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Abstract
In this paper, we study the relationship between spectral radius and maximum aver-
age degree of graphs. By using this relationship and the previous technique of Li 
and Ning in (J Graph Theory 103:486–492, 2023), we prove that, for any given posi-
tive number 𝜀 <

1

3
 , if n is a sufficiently large integer, then any graph G of order n 

with 𝜌(G) >
√

⌊

n2

4

⌋

 contains a cycle of length t for all integers t ∈ [3, (
1

3
− �)n] , 

where �(G) is the spectral radius of G. This improves the result of Li and Ning 
(2023).

Keywords  Spectral radius · Cycles of consecutive lengths · Spectral extrema

Mathematics Subject Classification  05C50

1  Introduction

All graphs considered in this paper are finite, undirected and simple. For a 
graph G, let G denote the complement of G. The vertex set and edge set of G are 
denoted by V(G) and E(G), respectively. For a subset B of V(G), let G[B] be the 
subgraph of G induced by B, and let G − B be the graph G[V(G) − B] . For a vertex 
u of G, let G − u = G − {u} , and let dG(u) be the degree of u in G. The vertex u 
is called a cut vertex of G if G − u has more components than G. Let �(G) denote 
the minimum degree of G. The spectral radius of G, denoted by �(G) , is the larg-
est eigenvalue of its adjacency matrix. By Perron–Frobenius Theorem, �(G) has 
a non-negative eigenvector. A non-negative eigenvector corresponding to �(G) is 
called a Perron vector of G. If G is connected, then any Perron vector of G has 
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positive entries. For any terminology used but not defined here, one may refer to 
[1, 5].

For a graph G, the maximum average degree of G, denoted by mad(G), is 
defined as

Clearly, mad(G) ≤ �(G) (see [1]). A subset B ≠ ∅ of V(G) is called critical, if the 
average degree of G[B] equals mad(G), i.e., 2|E(G[B])| = mad(G) ⋅ |B| . A pseudo-
forest is a graph of which each component contains at most one cycle. As is well 
known (see [10]), a graph can be decomposed into k pseudoforests if and only if its 
maximum average degree is at most 2k. For more study on the relationship between 
decomposition into pseudoforests of a graph and its maximum average degree, one 
may refer to [6, 7].

For a certain integer n, let Kn and Cn be the complete graph and the cycle on n 
vertices, respectively. For two vertex-disjoint graphs G1 and G2 , let G1 ∪ G2 be the 
disjoint union of them, and let G1 ∨ G2 be the graph obtained from G1 and G2 by 
adding all the edges between V(G1) and V(G2).

In 2008, Nikiforov [12] studied spectral radius condition for cycles of consecu-
tive lengths in graphs, and proposed the following open problem.

Problem  1 (Nikiforov [12]). What is the maximum positive number c0 such 
that for any given real number 0 < 𝜀 < c0 and sufficiently large n, every graph G 

of order n with 𝜌(G) >
√

⌊

n2

4

⌋

 contains a cycle of length t for every integer 

3 ≤ t ≤ (c0 − �)n.
Considering the graph Ks ∨ Kn−s (see [12]), where s =

�

(3−
√

5)n

4

�

 , we see that 

c0 ≤
3−

√

5

2
= 0.38196⋯ . Nikiforov [12] proved that c0 ≥

1

320
 . Ning and Peng [14] 

slightly refined this result by showing c0 ≥
1

160
 . Very recently, Zhai and Lin [18] 

proved that c0 ≥
1

7
 ; Li and Ning [11] improved these results to c0 ≥

1

4
 . For other 

related results, one may refer to [19].
As one main result of this paper, we prove that c0 ≥

1

3
 . The rest of this paper is 

organized as follows. In Sect. 2, we study the relationship between spectral radius 
and maximum average degree of graphs. In Sect. 3, we give a proof of c0 ≥

1

3
.

