≤ m|V (G)|(m − 1)|E(G)|

m|E(G)| .

If G is a connected graph with n vertices, then | E(G) |≥ n − 1, with equality
holds if and only if G is a tree. Hence

PDP (G,m) ≤ m(m − 1)n−1,

combining with that χDP (G) ≤ 2 if and only if G is a tree, the proof is complete. ��
Next we focus on the upper bounds of DP color function for 2-connected graphs.
An ear of a graph G is a maximal path whose internal vertices have degree 2 in G.

An ear decomposition of G is a decomposition Q0, . . . , Qk such that Q0 is a cycle
and Qi for i ≥ 1 is an ear of Q0 ∪· · ·∪Qi−1. It is well known that every 2-connected
graph has an ear decomposition.

Theorem 2.7 [21, Theorem 4.2.8] A graph is 2-connected if and only if it has an ear
decomposition. Furthermore, every cycle in a 2-connected graph is the initial cycle in
some ear decomposition.

In order to get the upper bound for the DP color function of 2-connected graphs,
we first consider the DP color function of the graph obtained by adding an ear to a
graph, then combine it with the ear decomposition of 2-connected graphs, the result
follows.

Theorem 2.8 Let G be a graph with n vertices and u, v be two distinct vertices in
V (G). If G ′ is a graph obtained by adding an ear uw1 . . . wlv of length l + 1 (l ≥ 0)
to G, then for all m ∈ N,

PDP (G ′,m) ≤ PDP (G,m)
(m − 1)l+1

m
.
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Proof When l = 0, the result follows from Theorem 2.4. We assume l ≥ 1 in the
following. Suppose that H = (L, H) is an arbitrary full m-fold cover of G in which
L(x) = {(x, i) : i ∈ [m]} for each x ∈ V (G). Let G∗ = G ′ − {wlv}, i.e., the graph
G∗ is obtained by adding a path P = uw1 . . . wl to G. Let L∗(x) = L(x) for each
x ∈ V (G∗) − {w1, . . . , wl}, L∗(x) = {(x, i) : i ∈ [m]} for each x ∈ {w1, . . . , wl},
and

H∗ = H + E(L∗(u), L∗(w1)) +
l−1∑

i=1

E(L∗(wi ), L
∗(wi+1))

where E(L∗(u), L∗(w1)) (E(L∗(wi ), L∗(wi+1)), respectively) is a perfect matching
between L∗(u) and L∗(w1) (L∗(wi ) and L∗(wi+1), respectively) chosen uniformly
at random from all possible perfect matchings, then H∗ = (L∗, H∗) is a full m-fold
cover of G∗.

From Proposition 21 in [14] and Lemma 19 in [2], one can get that

PDP (G∗,H∗) = PDP (G,H)(m − 1)l .

From the arbitrariness of H = (L, H), we have

PDP (G∗,m) = PDP (G,m)(m − 1)l .

Because G ′ = G∗ + {wlv} and Theorem 2.4, we have

PDP (G ′,m) ≤ PDP (G∗,m)
m − 1

m
= PDP (G,m)

(m − 1)l+1

m
.

The proof is completed. ��
In [14], Kaul and Mudrock computed the DP color function of the unicyclic graph

(i.e., a connected graph containing exactly one cycle) with n vertices, so the DP color
function of the cycle with n vertices can be deduced.

Lemma 2.9 [14, Theorem 11] Let Cn be the cycle with n vertices.

(i) If n is odd, then for all m ∈ N,

PDP (Cn,m) = (m − 1)n − (m − 1).

(i) If n is even, then for all m ∈ N and m ≥ 2,

PDP (Cn,m) = (m − 1)n − 1.

Nowweare ready to get a tight upper bound for theDPcolor function of 2-connected
graphs.

Theorem 2.10 Let G be a 2-connected graph with n vertices and G0 be a cycle of
length l0 in G.

123



Graphs and Combinatorics (2024) 40 :65 Page 9 of 19 65

(i) If G0 is an odd cycle, then for all m ∈ N and m ≥ 3

PDP (G,m) ≤ (m − 1)n − (m − 1)n−l0+1,

where equality holds if and only if G ∼= G0.
(ii) If G0 is an even cycle, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m − 1)n − (m − 1)n−l0 ,

where equality holds if and only if G ∼= G0.

