
Graphs and Combinatorics (2024) 40:34
https://doi.org/10.1007/s00373-024-02759-8

ORIG INAL PAPER

The Existence of a Path with Two Blocks in Digraphs

Amine El Sahili1 ·Maidoun Mortada1,2 · Sara Nasser1,3

Received: 27 August 2022 / Accepted: 17 January 2024 / Published online: 12 March 2024
© The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2024

Abstract
We give a new elementary proof of El Sahili conjecture El Sahili (Discrete Math
287:151–153, 2004) stating that any n-chromatic digraph D, with n ≥ 4, contains a
path with two blocks of order n.
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1 Introduction and Elementary Definitions

A graph G is a couple G = (V (G), E(G)) where V (G) is the set whose elements
are the vertices of G, and E(G) is the set whose elements are called the edges of G.
The neighborhood of a vertex v in a graph G is denoted by NG(v) (or simply N (v)),
and it is defined by N (v) = {u ∈ V (G); uv ∈ E(G)}.
A proper coloring of a graph is an assignment of colors to its vertex set so that no two
adjacent vertices have the same color. A k-coloring of a graph is a proper coloring of
the graph using k colors. For any graph G, we denote by χ(G) the smallest integer k
such that G has a proper k-coloring.
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A digraph D is a couple D = (V (D), A(D)), where V (D) is the set of vertices
of D and A(D) is its set of arcs. Consider a digraph D. The out-neighborhood
of a vertex v of D is denoted by N+

D (v) (or simply N+(v)), and it is defined by
N+(v) = {u ∈ V (D); (v, u) ∈ A(D)}. Similarly, the in-neighborhood of a vertex
v of D is denoted by N−

D (v) (or simply N−(v)), and it is defined by N−(v) = {u ∈
V (D); (u, v) ∈ A(D)}. The out-degree (resp. in-degree) of v in D is d+

D(v) =
|N+

D (v)| (resp. d−
D(v) = |N−

D (v)|), and for simplicity we say d+(v) (resp. d−(v)).
A digraph H is said to be an induced subdigraph of D if V (H) ⊆ V (D) and for
all vertices u and v of H , (u, v) is an arc of H if and only if (u, v) is an arc of D.
Let S ⊆ V (D). If H is an induced subdigraph of D and V (H) = S, then we write
H = D[S]. Let a be an arc. We define D+ a (resp. D− a) to be the digraph obtained
after adding the arc a to D (resp. removing the arc a from D if a ∈ A(D)).
The underlying graph of a digraph D, denoted by G[D], is obtained upon removing
all the orientations of the arcs of D. The chromatic number of a digraph D, denoted
byχ(D), is the chromatic number of its underlying graphG[D]. A digraph D is said to
be n-chromaticwhenever χ(G[D]) = n. An arc a of D is said to bemonochromatic
if its ends have the same color.

In our work, the digraphs considered are finite having neither loops nor multiple
edges.

For a directed path P = v1v2 · · · vn (also denoted by a v1vn-path) in a digraph, v1
is said to be the origin of P , vn is its end and vi+1 is the successor of vi on P for
all i ∈ {1, . . . , n − 1}. A subpath of P , denoted by P[vi ,v j ] with 1 ≤ i < j ≤ n, is
the directed path contained in P of origin vi and end v j . Similarly, a subpath of P ,
denoted by P]vi ,v j ] (resp. P[vi ,v j [) with 1 ≤ i < j ≤ n, is the directed path contained
in P of origin vi+1 (resp. vi ) and end v j (resp. v j−1).

A block of an oriented path P in a digraph is a maximal directed subpath of P .
A P(k, l) is defined to be a path with two blocks, where the first block consists of k
forward arcs followed by a second block consisting of l backward arcs.
If D is an n-tournament, Thomason in [8] proves that D contains every oriented path
of length n − 1 if n is large enough. Havet and Thomassé give in [6] a refinement
of Thomason’s result, proving that this is valid for every tournament except for three
cases: the directed 3-cycle, the regular tournament on 5 vertices and the Paley tour-
nament on 7 vertices; where in these cases D contains no antidirected path of length
n − 1.

An outbranching is a connected digraph containing a vertex of in-degree zero
which is called the source, and all other vertices are of in-degree one. An outforest
F is a digraph such that each connected component is an outbranching. For every u
of V (F), Pu(F) denotes the unique directed path in F starting from a source and
reaching u. The level of u in F , denoted by �F (u), is the order of Pu(F). Define for
each i ≥ 1, Li (F) = {u ∈ V (F); �F(u) = i}. Let y ∈ V (F), we denote by TF( y)
the sub-outbranching in F of source y. Note that any digraph contains a spanning
outforest. Let F be a spanning outforest of a digraph D. An arc (u, v) ∈ A(D) is said
to be a backward arc with respect to F whenever �F (u) ≥ �F (v), else it is called a
forward arc.
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A spanning outforest of a digraph D is said to be amaximal forest if
∑

v∈V (D)

�F (v)

is maximal. El Sahili and Kouider [4], after introducing the concept of a maximal
forest, proved that it verifies this crucial property: For any backward arc (u, v) with
respect to a maximal forest F of a digraph D, F contains a vu-directed path, and we
will denote it by P[v,u](F).