2 � Spectral Radius and Maximum Average Degree

In this section, we study the relationship between spectral radius and maximum 
average degree of graphs. To prove the main result of this section, we need sev-
eral lemmas. The first one is from [1], and the second one is the Theorem 8.1.3 of 
[5].

max
�≠S⊆V(G)

2|E(G[S])|

|S|
.
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Lemma 2.1  ([1]) If H is a subgraph of a connected graph G, then �(H) ≤ �(G) , with 
equality if and only if H = G.

Lemma 2.2  ([5]) Let G be a connected graph with a Perron vector x = (xw)w∈V(G) . 
For an edge uv1 and a non-edge uv2 of G, let G′ be the graph obtained from G by 
deleting the edge uv1 , and adding the edge uv2 . If xv1 ≤ xv2 , then 𝜌(G�

) > 𝜌(G).

The following lemma can be deduced from Proposition 2.2 and Theorem 2.3 
of [9].

Lemma 2.3  ([9]) Let G be a connected graph on n vertices and m edges with 
�(G) ≥ k . Then �(G) ≤ k−1

2
+

√

2m − kn +
(k+1)2

4
 . Equality holds if and only if G is 

either a k-regular graph or a bidegreed graph in which each vertex is of degree 
either k or n − 1.

We firstly study critical subsets in graphs.

Lemma 2.4  Let G be a graph, and let B and C be two critical subsets of V(G). If 
B ∩ C ≠ � , then B ∩ C is a critical subset of V(G).

Proof  Set mad(G) = k , where k is a rational number. Clearly, a subset S ≠ ∅ of V(G) 
is critical if and only if 2|E(G[S])| = k|S| . Note that |B| + |C| = |B ∪ C| + |B ∩ C| . 
Since each edge e of G[B ∪ C] is counted at most once in |E(G[B])| + |E(G[C])| 
except that e is counted precisely twice for e ∈ E(G[B ∩ C]) , we have

Since B and C are two critical subsets of V(G), we have 2|E(G[B])| = k|B| and 
2|E(G[C])| = k|C| . By (∗) we have

Since 2|E(G[B ∪ C])| ≤ k|B ∪ C| and 2|E(G[B ∩ C])| ≤ k|B ∩ C| by definition of k, 
we have 2|E(G[B ∪ C])| = k|B ∪ C| and 2|E(G[B ∩ C])| = k|B ∩ C| . Thus B ∩ C is a 
critical subset of V(G). This completes the proof. 	�  ◻

For two integers k ≥ 1 and n ≥ 2k + 1 , let Gk
n
 be the set of graphs on n vertices 

with maximum average degree at most 2k.

Theorem 2.5  For two integers k ≥ 1 and n ≥ 2k + 1 , let G be an extremal graph with 
maximum spectral radius in Gk

n
 . Then G = Kk ∨ H , where H is a graph on n − k ver-

tices with 
(

k+1

2

)

 edges.

Proof  Note that mad(K2k+1) = 2k and Kk ∨ (Kk+1 ∪ Kn−1−2k) ∈ G
k
n
 . Thus, for 

any graph H′ on n − k vertices with 
(

k+1

2

)

 edges, the graph Kk ∨ H� is in Gk
n
 . 

|E(G[B])| + |E(G[C])| ≤ |E(G[B ∪ C])| + |E(G[B ∩ C])| (∗).

2|E(G[B ∪ C])| + 2|E(G[B ∩ C])| ≥ k|B| + k|C| = k|B ∪ C| + k|B ∩ C|.
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Now let G be an extremal graph with maximum spectral radius in Gk
n
 . Then 

�(G) ≥ �(Kk ∨ (Kk+1 ∪ Kn−1−2k)) ≥ 2k as Kk ∨ (Kk+1 ∪ Kn−1−2k) ∈ G
k
n
.

Case 1. G is connected. Let x = (xw)w∈V(G) be a Perron vector of G. Without loss 
of generality, assume that xu1 ≥ xu2 ≥ ⋯ ≥ xun , where ui for 1 ≤ i ≤ n are the verti-
ces of G.