Proof Since G is a 2-connected graph, G contains a cycle, and the DP-chromatic
number of a cycle is three. FromTheorem2.7,G has an ear decomposition Q0, . . . , Qk

such that Q0 ∼= G0 is the cycle of length l0 and Qi is an ear of Q0 ∪ · · · ∪ Qi−1 for
i ≥ 1. Suppose that ear Qi has length li + 1 (li ≥ 0) for 1 ≤ i ≤ k, then we have∑k

i=0 li = n.
By Theorems 2.8 and Lemma 2.9, if G0 is an odd cycle,

PDP (G,m) ≤ PDP (G0,m)

k∏

i=1

(m − 1)li+1

m

= (
(m − 1)l0 − (m − 1)

) (m − 1)n−l0+k

mk

= (m − 1)n+k − (m − 1)n−l0+k+1

mk

≤ (m − 1)n+k − (m − 1)n−l0+k+1

(m − 1)k

= (m − 1)n − (m − 1)n−l0+1,

where the next to the last equalities hold if and only if k = 0, i.e., G ∼= G0 is an
n-vertex odd cycle. With a similar argument, if G0 is an even cycle,

PDP (G,m) ≤ PDP (G0,m)

k∏

i=1

(m − 1)li+1

m

= (
(m − 1)l0 − 1

) (m − 1)n−l0+k

mk

= (m − 1)n+k − (m − 1)n−l0+k

mk

≤ (m − 1)n+k − (m − 1)n−l0+k

(m − 1)k

= (m − 1)n − (m − 1)n−l0 ,

where equality holds if and only if G ∼= G0 is an n-vertex even cycle. The proof is
completed. ��
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Theorem 2.11 Let G be a 2-connected graph with n vertices.

(i) If n is odd, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m − 1)n − (m − 1),

where equality holds if and only if G is an odd cycle with n vertices.
(ii) If n is even, then for all m ∈ N and m ≥ 3,

PDP (G,m) ≤ (m − 1)n − 1,

where equality holds if and only if G is an even cycle with n vertices.

Proof Because every 2-connected graph contains a cycle, the theorem follows from
Theorem 2.10. ��

3 Canonical Labelings ofH
Webegin this section by giving examples which gives negative answer toQuestion 1.5.
Next we introduce some conclusions in [14] that will be used in our later proof, then
we give positive answer to Question 1.6 for two types of graphs.

Let G and H be two vertex disjoint graphs, the join G ∨ H of G and H is obtained
from G ∪ H by joining every vertex of G to every vertex of H . The join Cn ∨ K1
of a cycle with n vertices Cn and a single vertex is called a wheel with n spokes and
denoted Wn . A theta graph θ(r , s, t) (r ≥ 1, s, t ≥ 2) is a graph obtained by joining
two vertices by three internally disjoint paths of lengths r , s and t . For the wheel
graph, unicyclic graph, cycle graph and theta graph, their chromatic polynomials can
be found in [4].

Lemma 3.1 [4]

(i) For the wheel Wn (n ≥ 3),

P(Wn,m) = m((m − 2)n + (−1)n(m − 2)).

(ii) For a unicyclic graph G with n vertices containing a cycle Ci (i ≥ 3),

P(G,m) = (m − 1)n + (−1)i (m − 1)n−i+1.

(iii) For the n-cycle Cn (n ≥ 3),

P(Cn,m) = (m − 1)n + (−1)n(m − 1).

(iv) For the theta graph θ(r , s, t) (r ≥ 1, s, t ≥ 2),
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Fig. 1 The subgraph H1[Ec]

P(G,m) = (m − 1)r+s+t + (−1)s+t (m − 1)r+1 + (−1)r+t (m − 1)s+1

m

+ (−1)r+s(m − 1)t+1 + (−1)r+s+t (m − 1)2 + (−1)r+s+t+1(m − 1)

m
.

In a coverH = (L, H) of a graphG, the cross-edges are the edges of H connecting
distinct parts of the partition {L(v) : v ∈ V (G)}, we denote Ec the set of all cross-edges
in H , and denote H [Ec] the edge-induced subgraph of H induced by Ec.

