ORIGINAL PAPER

The Existence of a Path with Two Blocks in Digraphs

Amine El Sahili1 · Maidoun Mortada1,2 · Sara Nasser1,[3](http://orcid.org/0000-0003-4372-671X)

Received: 27 August 2022 / Accepted: 17 January 2024 / Published online: 12 March 2024 © The Author(s), under exclusive licence to Springer Nature Japan KK, part of Springer Nature 2024

Abstract

We give a new elementary proof of El Sahili conjecture El Sahili (Discrete Math 287:151–153, [2004\)](#page-5-0) stating that any *n*-chromatic digraph *D*, with $n > 4$, contains a path with two blocks of order *n*.

Keywords Path with two blocks · Chromatic number · Maximal forest · Final forest

Mathematics Subject Classification 05C05 · 05C15 · 05C20 · 05C38

1 Introduction and Elementary Definitions

A **graph** *G* is a couple $G = (V(G), E(G))$ where $V(G)$ is the set whose elements are the **vertices** of *G*, and *E*(*G*) is the set whose elements are called the **edges** of *G*. The **neighborhood** of a vertex v in a graph *G* is denoted by $N_G(v)$ (or simply $N(v)$), and it is defined by $N(v) = \{u \in V(G); uv \in E(G)\}.$

A **proper coloring** of a graph is an assignment of colors to its vertex set so that no two adjacent vertices have the same color. A *k***-coloring** of a graph is a proper coloring of the graph using *k* colors. For any graph *G*, we denote by $\chi(G)$ the smallest integer *k* such that *G* has a proper *k*-coloring.

 \boxtimes Sara Nasser sara.nasser@liu.edu.lb

> Amine El Sahili sahili@ul.edu.lb

Maidoun Mortada maydoun.mortada@ul.edu.lb

- ¹ Faculty of Sciences (I), Mathematics Department, KALMA Laboratory, Lebanese University, Beirut, Lebanon
- ² Faculty of Sciences (IV), Mathematics Department, KALMA Laboratory, Lebanese University, Baalbek, Lebanon
- ³ Graph Theory and Operation Research, Department of Mathematics and Physics, Lebanese International University (LIU), Beirut, Lebanon

A **digraph** *D* is a couple $D = (V(D), A(D))$, where $V(D)$ is the set of **vertices** of *D* and *A*(*D*) is its set of **arcs**. Consider a digraph *D*. The **out-neighborhood** of a vertex v of *D* is denoted by $N_D^+(v)$ (or simply $N^+(v)$), and it is defined by $N^+(v) = \{u \in V(D); (v, u) \in A(D)\}.$ Similarly, the **in-neighborhood** of a vertex *v* of *D* is denoted by $N_D^-(v)$ (or simply $N^-(v)$), and it is defined by $N^-(v) = \{u \in$ *V*(*D*); (*u*, *v*) \in *A*(*D*)}. The **out-degree** (resp. **in-degree**) of *v* in *D* is $d_D^+(v) =$ $|N_D^+(v)|$ (resp. $d_D^-(v) = |N_D^-(v)|$), and for simplicity we say $d^+(v)$ (resp. $d^-(v)$). A digraph *H* is said to be an **induced subdigraph** of *D* if $V(H) \subseteq V(D)$ and for all vertices *u* and *v* of *H*, (u, v) is an arc of *H* if and only if (u, v) is an arc of *D*. Let $S \subseteq V(D)$. If *H* is an induced subdigraph of *D* and $V(H) = S$, then we write $H = D[S]$. Let *a* be an arc. We define $D + a$ (resp. $D - a$) to be the digraph obtained after adding the arc *a* to *D* (resp. removing the arc *a* from *D* if $a \in A(D)$).

The **underlying graph** of a digraph *D*, denoted by *G*[*D*], is obtained upon removing all the orientations of the arcs of *D*. The **chromatic number** of a digraph *D*, denoted by $\chi(D)$, is the chromatic number of its underlying graph $G[D]$. A digraph *D* is said to be *n***-chromatic** whenever χ (*G*[*D*]) = *n*. An arc *a* of *D* is said to be **monochromatic** if its ends have the same color.

In our work, the digraphs considered are finite having neither loops nor multiple edges.

