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Abstract
We consider multipermutations and a certain partial order, the weak Bruhat order, on
this set. This generalizes the Bruhat order for permutations, and is defined in terms of
containment of inversions. Different characterizations of this order are given. We also
study specialmultipermutations called Stirlingmultipermutations and their properties.
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order
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1 Introduction

Let n and m1,m2, . . . ,mn be positive integers and let {1, 2, . . . , n}×(m1,m2,...,mn)

denote the multiset {m1 · 1,m2 · 2, . . . ,mn · n} consisting of mi integers equal to
i (1 ≤ i ≤ n). If m1 = m2 = · · · = mn = k for some integer k, then we abbreviate
this to {1, 2, . . . , n}×k . The permutations of {1, 2, . . . , n}×(m1,m2,...,mn), written as a p-
tuplewith p = m1+m2+· · ·+mn , are certainmultipermutations of {1, 2, . . . , n}. The
set of multipermutations σ

×(m1,m2,...,mn)
n of the multiset {m1 · 1,m2 · 2, . . . ,mn · n} is

denoted by S×(m1,m2,...,mn)
n . In the special case mentioned above this is abbreviated to

σ×k
n andS×k

n , respectively, andwe call the resultingmultipermutations k-permutations
of {1, 2, . . . , n}. If k = 1, we write simply Sn , the set of permutations of {1, 2, . . . , n}.

For a permutation σ
×(m1,m2,...,mn)
n , let (i, t) denote the t th occurrence (position) of

the integer i inσ
×(m1,m2,...,mm )
n (1 ≤ i ≤ n, 1 ≤ t ≤ mi ).An (ordinary)inversion of
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σ
×(m1,m2,...,mm )
n is defined to be any occurrence ( j, i) of a larger integer j preceding

a smaller integer i in σ
×(m1,m2,...,mm )
n . In contrast, a strong inversion is an ordered

pair: (( j, t), (i, s)) where the t th occurrence of j precedes the sth occurrence of i ,
and j > i . If k = 1, that is, we have Sn , this is equivalent to the usual inversion j > i
where j precedes i in the permutation. In general, numerical information on the order
of occurrences of the integers involved is taken into account in a strong inversion. The
multiset of ordinary inversions of σ

×(m1,m2,...,mn)
n is denoted by I(σ

×(m1,m2,...,mn)
n ).

The set of strong inversions of σ
×(m1,m2,...,mm )
n is denoted by I∗(σ×(m1,m2,...,mn)

n ). For
a k-permutation σ×k

n of {1, 2, . . . , n} these are denoted, respectively, by I(σ×k
n ) and

I∗(σ×k
n ).

It follows that every strong inversion gives an ordinary inversion (use the projection
of the first coordinates of the strong inversion pair). For instance, in (2, 1, 2, 1), there
are three strong inversions, namely, ((2, 1), (1, 1)), ((2, 1), (1, 2)), and ((2, 2), (1, 2))
and the multiplicity of the weak inversion (2, 1) is three. So I∗(σ ) ⊆ I∗(τ ) implies
that I(σ ) ⊆ I(τ ) (as a multiset inclusion). But the converse does not hold. For exam-
ple, consider n = 2 and the multipermutations (a) (2, 1, 1, 2) and (b) (1, 2, 2, 1). The
multiset of ordinary inversions in both cases is {(2, 1), (2, 1)}. The sets of strong inver-
sions are (a) {((2, 1), (1, 1)), ((2, 1), (1, 2))} and (b) {((2, 1), (1, 2)), ((2, 2), (1, 2))}.

The identity multipermutation in S×(m1,m2,...,mn)
n is the multipermutation

ι
(m1,m2,...,mn)
n with no decrease; in case that m1 = m2 = · · · = mn = k, this is
abbreviated to ι×k

n . The anti-identity multipermutation is the reverse of ι
(m1,m2,...,mn)
n

and so has no increase.

Example 1 Let n = k = 3 and consider the multipermutation

σ×3
3 = (1, 1, 2, 3, 2, 2, 1, 3, 3).

Then I(σ×3
3 ) equals the multiset

{(2, 1), (2, 1), (2, 1), (3, 2), (3, 2), (3, 1)},

and I∗(σ×3
3 ) equals the set

{((3, 1), (2, 2)), ((3, 1), (2, 3)), ((3, 1), (1, 3)), ((2, 1), (1, 3)),
((2, 2), (1, 3)), ((2, 3), (1, 3))}.

For the identi t y3 − permutation ι×3
3 = (1, 1, 1, 2, 2, 2, 3, 3, 3) of {1, 2, 3}×3, we

have I∗(σ×3
3 ) = ∅; for the anti-identity 3-permutation

←
ι×3
3 = (3, 3, 3, 2, 2, 2, 1, 1, 1)

we have

I∗(
←
ι×3
3 ) = {( j, t), (i, s)) : 1 ≤ i < j ≤ 3, 1 ≤ s, t ≤ 3}.