Now we shall prove that dG(ui) = n − 1 for any 1 ≤ i ≤ k . If this is not true, 
then there is an integer 1 ≤ i0 ≤ k such that dG(ui0 ) < n − 1 . Let w be a vertex of 
G not adjacent to ui0 . Let G1 be the graph obtained from G by adding the edge 
wui0 . By Lemma  2.1 we have 𝜌(G1) > 𝜌(G) . Thus mad(G1) > 2k by the choice 
of G. Let B be a critical subset of V(G1) . Clearly, w, ui0 ∈ B . Then 2|E(G1[B])| =

mad(G1) ⋅ |B| > 2k|B| , implying that 2|E(G1[B])| ≥ 2k|B| + 2 by parity. Thus 
2|E(G[B])| = 2|E(G1[B])| − 2 ≥ 2k|B| . Hence 2|E(G[B])| = 2k|B| as mad(G) ≤ 2k . 
So, B is also a critical subset of V(G) and mad(G) = 2k.

Let Bj for 1 ≤ j ≤ � be all the critical subsets of V(G) containing vertices w and ui0 , 
where � ≥ 1 . Let S = ∩1≤j≤�Bj . Note that w, ui0 ∈ S . By Lemma 2.4 we have that S is 
a critical subset of V(G). Let S0 = S − {w} . Since |E(G[S])| = |E(G[S0])| + dG[S](w) , 
2|E(G[S])| = 2k|S| and 2|E(G[S0])| ≤ 2k|S0| , we have

implying that dG[S](w) ≥ k . Since w is not adjacent to ui0 , there is a vertex in 
S −

{

u1, u2, ..., uk
}

 , say ut with t ≥ k + 1 , such that w is adjacent to ut . Let G2 be the 
graph obtained from G by adding the edge wui0 and deleting the edge wut . By 
Lemma 2.1 we have 𝜌(G2) > 𝜌(G) as xui0 ≥ xut . Since G is an extremal graph with 
maximum spectral radius in Gk

n
 , we have mad(G2) > 2k . Let C be a critical subset of 

V(G2) . Then 2|E(G2[C])| > 2k|C| , implying that w, ui0 ∈ C and ut ∉ C . Using a 
similar discussion as on B, we can show that C is also a critical subset of V(G) con-
taining vertices ui0 and w. By the definition of S, we have S ⊆ C . However, this is a 
contradiction, since ut ∈ S and ut ∉ C . Thus we obtain that dG(ui) = n − 1 for any 
1 ≤ i ≤ k.

Consequently, G = Kk ∨ H , where H is a graph on n − k vertices. From 
2|E(G)| ≤ 2k|G| = 2kn we obtain |E(H)| ≤

(

k+1

2

)

 . Since G is an extremal graph with 
maximum spectral radius in Gk

n
 , we have |E(H)| =

(

k+1

2

)

 by Lemma 2.1.
Case 2. G is not connected. Let Q be a component of G with �(Q) = �(G) . Let 

|Q| = n1 < n . If n1 ≤ 2k , then �(G) = �(Q) ≤ n1 − 1 ≤ 2k − 1 , a contradiction. Thus 
n1 ≥ 2k + 1 . So, Q is a connected extremal graph with maximum spectral raidus in 
G
k
n1

 . Similar to Case 1, we can show that Q = Kk ∨ H0 , where H0 is a graph on n1 − k 
vertices with 

(

k+1

2

)

 edges. Let H1 = H0 ∪ Kn−n1
 . Then Kk ∨ H1 ∈ G

k
n
 . Since Q is a 

proper subgraph of Kk ∨ H1 , we have 𝜌(G) = 𝜌(Q) < 𝜌(Kk ∨ H1) by Lemma  2.1. 
This contradicts the choice of G.