For a directed path $P = v_1v_2 \cdots v_n$ (also denoted by a v_1v_n -path) in a digraph, v_1 is said to be the origin of *P*, v_n is its end and v_{i+1} is the successor of v_i on *P* for all *i* ∈ {1, ..., *n* − 1}. A subpath of *P*, denoted by $P_{[v_i, v_j]}$ with $1 ≤ i < j ≤ n$, is the directed path contained in *P* of origin v_i and end v_j . Similarly, a subpath of *P*, denoted by $P_{[v_i, v_j]}$ (resp. $P_{[v_i, v_j]}$) with $1 \leq i \leq j \leq n$, is the directed path contained in *P* of origin v_{i+1} (resp. v_i) and end v_j (resp. v_{j-1}).

A **block** of an oriented path *P* in a digraph is a maximal directed subpath of *P*. A *P(k,l)* is defined to be a path with two blocks, where the first block consists of *k* forward arcs followed by a second block consisting of *l* backward arcs.

If *D* is an *n*-tournament, Thomason in [\[8](#page-5-1)] proves that *D* contains every oriented path of length *n* − 1 if *n* is large enough. Havet and Thomassé give in [\[6](#page-5-2)] a refinement of Thomason's result, proving that this is valid for every tournament except for three cases: the directed 3-cycle, the regular tournament on 5 vertices and the Paley tournament on 7 vertices; where in these cases *D* contains no antidirected path of length *n* − 1.

An **outbranching** is a connected digraph containing a vertex of in-degree zero which is called the **source**, and all other vertices are of in-degree one. An **outforest** *F* is a digraph such that each connected component is an outbranching. For every *u* of $V(F)$, $P_u(F)$ denotes the unique directed path in *F* starting from a source and reaching *u*. The **level** of *u* in *F*, denoted by $\ell_F(u)$, is the order of $P_u(F)$. Define for each $i \geq 1$, $L_i(F) = \{u \in V(F); \ell_F(u) = i\}$. Let $y \in V(F)$, we denote by $T_F(y)$ the sub-outbranching in F of source y . Note that any digraph contains a spanning outforest. Let *F* be a spanning outforest of a digraph *D*. An arc $(u, v) \in A(D)$ is said to be a **backward arc** with respect to F whenever $\ell_F(u) \geq \ell_F(v)$, else it is called a **forward arc**.

A spanning outforest of a digraph *D* is said to be a **maximal forest** if $v \in V(D)$ $\ell_F(v)$

is maximal. El Sahili and Kouider [\[4\]](#page-5-3), after introducing the concept of a maximal forest, proved that it verifies this crucial property: For any backward arc (u, v) with respect to a maximal forest F of a digraph D , F contains a vu -directed path, and we will denote it by $P_{[v,u]}(F)$.

Addario et al. [\[1](#page-5-4)] defined a **final forest** of a digraph *D* to be each spanning outforest of *D* verifying the previous property.

For any final forest *F* of a digraph *D*, it can be easily proved that $L_i(F)$ is stable in *D* for every $i \geq 1$, and consequently $\ell(F) \geq \chi(D)$, where $\ell(F)$ is the maximum integer *i* such that $L_i(F)$ is non empty, and this gives a very simple proof of Gallai-Roy Theorem $[5, 7]$ $[5, 7]$ $[5, 7]$ $[5, 7]$:

Theorem 1.1 *Every n-chromatic digraph contains a directed path of length n* -1 *.*

Starting from any spanning outforest, an algorithmic way to obtain a final forest is described in [\[1](#page-5-4)]. Let *F* be a spanning outforest of a digraph *D*. The process is done by defining a sequence of spanning outforests, say F_1 , F_2 , ..., F_n such that $F_1 = F$, F_n is final and F_{i+1} is obtained from F_i by adding a backward arc (x, y) (relative to F_i) such that F_i contains no directed yx -path, and by deleting the arc of F_i with head y (if any). F_{i+1} is said to be a rectification of F_i , and F_n is said to be a closure of *F*. Note that due to this algorithm, at least one vertex has a strictly higher level afterwards, and so a final forest is reachable since the process of rectification tends to maximize the levels of the vertices of the finite digraph we are dealing with.

El Sahili in [\[4\]](#page-5-3) introduced the function $f(n)$ defined to be the smallest integer such that any $f(n)$ -chromatic digraph contains all paths $P(k, j)$ with $k + j = n - 1$, and he conjectured that $f(n) = n$. Using maximal forests, El Sahili and Kouider [\[4\]](#page-5-3) proved that $f(n) \leq n + 1$. Then, Addario et al. [\[1](#page-5-4)] proved the conjecture using the notion of final forests and a generalization of Bondy's Theorem [\[2](#page-5-7)] about strongly connected digraphs.

In this paper, we give a new elementary proof of El Sahili conjecture without using strongly connected digraphs.