In [18] the weak Bruhat order �b on S×(m1,m2,...,mn)
n is defined as follows :

σ×(m1,m2,...,mn)
n �b τ×(m1,m2,...,mn)

n
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provided that

I∗(σ×(m1,m2,...,mn)
n ) ⊆ I∗(τ×(m1,m2,...,mn)

n ).

For S×k
n with k = 1, this reduces to the weak Bruhat order on Sn , that is, I(σn) ⊆

I(τn). The weak Bruhat order �b on S×(m1,m2,...,mn)
n is proved to be the reflexive

and transitive closure of the relation obtained by using adjacent transpositions on
S×(m1,m2,...,mn)
n as specified by

. . . , j, i, . . . → . . . , i, j, . . . where j > i .

Thus the strong inversion (( j, t), (i, s)) for some t and s (only this strong inversion)
is deleted from the set of strong inversions of the multipermutation under such an
adjacent transposition. The partially ordered set (S×(m1,m2,...,mn)

n ,�b) is also proved
to be a lattice, a generalization of the corresponding fact for the weak Bruhat order
(Sn,�b) on permutations to the set of multipermutations of an arbitrary finite mul-
tiset. The lattice (S×(m1,m2,...,mn)

n ,�b) is graded by the number of strong inversions.
The minimal element is the identity multipermutation with no strong inversions; the
maximal element is the anti-identitymultipermutation, and so

∑
1≤i< j≤n mim j strong

inversions.
We now briefly summarize the remaining contents of this paper. Section 2 treats the

weak Bruhat order for multipermutations, and contains characterizations of this par-
tially ordered set.One such characterization is in terms of so-called summatrices.Next,
in Sect. 6, we consider 2-permutations and how they give rise to two permutations,
called order projections. Construction of 2-permutations from such order projections
is presented. Sections 4 and 5 are devoted to Stirling multipermutations, their inver-
sions and characterizations in terms of other combinatorial objects. In Sect. 6 we
make some final comments including a brief discussion of a generalization of Stirling
permutations called quasi-Stirling permutations.

Notation: In the display ofmatriceswe sometimes omit zeros leaving their positions
empty.

2 Weak Bruhat Order andMultipermutations

We now show that a multipermutation of {1, 2, . . . , n} with its set of strong inversions
is equivalent to a permutation with its set of inversions where the partial orders agree;
a consequence is that the partially ordered sets of the types (S×(m1,m2,...,mn)

n ,�b) can
be regarded as sublattices of the partially ordered sets of the types (Sp,�b).

First we give an example of the process which can be generalized.

Example 2 Consider the 2-permutation of {1, 2, 3, 4}:

σ = (2, 1, 2, 3, 4, 3, 4, 1).
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Its strong inversions are:

((2, 1), (1, 1)), ((2, 1), (1, 2)), ((2, 2), (1, 2)), ((3, 1), (1, 2)),

((3, 2), (1, 2)), ((4, 1), (3, 2), ((4, 1), (1, 2)), ((4, 2), (1, 2)).

Now from the 2-permutation (2, 1, 2, 3, 4, 3, 4, 1) we construct a permutation in S8
by replacing the 1’s by 1 and 2, ordered increasingly, and next replace the two 2’s by
3 and 4 in that order, etc. This gives the permutation

σ̂ = (3, 1, 4, 5, 7, 6, 8, 2),

whose inversions are:

(3, 1), (3, 2), (4, 2), (5, 2), (6, 2), (7, 6), (7, 2), (8, 2).

We have an injection between the 2-permutations in S×2
4 and the permutations in S8

which preserves weak Bruhat order, that is, (S×2
4 ,�b) is isomorphic to a partially

ordered subset of (S8,�b). This works in general giving that (S×k
n ,�b) is isomorphic

to a partially ordered subset of (Skn,�b). This is made more precise in Theorem 1. 	

Let S×(m1,m2,...,mn)↑

n be the subset of Sp, where p = m1 +m2 +· · ·+mn , in which
each of the sets of integers

Y1 = {1, 2, . . . ,m1},Y2 = {m1 + 1,m1 + 2, . . . ,m1 + m2}, . . . ,
Yn = {m1 + m2 + · · · + mn−1 + 1,m1 + m2 + · · ·

+mn−1 + 2, . . . ,m1 + m2 + · · · + mn}

occur in increasing order. A multipermutation σ
×(m1,m2,...,mn)
n ∈ S×(m1,m2,...,mn)

n thus
corresponds to a permutation in S×(m1,m2,...,mn)↑

n in the way explained in Example 2,
i.e., replacing them1 1’s by the numbers in Y1, ordered increasingly, and next replacing
the m2 2’s by the numbers in Y2, ordered increasingly, etc. This gives a bijection
between S×(m1,m2,...,mn)

n and S×(m1,m2,...,mn)↑
n .