By the above discussion, we have that G = Kk ∨ H , where H is a graph on n − k 
vertices with 

(

k+1

2

)

 edges. This completes the proof. 	�  ◻

As in [15], a matrix A = (aij)n×n is called a stepwise matrix, if it is deduced that 
ahk = 1 from aij = 1 with i < j , whenever h < k ≤ j and h ≤ i . Following [2], we can 

2dG[S](w) = 2|E(G[S])| − 2|E(G[S0])| ≥ 2k|S| − 2k|S0| = 2k,
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(easily) show that the adjacency matrix of the graph H in Theorem 2.5 is a step-
wise matrix. However, it seems hard to characterize the structure of H completely 
for general values of n and k. For a similar problem on determining the extremal 
graphs with maximum spectral radius among all connected graphs of order n and 
size m, it is only known for special values of n and m (see [2–4]). In particular, when 
k is given and n is sufficiently large, by a very similar proof as Lemma 2.8 of [20], 
we can obatin that the extremal graph G = Kk ∨ H in Theorem 2.5 has a local degree 
sequence majorization (see Lemma 2.8 of [20] for the definition). Hence the graph 
H in Theorem 2.5 must be the disjoint union of the star graph of order 

(

k+1

2

)

+ 1 and 
n − k − 1 −

(

k+1

2

)

 isolated vertices when n is large enough.

Corollary 2.6  For two integers k ≥ 1 and n ≥ 2k + 1 , let G be a graph in Gk
n
 . Then 

𝜌(G) <
k−1

2
+

√

kn +
(k+1)2

4
.

Proof  By Theorem 2.5 we have �(G) ≤ �(Kk ∨ H) , where H is a graph on n − k ver-
tices with 

(

k+1

2

)

 edges. Clearly, Kk ∨ H is a connected graph with kn edges and 
�(Kk ∨ H) ≥ k . By Lemma 2.3, we have that �(Kk ∨ H) ≤

k−1

2
+

√

kn +
(k+1)2

4
 . Note 

that equality can not hold, since Kk ∨ H is neither a k-regular graph nor a bidegreed 
graph in which each vertex is of degree either k or n − 1 . Thus 
𝜌(G) ≤ 𝜌(Kk ∨ H) <

k−1

2
+

√

kn +
(k+1)2

4
 . This completes the proof. 	�  ◻

3 � Spectral Radius and Cycles of Consecutive Lengths

As pointed out in [11], to attack Nikiforov’s problem, one main technique is to 
use both Gould–Haxell–Scott Theorem [8] and Voss and Zuluaga’s theorem [17], 
together with Sun–Das inequality [16], to find a subgraph with large connectivity 
and average degree, which also contains cycles of consecutive lengths. We will use 
Corollary 2.6 and the method used in Li and Ning [11] to find a required one.

For a graph G, let ec(G) and oc(G) denote the length of a longest even cycle and 
the length of a longest odd cycle of G, respectively. To prove the main result of this 
section, we need some preliminaries. The whole machine from [11] due to Li and 
Ning includes the following four results. The first one is from [17], and the second 
one is from [8].

Theorem 3.1  ([17]) Let G be a 2-connected graph with �(G) ≥ k ≥ 3 having at least 
2k + 1 vertices. Then ec(G) ≥ 2k , and oc(G) ≥ 2k − 1 if G is non-bipartite.

Theorem  3.2  ([8]) For any real number c > 0 , there exits a constant 
K ∶= K(c) =

7.5×105

c5
 such that the following holds. Let G be a graph on n ≥

45K

c4
 

vertices with �(G) ≥ cn . Then G contains a cycle of length t for every even 
t ∈ [4, ec(G) − K] and every odd t ∈ [K, oc(G) − K].
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The following two lemmas are from [11].

Lemma 3.3  ([11]) Let G be a graph on n vertices. If ec(G) ≤ 2k where k ≥ 1 is an 
integer, then |E(G)| ≤ (2k+1)(n−1)

2
.

Lemma 3.4  ([11]) Let G be a graph. For any v ∈ V(G) , we have 
�2(G) ≤ �2(G − v) + 2dG(v).

The following fact (from Theorem  1 of [13]) will be used in the proof of 
Theorem 3.5.

Fact 1. For a graph G on n vertices, if 𝜌(G) >
√

⌊

n2

4

⌋

 , then G contains a 

triangle.