Example 3.2 Let H1 = (L1, H1) be a 3-fold cover of W4, V (W4) = {x, y, z, u, v}
and L1(w) = {(w, i) : i ∈ [3]} for each w ∈ V (W4). If H1[Ec] is the graph as shown
in Fig. 1, then PDP (W4,H1) = P(W4, 3) = 6. We list all H1-colorings as follows,

{(x, 1), (u, 2), (y, 3), (v, 2), (z, 2)}, {(x, 2), (u, 1), (y, 3), (v, 1), (z, 1)},
{(x, 3), (u, 1), (y, 2), (v, 1), (z, 1)}, {(x, 1), (u, 3), (y, 2), (v, 3), (z, 3)},
{(x, 2), (u, 3), (y, 1), (v, 3), (z, 3)}, {(x, 3), (u, 2), (y, 1), (v, 2), (z, 2)}.

But clearly H1 has no canonical labelings.

Example 3.3 Let H2 = (L2, H2) be a 4-fold cover of W4, V (W4) = {x, y, z, u, v}
and L2(w) = {(w, i) : i ∈ [4]} for each w ∈ V (W4). If H2[Ec] is the graph as
shown in Fig. 2, then PDP (W4,H2) = P(W4, 4) = 72. We list 18 of them that are all
H2-colorings containing (x, 1) as follows,

{(x, 1), (u, 2), (y, 3), (v, 2), (z, 1)}, {(x, 1), (u, 2), (y, 3), (v, 2), (z, 4)},
{(x, 1), (u, 2), (y, 3), (v, 4), (z, 1)}, {(x, 1), (u, 2), (y, 3), (v, 4), (z, 2)},
{(x, 1), (u, 2), (y, 4), (v, 2), (z, 1)}, {(x, 1), (u, 2), (y, 4), (v, 3), (z, 1)},
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(x, 1) (x, 2) (x, 3) (x, 4)

(u, 1) (u, 2) (u, 3) (u, 4)

(y, 1) (y, 2) (y, 3) (y, 4)

(v, 1) (v, 2) (v, 3) (v, 4)

(z, 1) (z, 2) (z, 3) (z, 4)

Fig. 2 The subgraph H2[Ec]

{(x, 1), (u, 2), (y, 4), (v, 3), (z, 2)}, {(x, 1), (u, 3), (y, 2), (v, 3), (z, 1)},
{(x, 1), (u, 3), (y, 2), (v, 4), (z, 1)}, {(x, 1), (u, 3), (y, 2), (v, 4), (z, 3)},
{(x, 1), (u, 3), (y, 4), (v, 2), (z, 1)}, {(x, 1), (u, 3), (y, 4), (v, 2), (z, 3)},
{(x, 1), (u, 3), (y, 4), (v, 3), (z, 1)}, {(x, 1), (u, 3), (y, 4), (v, 3), (z, 2)},
{(x, 1), (u, 4), (y, 2), (v, 3), (z, 4)}, {(x, 1), (u, 4), (y, 2), (v, 4), (z, 3)},
{(x, 1), (u, 4), (y, 3), (v, 2), (z, 4)}, {(x, 1), (u, 4), (y, 3), (v, 4), (z, 2)}.

But H2 has no canonical labelings.

We note that in the above two examplesm = 3 or 4, and we can’t extendm to larger
one for the graph W4. So we consider whether Question 1.6 has a positive answer for
each graph. In fact, there are some types of graphs, for which Question 1.6 has a
positive answer.

Proposition 3.4 [14] If T is a tree and H = (L, H) is a full m-fold cover of T where
m ≥ 1, then H has a canonical labeling.

In the following, we find two more examples to affirm Question 1.6.

Lemma 3.5 [14] Let G be a graph with e = uv ∈ E(G). For each (i, j) ∈ [m]× [m],
let C (i, j)

m be the set of proper m-coloring of G − {e} that color u with i and v with j .
Then,

(i) there is an r ∈ N such that |C (i,i)
m | = r for each i ∈ [m].

(ii) there is a t ∈ N such that |C (i, j)
m | = t whenever i �= j and i, j ∈ [m].

Consequently, mr = P(G − {e},m) − P(G,m) and m(m − 1)t = P(G,m).