Then (S×(m1,m2,...,mn)↑
n ,�b) is a partially ordered subset of (Sp,�b). Notice that

all the inversions a > b in a multipermutation in S×(m1,m2,...,mn)↑
n have a and b in

different Yi ’s where the integers in each Yi ’s are in increasing order. It follows that
successive adjacent transpositions applied to a multipermutation in S×(m1,m2,...,mn)↑

n

give a multipermutation that is also in S×(m1,m2,...,mn)↑
n . Hence the inversions in

I(σ
×(m1,m2,...,mn)↑
n ) are identical with the inversions of I(σ

×(m1,m2,...,mn)
n ) involv-

ing S×(m1,m2,...,mn)↑
n . Thus the partial order of Sp when restricted to S×(m1,m2,...,mn)↑

n

gives the partially ordered set (S×(m1,m2,...,mn)↑
n ,�b). Hence we have the following

consequence.

Theorem 1 (S×(m1,m2,...,mn)
n ,�b) is isomorphic to (S×(m1,m2,...,mn)↑

n ,�b), and the
partially ordered set (S×(m1,m2,...,mn)↑

n ,�b) is a sublattice of (Sp,�b) where p =
m1 + m2 + · · · + mn.
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Consider a multipermutation σ = (a1, a2, . . . , aN ) ∈ S×(m1,m2,...,mn)
n where N =

m1 + m2 + · · · + mn and 1 ≤ ai ≤ n (i ≤ N ). We denote by σ̂ the permutation in
SN obtained from σ as defined in the discussion preceding Theorem 1; σ̂ is called
the associated permutation of the multipermutation σ . Corresponding to this σ is
the N × n (0, 1)-matrix Aσ whose i th row contains a 1 in column ai (i ≤ N ) and
otherwise contains only zeros. We call Aσ the incidence matrix of σ . Note that when
σ is a permutation, Aσ is the usual permutation matrix associated with σ .

The sum matrix Σ(A) = [si j ] of any m × n matrix A = [ai j ] is the m × n matrix
defined by si j = ∑

k≤i, l≤ j akl (i ≤ m, j ≤ n); thus si j is the sum of the entries in
the leading i × j submatrix of A. A well-known characterization of the weak Bruhat
order on n × n permutation matrices is provided by the sum matrix: P ≤b Q if and
only if Σ(P) ≥ Σ(Q) (entrywise). The next theorem includes a characterization of
the weak Bruhat order for multipermutations in terms of sum matrices.

Theorem 2 (i) Let σ ∈ S×(m1,m2,...,mn)
n . Then the kth column of Σ(Aσ ) equals the

k̂th column of Σ(Aσ̂ ) where k̂ = m1 + m2 + · · · + mk (k ≤ n).
(i i) Let σ, τ ∈ S×(m1,m2,...,mn)

n . Then Σ(Aσ ) ≥ Σ(Aτ ) if and only if Σ(Aσ̂ ) ≥
Σ(Aτ̂ ).

(i i i) Let σ, τ ∈ S×(m1,m2,...,mn)
n . Then σ �b τ if and only if Σ(Aσ ) ≥ Σ(Aτ ).

Proof (i) The kth column of Σ(Aσ ) is the row sum vector of the submatrix consisting
of the k first columns of Aσ , and this vector coincides with the row sum vector of the
submatrix consisting of the k̂ first columns in Aσ̂ .

(ii) If Σ(Aσ̂ ) ≥ Σ(Aτ̂ ), then, by (i), Σ(Aσ ) ≥ Σ(Aτ ).
Conversely, assumeΣ(Aσ ) ≥ Σ(Aτ ) holds. Let k < n and k̂ = m1+m2+· · ·+mk

and define k′ = k̂ + mk+1. Let x and x ′ denote columns k̂ and k′ of Σ(Aτ̂ ), and let
y and y′ denote columns k̂ and k′ of Σ(Aσ̂ ). The components of these vectors are
denoted xi , x ′

i etc. Then, by assumption,

x ≤ y and x ′ ≤ y′.

Let x∗ and y∗ denote the column k̂+1, i.e., right after column x and y in, respectively,
Σ(Aτ̂ ) and Σ(Aσ̂ ). Then there exists p ≤ n and q ≤ n such that

x∗ = x + e(p) and y∗ = y + e(q)

where e(p) (resp. e(q)) is the (0, 1)-vector with a 1 in each position j ≥ p (resp. j ≥ q)
and otherwise contains zeros. We now show that x∗ ≤ y∗.