Theorem 3.5  For any real number 0 < 𝜀 <
1

3
 , there is a positive integer N ∶= N(�) 

satisfying: if G is a graph on n ≥ N vertices satisfying 𝜌(G) >
√

⌊

n2

4

⌋

 , then G con-

tains the cycle Cr for all integers r ∈ [3, (
1

3
− �)n].

Proof  Let c = 1

7
 and K = K(

1

7
) be given as in Theorem 3.2. Let 0 < 𝜀 <

1

3
 be fixed 

and let N(�) be sufficiently large such that all the inequalities appeared in the fol-
lowing hold when n ≥ N(�) . (A specified value of N(�) can be given in our proof, 
though we will not do this.) Thus we can assume that n is sufficiently large in the 
following discussion.

Let k be the least integer such that k ≥ 1

2
⋅mad(G). Then mad(G) ≤ 2k . We will 

prove k > n

6
 . Suppose k ≤ n

6
 . Note that G is in Gk

n
 defined in Sect. 3. By Corollary 

2.6, we have that

Since �(G) ≥
√

⌊

n2

4

⌋

≥

√

n2−1

4
 , we obtain that

implying that

For large n, it is easy to check that

𝜌(G) <
k − 1

2
+

√

kn +
(k + 1)2

4
.

k − 1

2
+

√

kn +
(k + 1)2

4
>

√

n2 − 1

4
,

k >

n2−1

4
+

√

n2−1

4

n + 1 +

√

n2−1

4

.
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Hence k > n

6
 , implying that 1

2
mad(G) >

⌊

n

6

⌋

 , i.e., mad(G) > 2

⌊

n

6

⌋

.

Let B be a critical subset of V(G). Then 2|E(G[B])| ≥ 2

⌊

n

6

⌋

⋅ |B| . Let G0 be an 

induced subgraph of G with maximum |V(G0)| such that 2|E(G0)| ≥ 2

⌊

n

6

⌋

⋅ |V(G0)| . 
(Such G0 exists as G[B] exists.)

If G0 ≠ G , let V(G) − V(G0) =
{

u1, u2, ..., u�
}

 , where � = |V(G)| − |V(G0)| ≥ 1 . 
For any 1 ≤ i ≤ � , let Gi be the subgraph of G induced by V(G0) ∪

{

u1, u2, ..., ui
}

 . If

then

implying that G0 = G by the choice of G0 , a contradiction. Thus

If G0 = G , the above equality holds trivially, if we assume that � = 0 and 
∑

1≤i≤� dGi
(ui) = 0 (this assumption does not affect the following discussion).

Let H0 = G0 . If there is some vertex v1 ∈ V(H0) with dH0
(v1) <

⌊

n

6

⌋

 , let 
H1 = H0 − v1 . Repeating this process as far as possible, we obtain some vertices 
v1, v2, ..., vt in V(H0) with t ≥ 1 , such that dHi−1

(vi) <
⌊

n

6

⌋

 for any 1 ≤ i ≤ t , where Hi 
is the subgraph of H0 induced by V(H0) −

{

v1, v2, ..., vi
}

 . Let H = Ht (and let H = H0 
if �(H0) ≥

⌊

n

6

⌋

 , i.e. t = 0 ). Since

and

we have

n2−1

4
+

√

n2−1

4

n + 1 +

√

n2−1

4

>
n

6
.

∑

1≤i≤𝓁

dGi
(ui) >

⌊

n

6

⌋

⋅ 𝓁,

2|E(G)| = 2|E(G0)| + 2
∑

1≤i≤𝓁

dGi
(ui) > 2

⌊

n

6

⌋

⋅ |V(G0)| + 2

⌊

n

6

⌋

⋅ 𝓁 = 2

⌊

n

6

⌋

⋅ |V(G)|,

∑

1≤i≤𝓁

dGi
(ui) ≤

⌊

n

6

⌋

⋅ 𝓁.