From Lemma 3.5 and the definition of canonical labeling, we obtain the following
lemma.

Lemma 3.6 Let G be a graph andH = (L, H) be a full m-fold cover of G with m ≥ 2.
Suppose e ∈ E(G) and e = uv. Let H ′ = H − EH (L(u), L(v)) so thatH′ = (L, H ′)
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is a full m-fold cover of G − {e}. For each (i, j) ∈ [m] × [m], let H′
(i, j) be the set

of H′-coloring that contain (u, i) and (v, j). If H′ has a canonical labeling, then we
have

(i) when i = j ,

|H′
(i, j)| = P(G − {e},m) − P(G,m)

m
;

(ii) when i �= j ,

|H′
(i, j)| = P(G,m)

m(m − 1)
.

Furthermore, suppose P = {(i, j) : (u, i)(v, j) ∈ EH (L(u), L(v))}, then

PDP (G,H) = PDP (G ′,H′) −
∑

(i, j)∈P

|H′
(i, j)|.

Lemma 3.7 [14] Let G be a graph and H = (L, H) be a full m-fold cover of G
with m ≥ 3. Suppose α1α2α3 is a path of length two in G and α1α3 /∈ E(G). Let
e1 = α1α2, e2 = α2α3. Then, let G0 = G −{e1, e2}, G1 = G −{e1}, G2 = G −{e2},
and G∗ be the graph obtained from G by adding an edge between α1 and α3. Let
H ′ = H − (EH (L(α1), L(α2)) ∪ EH (L(α2), L(α3))) so that H′ = (L, H ′) is an
m-fold cover of G0. Suppose that H′ has a canonical labeling. Let

A1 = P(G0,m) − P(G,m),

A2 = P(G0,m) − P(G2,m) + 1

m − 1
P(G,m),

A3 = P(G0,m) − P(G1,m) + 1

m − 1
P(G,m),

A4 = 1

m − 1
(P(G1,m) + P(G2,m) + P(G∗,m) − P(G,m)), and

A5 = 1

m − 1
(P(G1,m) + P(G2,m) − 1

m − 2
P(G∗,m)).

Then,

PDP (G,H) ≥ P(G0,m) − max{A1, A2, A3, A4, A5}.

Moreover, there exists an m-fold cover of G, H∗, such that

PDP (G,H∗) = P(G0,m) − max{A1, A2, A3, A4, A5}.

From Lemma 3.7 and its proof in [14], we get Lemma 3.8.
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Lemma 3.8 Under the condition of Lemma 3.7. Let H ′′ be the graph with V (H ′′) =⋃3
i=1 L(αi ) and E(H ′′) = EH (L(α1), L(α2)) ∪ EH (L(α2), L(α3)). Clearly H ′′ can

be decomposed into m vertex disjoint paths on three vertices. Take any one of m paths,
let it be (α1, i)(α2, j)(α3, k) where i, j, k ∈ [m], then we have five cases for i, j, k,
that are (1) i = j = k, (2) i = j and j �= k, (3) i �= j and j = k, (4) i �= j and i = k,
(5) i , j , k are pairwise distinct. LetH′

(i, j,k) be the set ofH′-coloring that contains at
least one edge of the path (α1, i)(α2, j)(α3, k). Then |H′

(i, j,k)| = Aq/m when i, j, k
satisfy case q, (1 ≤ q ≤ 5). Furthermore, we suppose that for q ∈ [5], there are mq

paths of case q in the m paths. Then
∑5

q=1mq = m and

PDP (G,H) = P(G0,m) − 1

m

5∑

q=1

mq Aq .

Theorem 3.9 Let G be a unicyclic graph with n vertices containing a cycle C on g
vertices where g ≥ 3 and H = (L, H) be a full m-fold cover of G. For each m ≥ 2,
if PDP (G,H) = P(G,m), then H has a canonical labeling.