If p ≥ q, then e(p) ≤ e(q), so x∗ = x + e(p) ≤ y + e(q) = y∗ holds. Next, assume
that p < q and let p ≤ i < q. Observe that we cannot have xi = yi , because that
would give x ′

i = xi + 1 > yi = y′
i , contradicting x ′ ≤ y′. Thus, xi < yi holds, and

then x∗
i = xi + 1 ≤ yi = y∗

i . This implies x∗ ≤ y∗, and the Claim holds.
We can now repeat this argument, column by column, and by induction, it follows

that every column inΣ(Aτ̂ ) is componentwise≤ the corresponding column inΣ(Aσ̂ ).
So, Σ(Aσ̂ ) ≥ Σ(Aτ̂ ), as desired.

(iii) This follows by combining statement (ii) of this theorem and Theorem 1. 	
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Example 3 Let n = 3 and (m1,m2,m3) = (3, 4, 2), so N = 9. Consider the following
multipermutation σ = (2, 1, 3, 1, 2, 2, 3, 2, 1) and its corresponding permutation σ̂ =
(4, 1, 8, 2, 5, 6, 9, 7, 3). With σ we associate the incidence matrix Aσ and its sum
matrix

Aσ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

1
1
1
1
1

1
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Σ(Aσ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1
1 2 2
1 2 3
2 3 4
2 4 5
2 5 6
2 5 7
2 6 8
3 7 9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

With σ̂ we have

Aσ̂ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1

1
1

1
1

1
1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Σ(Aσ̂ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 1 1 1 1
1 1 1 2 2 2 2 2 2
1 1 1 2 2 2 2 3 3
1 2 2 3 3 3 3 3 4
1 2 2 3 4 4 4 4 5
1 2 2 3 4 5 5 6 6
1 2 2 3 4 5 5 6 7
1 2 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Note that columns ending in 3,7,9, respectively, are identical in Σ(Aσ ) and Σ(Aσ̂ ).
Next, consider the following multipermutation σ = (2, 2, 3, 1, 3, 2, 1, 2, 1). Then

Aσ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1

1
1

1
1
1

1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where Σ(Aσ ) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 1
0 2 2
0 2 3
1 3 4
1 3 5
1 4 6
2 5 7
2 6 8
3 7 9

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Then Σ(Aσ ) ≥ Σ(Aτ ), so σ �b τ by Theorem 2. 	
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3 Order Projections

In this section we consider some questions for 2-permutations and start with some
motivation.

Example 4 Consider the permutations π1 = (1, 2, 5, 3, 4) and π2 = (3, 5, 4, 1, 2).
Consider all 2-permutations σ 2

n where π1 corresponds to the first occurrences and
π2 corresponds to the second occurrences of the integers 1, 2, 3, 4, 5. We can simply
follow π1 by π2 to get such a 2-permutation: (1, 2, 5, 3, 4, 3, 5, 4, 1, 2). But there
are other possibilities, e.g., (1, 2, 5, 3, 3, 5, 4, 4, 1, 2). How can such compatible 2-
permutations be found and how many are there? 	


A motivation for this notion is from the area of scheduling, as described next. Two
machines each perform n jobs, in some given order represented by the permutations
π1 and π2. Assume that for each i ≤ n job i must be done on machine 1 before job i is
done on machine 2. A (π1, π2)-compatible 2-permutation then specifies a possible job
sequence for the 2n jobs that is consistent with these restrictions. In [14] one considers
job scheduling on two machines with the constraint mentioned above (each job is first
performed on machine 1 and later on machine 2) along with certain other constraints
on the order of some strings of jobs. We return to this motivating example below.

Let σ 2
n ∈ S×2

n be a 2-permutation, and let π1 (resp. π2) be the permutation in Sn

obtained from the first (resp. last) occurrence of each integer i ≤ n. We call π1 and
π2 the order projections of σ . For instance, σ = (1, 2, 5, 3, 3, 5, 4, 4, 1, 2) has order
projections π1 = (1, 2, 5, 3, 4) and π2 = (3, 5, 4, 1, 2). Another 2-permutation with
the same order projections is clearly (1, 2, 5, 3, 4, 3, 5, 4, 1, 2). Thus, in general, there
are many such (π1, π2)-compatible 2-permutations associated with a given pair π1,
π2 of permutations. We now investigate such 2-permutations.

In Sect. 4 we give an interpretation of the order projections in terms of certain walks
in a tree.

Let π1 and π2 be two permutations in Sn . Define S2(π1, π2) as the set of
(π1, π2)-compatible 2-permutations. This set is always nonempty as it contains the
concatenation σ = (π1, π2). We define an n × n (0, 1)-matrix D = [di j ] as follows:
the i th row consists of 0’s followed by 1’s, and the first 1 is in column π−1

1 (k) where
k = π2(i) (i ≤ n). So, for instance, as in Example 5 below, if π2(1) = 5, the first row
contains its first 1 in column j where j is the position of 5 in π1; here j = 3. Note
that the last column of D only contains 1 s. We call D an order matrix, and to indicate
the dependence on the permutations we write D = D(π1, π2). Define an increasing
path in D(π1, π2) as a set of positions (i, ji ) such that di ji = 1 (i ≤ n) and

j1 ≤ j2 ≤ · · · ≤ jn .