Addario et al. [1] defined a final forest of a digraph D to be each spanning outforest
of D verifying the previous property.
For any final forest F of a digraph D, it can be easily proved that Li (F) is stable in D
for every i ≥ 1, and consequently �(F) ≥ χ(D), where �(F) is the maximum integer
i such that Li (F) is non empty, and this gives a very simple proof of Gallai-Roy
Theorem [5, 7]:

Theorem 1.1 Every n-chromatic digraph contains a directed path of length n − 1.

Starting from any spanning outforest, an algorithmic way to obtain a final forest is
described in [1]. Let F be a spanning outforest of a digraph D. The process is done by
defining a sequence of spanning outforests, say F1, F2, . . . , Fn such that F1 = F , Fn
is final and Fi+1 is obtained from Fi by adding a backward arc (x, y) (relative to Fi )
such that Fi contains no directed yx-path, and by deleting the arc of Fi with head y (if
any). Fi+1 is said to be a rectification of Fi , and Fn is said to be a closure of F . Note
that due to this algorithm, at least one vertex has a strictly higher level afterwards, and
so a final forest is reachable since the process of rectification tends to maximize the
levels of the vertices of the finite digraph we are dealing with.

El Sahili in [4] introduced the function f (n) defined to be the smallest integer such
that any f (n)-chromatic digraph contains all paths P(k, j)with k+ j = n−1, and he
conjectured that f (n) = n. Using maximal forests, El Sahili and Kouider [4] proved
that f (n) ≤ n + 1. Then, Addario et al. [1] proved the conjecture using the notion of
final forests and a generalization of Bondy’s Theorem [2] about strongly connected
digraphs.
In this paper, we give a new elementary proof of El Sahili conjecture without using
strongly connected digraphs.

2 The Elementary Proof

Theorem 2.1 Every n-chromatic digraph with n ≥ 4 contains any P(k, l) such that
k + l = n − 1; k, l ∈ N

∗.

Proof Due to symmetry, we may assume that k ≤ l. Let D be an n-chromatic digraph.
Suppose that D contains no P(k, l) for some k, l ∈ N

∗. Let F be a final forest of D,
set Ui (F) = Li (F) for all i ∈ {1, . . . , k − 1}, Ui (F) = ⋃

r≥0
Li+r(l+1)(F) and denote

by Di = D[Ui (F)] for all i ∈ {k, . . . , k + l}. Color the vertices inUi (F) by the color
i for all i ∈ {1, . . . , n − 1}. Note that if (u, v) ∈ A(Di ) for some i ∈ {k, . . . , k + l},
then i = k and v ∈ Lk(F); otherwise Pu(F) ∪ Pv(F) ∪ (u, v) contains a P(k, l).
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Thus, Ui (F) is stable for every i �= k and Uk(F) is not stable since χ(D) = n and

V (D) =
n−1⋃

i=1
Ui (F).

From now on, v is said to be a bad vertex for every (u, v) ∈ A(Dk). Moreover,
l(P[v,u](F)) ≥ l+1 which implies that every vertex z ∈ TF (v) is the end of a directed
path of length l+1, denoted by Qz , and it is contained in (u, v)∪P[v,u](F)∪P[v,z](F).
Claim 1. For every arc (u, v) ∈ A(Dk), zz′ /∈ E(G[D]) for every z ∈ TF (v) and for
every z′ /∈ TF (v) with �F (z′) ≥ k. 
�
Proof If (z, z′) ∈ A(D), then (z, z′) is a forward arc as F is a final forest, and so
�F (z′) > �F (z) ≥ k. Knowing that l(Pz′(F)) ≥ k, Pz′(F) ∩ TF (v) = φ and
Qz ⊆ TF (v), so Qz ∪ (z, z′) ∪ Pz′(F) contains a P(k, l); which gives a contra-
diction. Similarly, one can observe that a P(k, l) will appear in Qz ∪ (z′, z) ∪ Pz′(F)

if (z′, z) ∈ A(D). 
�
It is now clear that the only monochromatic arcs appear in Dk , which implies that a
proper coloring may be established if we recolor properly TF (v) for every bad vertex
v.