Proof Suppose e ∈ E(C) and e = uv. Let G ′ = G − {e} and H′ = (L, H ′)
where H ′ = H − EH (L(u), L(v)). Then, G ′ is a tree and H′ is a full m-fold
cover of G ′. Proposition 3.4 implies that H′ has a canonical labeling. Let P =
{(i, j) : (u, i)(v, j) ∈ EH (L(u), L(v))}, P1 = {(i, j) ∈ P and i = j}, and
P2 = {(i, j) ∈ P and i �= j}. Suppose that |P2| = t , then |P1| = m − t . By
Lemma 3.6, we have that for m ≥ 2

PDP (G,H) = PDP (G ′,H′) −
∑

(i, j)∈P

|H′
(i, j)|

= P(G ′,m) − t
P(G,m)

m(m − 1)
− (m − t)

P(G ′,m) − P(G,m)

m
.

For P(G,m) = (m − 1)n + (−1)g(m − 1)n−g+1 and P(G ′,m) = m(m − 1)n−1, we
have

PDP (G,H) = (m − 1)n + (−1)g(m − t − 1)(m − 1)n−g.

If PDP (G,H) = P(G,m), then t = 0 which implies H is a canonical labeling. ��
Theorem 3.10 Let G = θ(r , s, t) (r ≥ 1, s, t ≥ 2) and H = (L, H) be a full m-fold
cover of G. For each m ≥ 3, if PDP (G,H) = P(G,m), then H has a canonical
labeling.

Proof Letα2 be oneof the commonends of the three paths ofG, letα1 andα3 be the ver-
tices in the path of length s and t respectively, that are adjacent to α2. Clearly α1α2α3 is
a path of length two inG andα1α3 /∈ E(G).Wedefine e1, e2,G0,G1,G2,G∗,H′, H ′′
and mq(1 ≤ q ≤ 5) as they are defined in the statement of Lemmas 3.7 and 3.8.

ThenG0 is a tree andH′ = (L, H ′) is a fullm-fold cover ofG0. By Proposition 3.4,
H′ has a canonical labeling. So we can name the vertices of H so that L(x) = {(x, j) :
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j ∈ [m]} for each x ∈ V (H) and (x, j)(y, j) ∈ E(H) for each j ∈ [m] whenever
xy ∈ E(G0).

By computing, we get that

P(G0,m) = m(m − 1)r+s+t−2, (1)

P(G1,m) = (m − 1)r+s+t−1 + (−1)r+t (m − 1)s, (2)

P(G2,m) = (m − 1)r+s+t−1 + (−1)r+s(m − 1)t , (3)

P(G∗,m) =
{
P(G,m) − P(θ(r + 1, s − 1, t − 1),m), when s ≥ 3 or t ≥ 3;
P(G,m) − P(Cr+2,m), when s = t = 2.

(4)

By Lemmas 3.7 and 3.8, we have that

PDP (G,H) = P(G0,m) − 1

m

5∑

q=1

mq Aq

= m − m1 − m2 − m3

m
P(G0,m) + (m − 1)m1 − m2 − m3 + m4

m(m − 1)
P(G,m)

+ (m − 1)m3 − m4 − m5

m(m − 1)
P(G1,m) + (m − 1)m2 − m4 − m5

m(m − 1)
P(G2,m)

+ m5 − (m − 2)m4

m(m − 1)(m − 2)
P(G∗,m). (5)

For simplicity, we let u = m−1. Then combining Eqs. (1)–(5)with Lemma 3.1(iv),
we have that when s ≥ 3 or t ≥ 3,

PDP (G,H) = ur+s+t+1 + ur+s+t + (−1)r+t (us+2 + us+1) + (−1)s+t (ur+2 + ur+1)

(u + 1)2

+ (−1)r+s(ut+2 + ut+1) + (−1)r+t+1(m2 + m4 + m5)(u
s+1 + us)

(u + 1)2

+ (−1)s+t+1(m2 + m3 + m5)(u
r+1 + ur ) + (−1)r+s+1(m3 + m4 + m5)(u

t+1 + ut )

(u + 1)2

+ (−1)r+s+t u3 + (−1)r+s+t+1(m2 + m3 + m4 + m5)u
2

(u + 1)2

+ (−1)r+s+t (m5 − 1)u + (−1)r+s+t (m2 + m3 + m4 + 2m5)

(u + 1)2
; (6)

when s = t = 2,

PDP (G,H) = ur+6 − ur+4 + ur+3 − ur+1 − (m2 + m3 + m5)(u
r+2 − ur ) + (−1)r2u5

(u + 1)2(u − 1)