Theorem 3 Let π1 and π2 be two permutations in Sn. There is a bijection between
S2(π1, π2) and the set of increasing paths in the order matrix D(π1, π2).

Proof Note that any 2-permutation σ ∈ S2(π1, π2) may be constructed by starting
with π1 and then inserting the elements in π2 in that sequence between some of the
positions in π1. This must be done so that each entry in π2 occurs after the same entry

123
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in π1; this assures the desired order projections. This condition is precisely what the
entries in D = D(π1, π2) = [di j ] indicate. In fact, let i ≤ n and assume di j = 1 with
j minimal, and let k = π1(i). This means that the integer k is in position j in π1 and
therefore the integer k from π2 can be inserted after this position, and not before. As a
result, the insertion of the n entries of π2 may be indicated by selecting an entry which
is 1 in each row in D. The additional requirement in this choice is that the column
index must be weakly increasing; this is to assure that we do not alter the order of the
entries in π2. This discussion verifies the desired bijection. 	


As a referee pointed out, the problem treated here is equivalent to a previously
studied problem of determining the linear extensions of a poset derived from the
permutations π1 and π2 as follows. Its elements are (1, i) (corresponding to π1) and
(2, i) (corresponding to π2) for i = 1, 2, . . . , n with two chains as given by the
elements in the orders given by π1 and π2, and with (1, i) < (2, i) for each i followed
by the transitive closure to get a poset. The elements of S2(π1, π2) correspond to
the linear extensions of this poset. For additional details on this perspective, see the
references [6, 20] supplied by a referee.

Example 5 Consider π1 = (3, 1, 5, 2, 4) and π2 = (5, 1, 3, 2, 4). The order matrix
D(π1, π2) is then

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1
1 1 1 1

1 1 1 1 1
1 1
1

⎤

⎥
⎥
⎥
⎥
⎦

.

An increasing path is indicated in boldface and the corresponding 2-permutation
is (3, 1, 5, 5, 1, 2, 3, 4, 2, 4) where the inserted elements are in boldface (and they
determine π2). 	


Theorem 3 also makes it possible to compute the cardinality of S2(π1, π2). Let
D = D(π1, π2) = [di j ]. Let D̃ = D̃(π1, π2) be obtained from D by replacing every
1 with a zero above by 0, repeatedly, row by row. In the example above the entries in
positions (2, 2), (3, 1) and (3, 3) are replaced by 0 and we obtain

D̃ =

⎡

⎢
⎢
⎢
⎢
⎣

1 1 1
1 1 1
1 1 1
1 1
1

⎤

⎥
⎥
⎥
⎥
⎦

.

Then D̃ has a support in a Ferrers pattern (justified to the right) with monotone
decreasing row sums. Introduce an n × n matrix V = [vi j ] where vi j equals the
number of increasing paths, as previously used, from row 1 until position (i, j). Then

123
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we must have

v1 j = d1 j ( j ≤ n)

vi j = ∑
k≤ j, di−1,k=1 vi−1,k (2 ≤ i ≤ n, j ≤ n, di j = 1). (1)

where an empty sum is defined to be zero. Then

|S2(π1, π2)| =
∑

j

vnj . (2)

For the permutations in Example 5 we compute

V =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 1 1
0 0 1 2 3
0 0 1 3 6
0 0 0 4 10
0 0 0 0 14

⎤

⎥
⎥
⎥
⎥
⎦

.

so |S2(π1, π2)| = 14.
Finally, we note that S2(π1, π2) contains a unique 2-permutation if and only if

π1(n) = π2(1) (and then this 2-permutation is (π1, π2)). Moreover, |S2(π1, π2)| is
maximal when π1 = π2.

We now return to the scheduling problem we briefly discussed above. Let σn be a
2-permutation of {1, 2, . . . , n} with order projections π1 and π2. Then σn represents
a job sequence for performing n jobs subject to the requirements on two machines to
do their part. Let us assume for simplicity that each job takes the same time. Then
the two machines might be able to work simultaneously. So (1, 2, 5, 3, 3, 5, 4, 4, 1, 2)
with π1 = (1, 2, 5, 3, 4) and π2 = (3, 5, 4, 1, 2) could progress as in the following
activity table (where the top line indicates time)

1 2 3 4 5 6 7 8 9 10
I 1 2 5 3 4
II 3 5 4 1 2

with 9 time units as opposed to

1 2 3 4 5 6 7 8 9 10
I 1 2 5 3 4
II 3 5 4 1 2

with 10 time units. For a given π1 and π2 how does one determine the minimum
number of time units possible? Let t∗(π1, π2) denote the minimum total time for a 2-
permutationwith order projectionsπ1, π2. Here the total time is defined as the position
j of the final entry in π2 in the activity table. Then, in general, the minimal total time
satisfies

n + 1 ≤ t∗(π1, π2) ≤ 2n.
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The lower bound is attained when π1 = π2, and the activity plan just shifts π2 one
column to the right compared to π1. The upper bound is attained when π1(n) = π2(1),
where π2 is put right after π1.