2|E(H0)| = 2|E(G0)| ≥ 2

⌊

n

6

⌋

⋅ |V(G0)| = 2

⌊

n

6

⌋

⋅ |V(H0)|

2|E(H0)| = 2|E(H)| + 2
∑

1≤i≤t

dHi−1
(vi) < 2|E(H)| + 2t

⌊

n

6

⌋

,

2|E(H)| > 2

⌊

n

6

⌋

⋅ (|V(H0)| − t) = 2

⌊

n

6

⌋

⋅ |V(H)|.
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This implies that E(H) is not empty and thus t < |V(H0)| . Note that �(H) ≥

⌊

n

6

⌋

 , 

since the process stops at step t. Recall that |E(H)| ≥

⌊

n

6

⌋

⋅ |V(H)|.
(i) Even cycle.
Since

we have ec(H) ≥ 2

⌊

n

6

⌋

≥
n

3
− 2 by Lemma 3.3. Recall that �(H) ≥

⌊

n

6

⌋

≥
|V(H)|

7
 . By 

Theorem 3.2, H contains a cycle Cr with each integer r ∈ [4, ec(H) − K] for large n. 
Thus G contains a cycle Cr with each integer r ∈ [4, (

1

3
− �)n] for large n.

(ii) Odd cycle.
Let h = |V(H)| . Then n = h + � + t . Note that h ≥

n

3
− 1 as 

2|E(H)| ≥ 2

⌊

n

6

⌋

⋅ |V(H)| . By Lemma 3.4 we have that

implying that

We shall prove that H is non-bipartite. Note that

By Fact 1, G is non-bipartite, since 𝜌2(G) >
⌊

n2

4

⌋

 . If H is bipartite, then n − h ≥ 1 

and �(H) ≤
h

2
 by Fact 1. Thus n

3
− 2 ≤

h

2
 , implying that h ≥

2

3
n − 4 . But then

as 2
3
n − 4 ≤ h ≤ n − 1 , implying that H contains a triangle by Fact 1. Thus H is 

non-bipartite.
Let F0 = H . If F0 has a cut vertex, say p1 , let F1 = F0 − p1 . If F1 has a cut ver-

tex, say p2 , let F2 = F1 − p2 . Repeating this process as far as possible, we obtain 
some vertices p1, p2, ..., ps of F0 such that pi is a cut vertex of Fi−1 for each 1 ≤ i ≤ s , 
where Fi is the subgraph of F0 induced by V(F0) −

{

p1, p2, ..., pi
}

 . Let F = Fs . Then 
F has no cut vertices as the process stops at step s.

We claim that s ≤ 5 . Otherwise the graph F6 exists. Clearly, F6 has at least 
7 components. Thus F6 has a vertex with degree at most |V(F6)|

7
<

n

7
 . Note that 

|E(H)| ≥

⌊

n

6

⌋

⋅ |V(H)| >

2

⌊

n

6

⌋

⋅ (|V(H)| − 1)

2
,

�
2(G) − �

2(H) ≤ 2
∑

1≤i≤𝓁

dGi
(ui) + 2

∑

1≤i≤t

dHi−1
(vi) ≤ 2

⌊

n

6

⌋

⋅ (𝓁 + t) ≤
n

3
(n − h),

�
2(H) ≥

n2 − 1

4
−

n

3
(n − h) =

hn

3
−

n2

12
−

1

4
.

�(H) ≥
2|E(H)|

|V(H)|
≥ 2

⌊

n

6

⌋

≥
n

3
− 2.

𝜌
2(H) ≥

hn

3
−

n2

12
−

1

4
>

h2

4
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�(F6) ≥ �(F0) − 6 = �(H) − 6 ≥
n

6
− 7 . Then n

6
− 7 <

n

7
 , a contradiction. So we 

obtain that s ≤ 5 . Then |V(F)| ≥ h − 5 ≥
n

3
− 6 and �(F) ≥ �(F0) − 5 ≥

n

6
− 6.

By Lemma 3.4, we have that

implying that

Note that

Recall that 2|E(H)| ≥ 2

⌊

n

6

⌋

⋅ h . Then 2|E(F)| ≥ 2

⌊

n

6

⌋

⋅ h − 10h as s ≤ 5 . Thus

Hence �(F) ≥ 2|E(F)|

|V(F)|
≥

n

3
− 12.