+ (−1)r+1(m2 + m3 + 2m4 + 2m5 − 1)u4 + (−1)r+1(m2 + m3 + m4 + m5 + 3)u3

(u + 1)2(u − 1)
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+ (−1)r (2m2 + 2m3 + 3m4 + 4m5 − 1)u2 + (−1)r (m2 + m3 + m4 + m5 + 1)u

(u + 1)2(u − 1)

+ (−1)r+1(m2 + m3 + m4 + 2m5)

(u + 1)2(u − 1)
(7)

and

P(G,m) = P(G, u + 1)

= ur+s+t + (−1)s+t ur+1 + (−1)r+t us+1 + (−1)r+sut+1

u + 1

+ (−1)r+s+t u2 + (−1)r+s+t+1u

u + 1
. (8)

Let f1(u), f2(u) and g(u) be the numerator of the Eqs. (6)–(8) respectively. Let
h1(u) = f1(u) − (u + 1)g(u) and h2(u) = f2(u) − (u2 − 1)g(u). Because g(u)

is a polynomial, PDP (G,H) = P(G,m) if and only if h1(u) = 0, when s ≥ 3 or
t ≥ 3; h2(u) = 0 when s = t = 2. In the following, we will prove that if h1(u) = 0
(or h2(u) = 0), then m1 = m, m2 = m3 = m4 = m5 = 0, i.e., H has a canonical
labeling. We discuss the two cases respectively.
Case 1. s ≥ 3 or t ≥ 3.

In this case

h1(u) = (−1)r+t+1(m2 + m4 + m5)(u
s+1 + us)

+(−1)s+t+1(m2 + m3 + m5)(u
r+1 + ur )

+(−1)r+s+1(m3 + m4 + m5)(u
t+1 + ut )

+(−1)r+s+t+1(m2 + m3 + m4 + m5)u
2

+(−1)r+s+tm5u + (−1)r+s+t (m2 + m3 + m4 + 2m5).

If h1(u) is a zero polynomial, then each coefficient of the polynomial is zero. We note
that

∑5
q=1mq = m = u + 1 and mq ≥ 0 for each q ∈ [5].

Firstly, we focus on the constant term of h1(u). If the constant term of h1(u) is
zero, then m2 +m3 +m4 + 2m5 ≡ 0 (mod u), i.e., m2 +m3 +m4 + 2m5 = ku. And
k ∈ {0, 1, 2}, because m2 +m3 +m4 + 2m5 ∈ [0, 2u + 2]. According to the value of
k, we have the following three situations.

S1: k = 0, i.e.,m2+m3+m4+2m5 = 0. Thenwe havem2 = m3 = m4 = m5 = 0
and m1 = m.
S2: k = 1, i.e.,m2 + m3 + m4 + 2m5 = m − 1. Then we have m1 = m5 + 1.
S3: k = 2, i.e.,m2 +m3 +m4 + 2m5 = 2m − 2. Then we have m +m1 −m5 = 2
which impliesm1 = 0,m5 = m−2,m2 +m3 +m4 = 2; orm1 = 1,m5 = m−1,
m2 = m3 = m4 = 0.

Clearly, in situation S1, h1(u) = 0 andH has a canonical labeling. In the following,
we will prove that in situations S2 and S3, h1(u) is not a zero polynomial. We focus
on the coefficient of u in h1(u) and discuss the following two subcases.
Subcase 1.1. r ≥ 2.
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In this subcase, if the coefficient of u in h1(u) is zero, then m5 + 1 ≡ 0 (mod u)

in situation S2, and m5 + 2 ≡ 0 (mod u) in situation S3.
In situation S2, if m5 + 1 ≡ 0 (mod u), then m5 = u − 1 = m − 2, m1 = m − 1,

and m1 + m5 = 2m − 3. Because
∑5

q=1mq = m, we have 2m − 3 ≤ m, then
m ≤ 3. So m1 = 2,m5 = 1, but this will not happen, we can’t have only one path
(α1, i)(α2, j)(α3, k) where i, j, k are pairwise distinct.

In situation S3, ifm5 +2 ≡ 0 (mod u), thenm5 = u−2 = m−3, this contradicts
m5 = m − 2 or m5 = m − 1.
Subcase 1.2. r = 1.