Consider the following recursive computation of integers T1, T2, . . . , Tn based on
π1 and π2: Let T0 = 0 and

Tj = max{Tj−1, π
−1
1 (π2( j))} + 1 ( j = 1, 2 . . . , n). (3)

Proposition 1 Let π1 and π2 be two permutations in Sn. Then t∗(π1, π2) = Tn.

Proof In the activity table the first row contains π1 followed by blanks. Consider the
second row. Let k = π2(1) be the first component of π1. The first possible column j
for k is right after the position of k in the first row, so j = π−1

1 (k) + 1. Similarly, for
each j ≤ n, π1( j)must be placed after column π−1

1 (π2( j)) and also after the position
of the previous entry in π2. Then, by induction on j , the first possible column for the
j th entry of π2 is given by the expression in (3), and the result follows. 	

Finally we note that for this scheduling problem, there is no loss in generality in

assuming π1 = (1, 2, . . . , n) (unless some property of the permutations is considered)
by replacing π2 with π−1

1 π2.

4 StirlingMultipermutations

Stirling permutations were introduced by Gessel and Stanley [11] and have many
interesting properties (see e.g., [1, 5, 8, 13, 17, 21]). A permutation σn in S×2

n is a
Stirling permutation provided

σn = (. . . , i, . . . , j . . . , i, . . .) implies that j > i .

Thus Stirling permutations are 2-permutations of {1, 2, . . . , n} that avoid the pattern
212; between the twooccurrences of an integer there can only be larger integers. The set
of Stirling permutations of {2·1, 2·2, . . . , 2·n} is denoted by Ŝ×2

n . The identity Stirling
permutation in Ŝ×2

n is the ordinary identity 2-permutation (1, 1, 2, 2, . . . , n, n) and its
reversal is the anti-identity Stirling permutation (n, n, . . . , 2, 2, 1, 1). As used above,
we usually let the subscript on a multipermutation denote the size of its underlying
set.

Example 6 Consider the Stirling permutation σ4 = (2, 4, 4, 2, 1, 3, 3, 1) ∈ Ŝ×2
4 .

Using our construction from the previous section, we consider the associated per-
mutation (3, 7, 8, 4, 1, 5, 6, 2) ∈ S8. The Stirling property in terms of this associated
permutation is that between two integers a, a + 1 (in that order) where a is odd, only
larger integers occur. More generally, we have the next theorem. 	

Theorem 4 Let n be a positive integer. There is a bijection between the set of Stirling
permutations in Ŝ×2

n and the set Ŝ2n of permutations in S2n with the property that
between two integers a and a + 1 in that order with a odd, only larger integers occur.
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Proof This is an immediate consequence of our correspondence and the definition of
a Stirling permutation. 	


The defining property for Stirling permutations can be carried over tomultipermuta-
tions of {1, 2, . . . , n} [7, 15]. Consider amultipermutationσn of {a1·1, a2·2, . . . , an ·n}
where a1, a2, . . . , an are positive integers. Then σn is called a Stirling multipermu-
tation provided that between two equal integers in σn only larger integers occur,
equivalently, between the first and last instance of each integer k in σn only larger
integers occur. Let Ŝn(a1 ·1, a2 ·2, . . . , an ·n) be the set of Stirling multipermutations
of {a1 ·1, a2 ·2, . . . , an ·n}. (If an = 1, then n can be deleted from σn leaving a Stirling
permutation σn−1 of {a1 · 1, a2 · 2, . . . , an−1 · (n − 1)}; thus one could assume that
an ≥ 2.) If a1 = a2 = · · · = an = k, then we denote the corresponding set of Stir-
ling multipermutations by Ŝ×k

n and call these Stirling k-permutations of {1, 2, . . . , n}.
Thus if k = 1, then Ŝ×1

n = Sn . If k ≥ 2 then, deleting one instance of each integer
j with 1 ≤ j ≤ n in a Stirling k-permutation in Ŝ×k

n , results in a Stirling (k − 1)-

permutation in Ŝ×(k−1)
n . Conversely, if k ≥ 2 and σn is a Stirling k-permutation in

Ŝ×k
n , then inserting a new copy of each integer j with 1 ≤ j ≤ n between the first

and kth instances of j results in a Stirling (k + 1)-permutation in Ŝ×(k+1)
n . Thus, if

k ≥ 3, every Stirling k-permutation of {1, 2, . . . , n} can be constructed by startingwith
a Stirling 2-permutation of {1, 2, . . . , n} and, for each j between 1 and n, inserting
anywhere between its two j’s, (k − 2) more j’s.

As for permutations, and unlike multipermutations in general, a Stirling multiper-
mutation is determined by its multiset of (ordinary) inversions.