Let (u, v) ∈ A(Dk), and set CF
v = P[v,u](F) ∪ (u, v), P[v,u](F) = vkvk+1 · · · vp

where vk = v, vp = u and p = �F (u).

A vertex x in D is said to be rich in F if �F (x) ≥ k and N (x) ∩ Li (F) �= φ for all
i ∈ {1, . . . , k − 1}.

From now on, we may consider the following recoloring. For every bad vertex v,
if v is not rich, then recolor it by some color i whenever N (v) ∩ Li (F) = φ for some
i ∈ {1, . . . , k − 1}. Otherwise, if v is bad rich but has no rich neighbor in Uj (F) for
some j ∈ {k, · · · , k + l}, then recolor its neighbors in Uj (F), if any,by the suitable
colors from {1, . . . , k − 1}, and finally color v by j . In both cases, TF (v) is colored
properly by the colors {1, . . . , n − 1}.

A direct consequence of the previous paragraph states that there exists a rich bad
vertex v such that v has a rich neighbor in Ui (F) for every i ≥ k, which implies that
we are concerned now with recoloring TF (v) properly in this case.
Claim 2. If u is a rich in-neighbor of v in Uk(F), then u is the unique in-neighbor of
v in Uk(F).

Proof Suppose that there exists u′ ∈ Uk(F) such that u′ �= u and (u′, v) ∈ A(D).

Let j = min{i : 1 ≤ i ≤ k and N+(u) ∩ Li (F) �= φ}, x ∈ N+(u) ∩ L j (F)

and y ∈ N−(u) ∩ L j−1(F) if j > 1. Clearly, x ∈ Pv(F). If j = 1, then the path
(u, x)∪ Pv(F)∪ P]v,u′](F)∪ (u′, v) contains a P(k, l), else the path Py(F)∪ (y, u)∪
(u, x)∪P[x,v](F)∪P]v,u′](F)∪(u′, v) contains a P(k, l);which gives a contradiction.


�
Taking into consideration the proof of Claim 2, P ′

z denotes the path (z, x) ∪ Pv(F) if
j = 1 and the path Py(F) ∪ (y, z) ∪ (z, x) ∪ P[x,v](F) if j > 1 whenever z is a rich
in-neighbor of a bad vertex v.
Set B = {v : v is a rich bad vertex and has a rich in-neighbor in Uk(F)}. Let v ∈ B
and let u be the rich in-neighbor of v inUk(F). Recall that CF

v = vkvk+1 · · · vp where
vk = v, vp = u and p = �F (u).
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Claim 3. For every vertex v ∈ B, the rich neighbors of v belong to Li (F) for every
i ∈ {k + 1, . . . , k + l}.

Proof Suppose that there exists a rich neighbor w of v such that w ∈ Ui (F) − Li (F)

for some i ∈ {k + 1, . . . , k + l}. If w /∈ TF (u), then P ′
u ∪ P[v,w](F) ∪ vw contains

a P(k, l), which gives a contradiction. If w ∈ TF (u), then consider the path P ′
w ∪

P[v,u](F)∪(u, v) if (w, v) ∈ A(D) and the path Pv(F)∪(v,w)∪P[v,w](F) otherwise.
Note that both paths contain a P(k, l), which gives a contradiction. Let r ∈ {1, . . . , l}.
We will consider a recoloring TF (v) for every v ∈ B having a non rich neighbor
vk+r . If v has a rich neighbor x in Uk+r (F), then �F (x) = k + r by Claim 3. Since
�F (x) = k + r and x �= vk+r , then x /∈ CF

v , and so N (x) ∩ Li (F) = N−(x) ∩ Li (F)

for every i ∈ {1, . . . , k}, since otherwise P ′
x ∪ CF

v contains a P(k, l) which gives a
contradiction.
Let wz ∈ E(G[D]), where w ∈ TF (v) − TF (x) and z ∈ TF (x), then (w, z) ∈ A(D)

such that z = x and �F (w) < �F (x).Otherwise, sincew /∈ TF (x), then Qw∩TF (x) =
φ. If (z, w) ∈ A(D), then a P(k, l) appears in Py(F)∪(y, x)∪P[x,z](F)∪(z, w)∪Qw

where y ∈ N−(x) ∩ Lk−1(F), which gives a contradiction. Hence, (w, z) ∈ A(D),
and so �F (w) < �F (z) as w /∈ TF (x). If z �= x , a P(k, l) appears in Py(F) ∪ (y, x) ∪
P[x,z](F) ∪ (w, z) ∪ Qw where y ∈ N−(x) ∩ Lk−1(F).
So for any rich neighbor x of v in Uk+r (F), recolor z by i + 1 for every z ∈ TF (x) ∩
Ui (F) with i ∈ {k + 1, . . . , k + l − 1}, recolor z by k for every z ∈ TF (x) ∩Uk+l(F)

and finally recolor the remaining neighbors of v in Uk+r (F) by the suitable color
from {1, . . . , k −1}. Now, TF (v) will be colored properly if we give v the color k + r .
Claim 4. There exists no vertex v ∈ B such that vk+r is a rich neighbor of v for every
r ∈ {1, . . . , l}. 
�

Proof Let F1 = F + (u, v) − (v, vk+1) if k = 1 and F1 = F + (y, vk+1) + (u, v) −
(v, vk+1)−(x, v) if k ≥ 2where x ∈ N−(v)∩Lk−1(F) and y ∈ N−(vk+1)∩Lk−1(F).

Let Fc be a closure of F1. Since u(F) is minimal, then �Fc (z) = �F (z) for all z ∈
Li (F), i ∈ {1, . . . , k − 1}, if any. Thus, �Fc (vk+1) = k and v is still rich in Fc.
Due to the minimality of |B| and maximality of

∑

w∈B
hF (w), vk+1 is bad in Fc and

hFc(vk+1) = hF (v) and so �Fc (v) = �F (u). Moreover, it can be easily proved that
�Fc(vi ) = �F (vi ) − 1 for every i ∈ {k + 1, . . . , p}. Therefore, CFc

vk+1 = CF
v .

Repeating the same reasoning, we can show that vi plays the same role, that is the l suc-
cessive vertices of vi onCF

v are rich neighbors of vi and N (vi )∩Lk−1(F) = N−(vi )∩
Lk−1(F) for every i ∈ {k+1, . . . , p}. Using the fact that k ≤ l and n ≥ 4, we get that
l ≥ 2 and so l(CF

v ) ≥ 4. Moreover, (vk+2, vk) ∈ A(D), otherwise a P(k, l) appears
in P[vk+3,vp](F) ∪ (vp, vk) ∪ (vk, vk+2) ∪ Pz(F) ∪ (z, vk+1) ∪ (vk+1, vk+2), where
z ∈ N−(vk+1) ∩ Lk−1(F). By symmetry, (vk+1, vp) ∈ A(D). Finally, (vk, vk+l) ∈
A(D), otherwise P[vk+1,vk+l ](F)∪(vk+l , vk)∪P ′

vp
contains a P(k, l). Thus, there exists

i ∈ {k + 2, . . . , k + l − 1} such that (vi , vk) ∈ A(D) and (vk, vi+1) ∈ A(D). Hence,
P[vk+2,vi ](F) ∪ (vi , vk) ∪ (vk, vi+1) ∪ P[vi+1,vp](F) ∪ Pz(F) ∪ (z, vk+1) ∪ (vk+1, vp),
where z ∈ N−(vk+1) ∩ Lk−1(F), contains a P(k, l); which gives a contradiction.
Thus, we can say now that D is colored properly using (n − 1)-colors due to Claim 1,
which gives a contradiction. 
�

123



34 Page 6 of 6 Graphs and Combinatorics (2024) 40 :34

Funding The authors declare that no funds, grants or other support were received during the preparation
of this manuscript.

Conflict of interest The authors declare that they have no known competing financial interests or personal

relationships that could have appeared to influence the work reported in this paper.

References

1. Addario-Berry, L., Havet, F., Thomasse, S.: Paths with two blocks in n-chromatic digraphs. J. Combin.
Ser. B 97, 620–626 (2007)

2. Bondy, J.A.: Disconnected orientations and a conjecture of Las Vergnas. J. Lond. Math. Soc. (2) 14,
277–282 (1976)

3. El Sahili, A.: Paths with two blocks in k-chromatic digraphs. Discrete Math. 287, 151–153 (2004)
4. El Sahili, A., Kouider, M.: About paths with two blocks. J. Graph Theory 55, 221–226 (2007)
5. Gallai, T.: On directed paths and circuits. In: Erdös , P., Katona, G. (Eds.) In Theory of Graphs, Academic

press, New York, pp. 115–118 (1968)
6. Havet, F., Thomassé, S.: Oriented hamiltonian paths in tournaments: a proof of Rosenfeld’s conjecture.

J. Combin. Theory Ser B 78(2), 243–273 (2000)
7. Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Française Automat. Informat.

Recherche Opérationelle Sér. Rouge 1, 127–132 (1967)
8. Thomason, A.: Paths and cycles in tournaments. Trans. Am. Math. Soc. 296, 167–180 (1986)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	The Existence of a Path with Two Blocks in Digraphs
	Abstract
	1 Introduction and Elementary Definitions
	2 The Elementary Proof 
	References