2 The Elementary Proof

Theorem 2.1 *Every n-chromatic digraph with* $n \geq 4$ *contains any* $P(k, l)$ *such that* $k + l = n - 1$; $k, l \in \mathbb{N}^*$.

Proof Due to symmetry, we may assume that $k \leq l$. Let *D* be an *n*-chromatic digraph. Suppose that *D* contains no $P(k, l)$ for some $k, l \in \mathbb{N}^*$. Let *F* be a final forest of *D*, set *U_i*(*F*) = *L_i*(*F*) for all *i* ∈ {1, ..., *k* − 1}, *U_i*(*F*) = $\bigcup_{n} L_{i+r(l+1)}(F)$ and denote *r*≥0

by $D_i = D[U_i(F)]$ for all $i \in \{k, ..., k+l\}$. Color the vertices in $U_i(F)$ by the color *i* for all $i \in \{1, ..., n-1\}$. Note that if $(u, v) \in A(D_i)$ for some $i \in \{k, ..., k+l\}$, then $i = k$ and $v \in L_k(F)$; otherwise $P_u(F) \cup P_v(F) \cup (u, v)$ contains a $P(k, l)$.

Thus, $U_i(F)$ is stable for every $i \neq k$ and $U_k(F)$ is not stable since $\chi(D) = n$ and $V(D) = \bigcup_{i=1}^{n-1} U_i(F).$ $i=1$

From now on, v is said to be a **bad vertex** for every $(u, v) \in A(D_k)$. Moreover, $l(P_{[v,u]}(F)) \geq l+1$ which implies that every vertex $z \in T_F(v)$ is the end of a directed path of length $l+1$, denoted by Q_z , and it is contained in $(u, v) \cup P_{[v,u]}(F) \cup P_{[v,z]}(F)$. **Claim 1.** For every arc $(u, v) \in A(D_k)$, $zz' \notin E(G[D])$ for every $z \in T_F(v)$ and for every $z' \notin T_F(v)$ with $\ell_F(z') > k$. $) \geq k.$ \Box

Proof If $(z, z') \in A(D)$, then (z, z') is a forward arc as *F* is a final forest, and so $\ell_F(z') > \ell_F(z) \geq k$. Knowing that $l(P_{z'}(F)) \geq k$, $P_{z'}(F) \cap T_F(v) = \phi$ and $Q_z \subseteq T_F(v)$, so $Q_z \cup (z, z') \cup P_{z'}(F)$ contains a $P(k, l)$; which gives a contradiction. Similarly, one can observe that a $P(k, l)$ will appear in $Q_z \cup (z', z) \cup P_{z'}(F)$ if (z', z) ∈ *A*(*D*). \Box

It is now clear that the only monochromatic arcs appear in D_k , which implies that a proper coloring may be established if we recolor properly $T_F(v)$ for every bad vertex υ .

Let $(u, v) \in A(D_k)$, and set $C_v^F = P_{[v,u]}(F) \cup (u, v)$, $P_{[v,u]}(F) = v_k v_{k+1} \cdots v_p$ where $v_k = v$, $v_p = u$ and $p = \ell_F(u)$. A vertex *x* in *D* is said to be **rich** in *F* if $\ell_F(x) \geq k$ and $N(x) \cap L_i(F) \neq \emptyset$ for all $i \in \{1, \ldots, k-1\}.$

From now on, we may consider the following recoloring. For every bad vertex v , if v is not rich, then recolor it by some color *i* whenever $N(v) \cap L_i(F) = \phi$ for some $i \in \{1, \ldots, k-1\}$. Otherwise, if v is bad rich but has no rich neighbor in $U_i(F)$ for some $j \in \{k, \dots, k+l\}$, then recolor its neighbors in $U_j(F)$, if any, by the suitable colors from $\{1,\ldots,k-1\}$, and finally color v by *j*. In both cases, $T_F(v)$ is colored properly by the colors $\{1, \ldots, n-1\}$.

A direct consequence of the previous paragraph states that there exists a rich bad vertex v such that v has a rich neighbor in $U_i(F)$ for every $i > k$, which implies that we are concerned now with recoloring $T_F(v)$ properly in this case.

Claim 2. If *u* is a rich in-neighbor of *v* in $U_k(F)$, then *u* is the unique in-neighbor of v in $U_k(F)$.