Theorem 5 The function sending a Stirling multipermutation σn of {a1 · 1, a2 ·
2, . . . , an · n} into its multiset I(σn) of ordinary inversions is an injective function
on Ŝn(a1 · 1, a2 · 2, . . . , an · n).

Proof Letm = a1+a2+· · ·+an . Let σn = (i1, i2, . . . , im) andπn = ( j1, j2, . . . , jm)

be two Stirling multipermutations of {1, 2, . . . , n} in Ŝn(a1 · 1, a2 · 2, . . . , an · n) .
Since the an n’s must be adjacent in both multipermutations, there must be an s and t
such that the an n’s in σn and those in πn are given by

is = · · · = is+an−1 = n and jt = · · · = jt+an−1 = n.

If s �= t , there must exist some p < n which occurs less often in exactly one of the
subsequences

is+an , is+an+1, . . . , im and jt+an , jt+an+1, . . . , jm,

and that implies that an inversion (n, p) occurs a different number of times in the
inversion sets I(σn) and I(πn), a contradiction. Thus s = t (and the two subsequences
must be the same).

Now, delete all the n’s in both σn and πn giving σn−1 and πn−1, respectively. Then
σn−1 and πn−1 are multipermutations of an identical multiset. Thus, we can repeat the
argument for σn−1 and πn−1, and it follows by induction that σn = πn , proving the
desired injectivity. 	
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As in Sect. 3, with a Stirling permutation σn there is naturally associated [5] the pair
of order projection (π1

n , π2
n ) of permutations of {1, 2, . . . , n} where π1

n is given by the
first occurrences of each integer in σn , and π2

n is given by the second occurrences of
each such integer. The pair of permutations (π1

n , π2
n ) is called a Stirling permutation

pair. For example,

σ4 = (1, 3, 3, 1, 2, 4, 4, 2) → π1
4 = (1, 3, 2, 4), π2

4 = (3, 1, 4, 2).

In terms of the correspondence given in Theorem 4, given an odd integer a in σ 1
n and

the even integer a + 1 in σ 2
n , then only larger integers occur between this a and a + 1

in σ2n . Then π1
4 corresponds to a permutation of {1, 3, 5, 7} and π2

4 corresponds to a
permutation of {2, 4, 6, 8}. In general, we have the following lemma.

Lemma 1 If σ2n is the permutation in Ŝ2n corresponding to a Stirling permutation σn
in Ŝ×2

n , then itsσ 1
n corresponds to the permutation of the odd integers {1, 3, . . . , 2n−1}

in σ2n and its σ 2
n corresponds to the permutation of the even integers {2, 4, . . . , 2n}

in σ2n.

Stirling permutations in Ŝ×2
n are characterized [5] in terms of its corresponding

Stirling permutation pair of permutations in Sn as we review below.
First we recall that a permutation of {1, 2, . . . , n} is 312-avoiding provided that it

does not contain a subsequence of length 3 in the same relative order as 3,1,2. Being
a 312-avoiding permutation places restrictions on the inversions of the permutation.
In fact, the permutation σ = ( j1, j2, . . . , jn) is 312-avoiding is equivalent to the
following property (312) of its set of inversions:

(312) If 1 ≤ k < l < p ≤ n and ( jk, jl) and ( jk, jp) are inversions, then ( jl , jp)
is also an inversion, that is, jk, jl , jp is a decreasing subsequence of σ .
Now let π1 = (i1, i2, . . . , in) and π2 = ( j1, j2, . . . , jn) be two permutations of
{1, 2, . . . , n}. Then π2 is a 312-avoiding permutation relative to π1 (or, (π1, π2) is
a 312-avoiding permutation pair) provided the following two properties (312-i) and
(312-ii) hold:

(312-i) I(π1) ⊆ I(π2), and
(312-ii) If 1 ≤ k < l < p ≤ n and ( jk, jl) and ( jk, jp) are inversions in I(π2)\I(π1),

then ( jl , jp) is also an inversion in I(π2) \ I(π1).

If (312-i) and (312-ii) hold, then the following property (312-iii) also holds:

(312-iii) jk, jl , jp is a decreasing subsequence of π2 and jp, jl , jk is an increasing
subsequence of π1.

We have the following theorem [5].

Theorem 6 Let π1 and π2 be two permutations of {1, 2, . . . , n}. Then (π1, π2) is a
Stirling permutation pair if and only if (π1, π2) is a 312-avoiding pair of permutations,
that is, I(π1) ⊆ I(π2) and π−1

1 π2 is 312-avoiding.

We now show that the weak Bruhat order on Ŝ×2
n is determined by ordinary inver-

sions.
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Theorem 7 Let σn and πn be Stirling permutations in Ŝ×2
n . The σn �b πn if and only if

the multiset I(σn) of ordinary inversions of σn is contained in the multiset of ordinary
inversions of πn.