Since F has no cut vertices and �(F) ≥
n

6
− 6 ≥ 2 , each component of 

F is 2-connected. Let Q be a component of F such that �(Q) = �(F) . Then 
�(Q) ≥

n

3
− 12 and thus |V(Q)| ≥ �(Q) + 1 ≥

n

3
− 11 . Note that Q is 2-connected and 

�(Q) ≥
n

6
− 6 ≥

|V(Q)|

7
.

Now we shall prove that Q is non-bipartite. Recall that H is non-bipartite. We can 
assume that Q ≠ H . Then F has another component, say Q1 . Since �(F) ≥

⌊

n

6

⌋

− s , 

we have |V(Q1)| ≥

⌊

n

6

⌋

− s + 1 . So |V(Q)| ≤ h − s − (

⌊

n

6

⌋

− s + 1) ≤ h −
n

6
 . If 

n

3
− 12 >

h−
n

6

2
 , then 𝜌(Q) ≥ n

3
− 12 >

|V(Q)|

2
 , implying that Q contains a triangle. Thus 

we can assume that n
3
− 12 ≤

h−
n

6

2
 , i.e., h ≥

5

6
n − 24 . When 5

6
n − 24 ≤ h ≤ n and n is 

sufficiently large, it is easy to show that

(which is equivalent to 5
3

h

n
− (

h

n
)2 −

13

36
>

40h−39

n2
 , where 5

6
−

24

n
≤

h

n
≤ 1 ). Thus

Then Q contains a triangle by Fact 1. Hence Q is non-bipartite.
Recall that |V(Q)| ≥ n

3
− 11 and �(Q) ≥ n

6
− 6 . By Theorem 3.1 we have that

�
2(H) − �

2(F) ≤ 2
∑

1≤i≤s

dFi−1
(pi) ≤ 2s(h − 1) ≤ 10(h − 1),

�
2(F) ≥ �

2(H) − 10(h − 1) ≥
hn

3
−

n2

12
−

1

4
− 10(h − 1).

2|E(F)| ≥ 2|E(H)| − 2
∑

1≤i≤s

dH(pi) ≥ 2|E(H)| − 2s(h − 1).

2|E(F)|

|V(F)|
≥

2|E(F)|

h
≥

n

3
− 12.

hn

3
−

n2

12
−

1

4
− 10(h − 1) >

(h −
n

6
)2

4

𝜌
2(Q) = 𝜌

2(F) ≥
hn

3
−

n2

12
−

1

4
− 10(h − 1) >

(h −
n

6
)2

4
≥

|V(Q)|2

4
.
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By Theorem 3.2, Q contains a cycle Cr for all odd integers r ∈ [K,
n

3
− 13 − K] for 

n ≥ N(�) . By Theorem 1 of [12], there is an integer N0(∶= 104 , see [11]) such that 
the graph G on n ≥ N(�) ≥ N0 vertices contains a cycle Cr for all integers r ∈ [3,

n

320
] 

as 𝜌(G) >
√

⌊

n2

4

⌋

 . Then G contains a cycle Cr for all odd integers r ∈ [3, (
1

3
− �)n] 

for sufficiently large n.
By (i) and (ii), we have that G contains a cycle Cr for all integers r ∈ [3, (

1

3
− �)n] 

for sufficiently large n. This completes the proof. 	�  ◻

Using Corollary 2.6, we can only obtain mad(G) ≥ 2

⌊

n

6

⌋

 if 𝜌(G) >
√

⌊

n2

4

⌋

 . To 

improve the current constant 1
3
 in Theorem 3.5, one needs to obtain a larger constant 

C >
1

3
 , such that mad(G) ≥ (C − �)n if 𝜌(G) >

√

⌊

n2

4

⌋

 . To do this, we need to 

strengthen Corollary 2.6 by using Theorem 2.5 when n ≤ 6k (i.e., we need to reduce 
the upper bound in Corollary 2.6 by Θ(k) ). 
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