Proof Suppose that there exists $u' \in U_k(F)$ such that $u' \neq u$ and $(u', v) \in A(D)$. Let *j* = $min\{i : 1 \le i \le k \text{ and } N^+(u) \cap L_i(F) \neq \emptyset\}, x \in N^+(u) \cap L_i(F)$ and $y \in N^{-}(u) \cap L_{i-1}(F)$ if $j > 1$. Clearly, $x \in P_{v}(F)$. If $j = 1$, then the path $(u, x) \cup P_v(F) \cup P_{[v, u']}(F) \cup (u', v)$ contains a $P(k, l)$, else the path $P_y(F) \cup (y, u) \cup P_v(F)$ $(u, x) ∪ P_{[x, v]}(F) ∪ P_{[v, u']}(F) ∪ (u', v)$ contains a $P(k, l)$; which gives a contradiction. Ч

Taking into consideration the proof of Claim 2, P'_z denotes the path $(z, x) \cup P_v(F)$ if *j* = 1 and the path $P_y(F)$ ∪ (y, z) ∪ (z, x) ∪ $P_{[x, v]}(F)$ if *j* > 1 whenever *z* is a rich in-neighbor of a bad vertex v.

Set $B = \{v : v$ is a rich bad vertex and has a rich in-neighbor in $U_k(F)$. Let $v \in B$ and let *u* be the rich in-neighbor of *v* in $U_k(F)$. Recall that $C_v^F = v_k v_{k+1} \cdots v_p$ where $v_k = v$, $v_p = u$ and $p = \ell_F(u)$.

Claim 3. For every vertex $v \in B$, the rich neighbors of v belong to $L_i(F)$ for every $i \in \{k+1, \ldots, k+l\}.$

Proof Suppose that there exists a rich neighbor w of v such that $w \in U_i(F) - L_i(F)$ for some $i \in \{k+1,\ldots,k+l\}$. If $w \notin T_F(u)$, then $P'_u \cup P_{[v,w]}(F) \cup vw$ contains a *P*(*k*,*l*), which gives a contradiction. If $w \in T_F(u)$, then consider the path $P'_w \cup$ $P_{[v,u]}(F) \cup (u, v)$ if $(w, v) \in A(D)$ and the path $P_v(F) \cup (v, w) \cup P_{[v,w]}(F)$ otherwise. Note that both paths contain a $P(k, l)$, which gives a contradiction. Let $r \in \{1, \ldots, l\}$. We will consider a recoloring $T_F(v)$ for every $v \in B$ having a non rich neighbor v_{k+r} . If v has a rich neighbor x in $U_{k+r}(F)$, then $\ell_F(x) = k + r$ by Claim 3. Since $\ell_F(x) = k + r$ and $x \neq v_{k+r}$, then $x \notin C_v^F$, and so $N(x) \cap L_i(F) = N^-(x) \cap L_i(F)$ for every $i \in \{1, ..., k\}$, since otherwise $P'_x \cup C^F_v$ contains a $P(k, l)$ which gives a contradiction.

Let $wz \in E(G[D])$, where $w \in T_F(v) - T_F(x)$ and $z \in T_F(x)$, then $(w, z) \in A(D)$ such that $z = x$ and $\ell_F(w) < \ell_F(x)$. Otherwise, since $w \notin T_F(x)$, then $Q_w \cap T_F(x) =$ ϕ . If $(z, w) \in A(D)$, then a $P(k, l)$ appears in $P_y(F) \cup (y, x) \cup P_{[x, z]}(F) \cup (z, w) \cup Q_w$ where *y* ∈ *N*[−](*x*) ∩ *L*_{*k*−1}(*F*), which gives a contradiction. Hence, (*w*, *z*) ∈ *A*(*D*), and so $\ell_F(w) < \ell_F(z)$ as $w \notin T_F(x)$. If $z \neq x$, a $P(k, l)$ appears in $P_v(F) \cup (y, x) \cup$ *P*[*x*,*z*](*F*) ∪ (*w*, *z*) ∪ Q_w where $y \in N^-(x) \cap L_{k-1}(F)$.

So for any rich neighbor *x* of v in $U_{k+r}(F)$, recolor *z* by $i + 1$ for every $z \in T_F(x) \cap T$ *U_i*(*F*) with *i* ∈ {*k* + 1, ..., *k* + *l* − 1}, recolor *z* by *k* for every $z \text{ ∈ } T_F(x) \cap U_{k+1}(F)$ and finally recolor the remaining neighbors of v in $U_{k+r}(F)$ by the suitable color from $\{1, \ldots, k-1\}$. Now, $T_F(v)$ will be colored properly if we give v the color $k+r$. **Claim 4.** There exists no vertex $v \in B$ such that v_{k+r} is a rich neighbor of v for every $r \in \{1, \ldots, l\}.$ \Box