In this subcase, if the coefficient of u in h1(u) is zero, then m2 +m3 + 2m5 + 1 ≡
0 (mod u) in situation S2, and m2 + m3 + 2m5 + 2 ≡ 0 (mod u) in situation S3.

In situation S2, ifm2 +m3 +2m5 +1 ≡ 0 (mod u), thenm2 +m3 +2m5 = u−1,
combining this with m2 + m3 + m4 + 2m5 = u, m4 = 1 follows. But when m4 = 1,
the coefficient of the leading term is not zero.

In situation S3, m5 = m − 2 or m − 1. If m5 = m − 2 and m2 +m3 + 2m5 + 2 ≡
0 ( mod u), thenm2+m3+2m5 = 2u−2. Combining this withm2+m3+m4 = 2, we
havem2 = m3 = 0 andm4 = 2. But whenm4 = 2, the coefficient of the leading term
is not zero. Ifm5 = m−1, thenm2+m3+2m5 = 2u,m2+m3+2m5+2 �= 0 ( mod u),
otherwise u = 2. But when u = 2, we havem5 = 2,m1 = 1 andm2 = m3 = m4 = 0.
This will not happen, because we can’t have two paths (α1, i)(α2, j)(α3, k) where
i, j, k are pairwise distinct when m = 3.

Hence, in Case 1, if h1(u) = 0, then m1 = m,m2 = m3 = m4 = m5 = 0, i.e., H
has a canonical labeling.
Case 2. s = t = 2.

In this case

h2(u) = (−m2 − m3 − m5)u
r+2

+(m2 + m3 + m5)u
r + (−1)r+1(m2 + m3 + 2m4 + 2m5)u

4

+(−1)r+1(m2 + m3 + m4 + m5)u
3 + (−1)r (2m2 + 2m3 + 3m4 + 4m5)u

2

+(−1)r (m2 + m3 + m4 + m5)u + (−1)r+1(m2 + m3 + m4 + 2m5).

The proof is similar to that for Case 1. If the constant term of h2(u) is zero, then
m2 + m3 + m4 + 2m5 ≡ 0 (mod u), which is the same with that in Case 1. So we
have the same three situations S1, S2, S3 with that in Case 1. Clearly, in situation S1,
h2(u) = 0 and H has a canonical labeling. In the following, we will prove that in
situations S2 and S3, h2(u) is not a zero polynomial. We discuss the following two
subcases.
Subcase 2.1. r ≥ 2.

In situation S2,

(−1)r (m2 + m3 + m4 + m5)u + (−1)r+1(m2 + m3 + m4 + 2m5)

= (−1)r u2 + (−1)r+1(m5 + 1)u,
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and in situation S3,

(−1)r (m2 + m3 + m4 + m5)u + (−1)r+1(m2 + m3 + m4 + 2m5)

= (−1)r2u2 + (−1)r+1(m5 + 2)u.

If the coefficient of u in h2(u) is zero, then m5 + 1 ≡ 0 (mod u) in situation S2, and
m5 + 2 ≡ 0 (mod u) in situation S3, which are exactly the same with that in Subcase
1.1. So with the same argument in Subcase 1.1, we obtain that in situations S2 and S3,
h2(u) is not a zero polynomial in Subcase 2.1.
Subcase 2.2. r = 1.

If the coefficient of u in h2(u) is zero, then

(m2 + m3 + m5)u − (m2 + m3 + m4 + m5)u + ku = (k − m4)u = 0.

In situation S2, k = 1, so m4 = 1; in situation S3, k = 2, so m4 = 2. But no matter
m4 is 1 or 2, the leading term of h2(u) will not be zero.

Hence, in Case 2, if h2(u) = 0, then m1 = m,m2 = m3 = m4 = m5 = 0, i.e., H
has a canonical labeling.

Summarizing Cases 1 and 2, the theorem is obtained. ��
By Theorems 3.9 and 3.10, we know that the answer of Question 1.6 is yes for

unicyclic graphs and theta graphs when m ≥ 2, and m ≥ 3 respectively. Whether the
answer of Question 1.6 is yes for all graphs is still wide open.
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