Proof Let $F_1 = F + (u, v) - (v, v_{k+1})$ if $k = 1$ and $F_1 = F + (y, v_{k+1}) + (u, v) - (v, v_{k+1})$ (v, v_{k+1})−(x, v) if $k \ge 2$ where $x \in N^-(v) \cap L_{k-1}(F)$ and $y \in N^-(v_{k+1}) \cap L_{k-1}(F)$. Let F_c be a closure of F_1 . Since $u(F)$ is minimal, then $\ell_{F_c}(z) = \ell_F(z)$ for all $z \in$ $L_i(F)$, $i \in \{1, ..., k-1\}$, if any. Thus, $\ell_{F_c}(v_{k+1}) = k$ and v is still rich in F_c . Due to the minimality of |*B*| and maximality of $\sum_{n} h_F(w)$, v_{k+1} is bad in F_c and $h_{F_c}(v_{k+1}) = h_F(v)$ and so $\ell_{F_c}(v) = \ell_F(u)$. Moreover, it can be easily proved that $\ell_{F_c}(v_i) = \ell_F(v_i) - 1$ for every $i \in \{k+1, ..., p\}$. Therefore, $C_{v_{k+1}}^{F_c} = C_v^F$. Repeating the same reasoning, we can show that v*ⁱ* plays the same role, that is the *l* successive vertices of v_i on C_v^F are rich neighbors of v_i and $N(v_i) \cap L_{k-1}(F) = N^-(v_i) \cap L_{k-1}(F)$ *L_{k−1}*(*F*) for every *i* ∈ {*k* + 1, ..., *p*}. Using the fact that *k* ≤ *l* and *n* ≥ 4, we get that *l* ≥ 2 and so $l(C_v^F)$ ≥ 4. Moreover, (v_{k+2}, v_k) ∈ $A(D)$, otherwise a $P(k, l)$ appears in $P_{[v_{k+3},v_n]}(F)$ ∪ (v_p, v_k) ∪ (v_k, v_{k+2}) ∪ $P_z(F)$ ∪ (z, v_{k+1}) ∪ (v_{k+1}, v_{k+2}) , where *z* ∈ *N*[−](v_{k+1}) ∩ $L_{k-1}(F)$. By symmetry, (v_{k+1} , v_p) ∈ *A*(*D*). Finally, (v_k , v_{k+1}) ∈ *A*(*D*), otherwise $P_{[v_{k+1},v_{k+1}]}(F) \cup (v_{k+1},v_k) \cup P'_{v_p}$ contains a $P(k, l)$. Thus, there exists *i* ∈ {*k* + 2, ..., *k* + *l* − 1} such that $(v_i, v_k) \in A(D)$ and $(v_k, v_{i+1}) \in A(D)$. Hence, *P*_{[v_{k+2},v_i](*F*)∪(v_i, v_k)∪(v_k, v_{i+1})∪*P*_{[v_{i+1},v_p](*F*)∪*P*_z(*F*)∪(z, v_{k+1})∪(v_{k+1}, v_p),}} where $z \text{ ∈ } N^-(v_{k+1}) \cap L_{k-1}(F)$, contains a $P(k, l)$; which gives a contradiction. Thus, we can say now that *D* is colored properly using $(n - 1)$ -colors due to Claim 1, which gives a contradiction. \Box **Funding** The authors declare that no funds, grants or other support were received during the preparation of this manuscript.

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- 1. Addario-Berry, L., Havet, F., Thomasse, S.: Paths with two blocks in *n*-chromatic digraphs. J. Combin. Ser. B **97**, 620–626 (2007)
- 2. Bondy, J.A.: Disconnected orientations and a conjecture of Las Vergnas. J. Lond. Math. Soc. (2) **14**, 277–282 (1976)
- 3. El Sahili, A.: Paths with two blocks in *k*-chromatic digraphs. Discrete Math. **287**, 151–153 (2004)
- 4. El Sahili, A., Kouider, M.: About paths with two blocks. J. Graph Theory **55**, 221–226 (2007)
- 5. Gallai, T.: On directed paths and circuits. In: Erdös , P., Katona, G. (Eds.) In Theory of Graphs, Academic press, New York, pp. 115–118 (1968)
- 6. Havet, F., Thomassé, S.: Oriented hamiltonian paths in tournaments: a proof of Rosenfeld's conjecture. J. Combin. Theory Ser B **78**(2), 243–273 (2000)
- 7. Roy, B.: Nombre chromatique et plus longs chemins d'un graphe. Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge **1**, 127–132 (1967)
- 8. Thomason, A.: Paths and cycles in tournaments. Trans. Am. Math. Soc. **296**, 167–180 (1986)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.