Proof If σn �b πn , then the set of strong inversions of σn is contained in the set of
strong inversions of πn . Hence the multiset of ordinary inversions of σn is contained
in the multiset of ordinary inversions of πn .

Now suppose that the multiset of ordinary inversions of σn is contained in the
multiset of ordinary inversions of πn . Consider an ordinary inversion a > b in σn .
Since σn is a Stirling permutation, σn is of the form

(i) σn = (. . . , a, . . . , a, . . . , b, . . . , b, . . .) or σn = (. . . , b, . . . , a, . . . , a, . . . , b, . . .),

so the inversion a > b hasmultiplicity (i) 4 or (i i) 2. Sinceπn is a Stirling permutation,
and since the multiset of ordinary inversions of σn is contained in the multiset of
ordinary inversions of πn , πn has the corresponding forms

(i) πn = σ = (. . . , a, . . . , a, . . . , b, . . . , b, . . .), or

(i i1) πn = (. . . , b, . . . , a, . . . , a, . . . , b, . . .). or

(i i2) π = (. . . , a, . . . , a, . . . , b, . . . , b, . . .).

In case (i), we have that the subset of strong inversions of σn involving a and b equals
the subset of strong inversions of πn involving a and b. In case (i i) with case (i i1)
holding, we have a similar equality. In case (i i) with case (i i2), the subset of strong
inversions of σn involving a and b is a proper subset of the strong inversions of πn .
The theorem now follows. 	

Corollary 1 The set Ŝ×2

n of Stirling permutations partially ordered by its multiset of
ordinary inversions (the weak Bruhat order on Ŝ×2

n ) is a lattice, the weak Bruhat order
on Ŝ×2

n .

A Stirling permutation in Ŝ×2
n where the two occurrences of j are adjacent for

every j ≤ n will be called a double-permutation. They are clearly in one-to-one
correspondence with the set Sn of permutations of {1, 2, . . . , n}.

Let σn be a Stirling permutation in Ŝ×2
n . Define δ2(σn) as the number of j’s such

that the two occurrences of j are adjacent in σn . So, δ2(σn) = n means that σn is a
double-permutation. Let j ≤ n and assume the two occurrences of j in σn are not
adjacent. Let σ ′

n be the 2-permutation obtained from σn by moving the right-most j in
σn to the position after the left-most j ; we call this operation a left-join. A right-join is
defined similarly, but then we move the left-most j to the position after the right-most
j .

Theorem 8 (i) Let σn be a Stirling permutation in Ŝ×2
n . Then we can find a sequence

σ
(k)
n ∈ Ŝ×2

n (0 ≤ k ≤ N ) of Stirling permutations such that σ
(0)
n = σn, σ

(k)
n is

obtained by a left-join of σ
(k−1)
n (1 ≤ k ≤ N ), and σ

(N )
n is a double-permutation. In

addition, σ
(k)
n �b σ

(k−1)
n for each k. Moreover, N ≤ n − 1, δ2(σ

(k)
n ) > δ2(σ

(k−1)
n )
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(1 ≤ k ≤ N ), and, for the Stirling permutation pair (order projections) (π1, π2) of
σ

(N )
n , π1 = π2.
(i i) Ŝ×2

n is connected using the operations (a) left-join or its inverse, and (b)
permutations in which two consecutive kk are interchanged with two consecutive j j .

Proof (i) Let i1 and i2, where i1 < i2, be the two positions of j in σn . By assumption
i1 < i2 − 1. Let σ ′

n be obtained from σn by a left-join of j , so the right-most j in σn
is moved to the position after the left-most j . Then σ ′

n is also a Stirling permutation.
In fact, in σn , if j is between two occurences of some l, then j > l, and the two
consecutive j’s in σ ′

n also satisfy the Stirling property. Moreover, the removal of

the original j does not violate the Stirling property. Thus, σ
(1)
n := σ ′

n is a Stirling

permutation, and clearly δ2(σ
(1)
n ) < δ2(σn), as the two j’s are now adjacent and any

other pair of adjacent p’s are unchanged. Then δ2(σn) − δ2(σ
(1)
n ) ∈ {1, 2}. Thus, we

repeat the process, and after at most n−1 steps we have reached a double-permutation
σ

(N )
n , and its Stirling pair must consist of two equal permutations. That σ (k)

n �b σ
(k−1)
n

for each k follows from the fact that we move the integer j to the left and interchange
only with larger numbers, so certain inversions are removed.

(ii) This follows from (i) as each of two Stirling permutations may be trans-
formed double-permutations. We can move between these double-permutations as
for n-permutations, as described in the statement in (ii). 	


5 Stirling Characterization

There is an interesting connection between Stirling permutations and certain walks in
plane trees given in [13], as we describe next. Consider a plane tree T which is an
embedding of a tree in the plane: the root vertex is placed on top, each of its neighbors
are put on the level below, with corresponding edges attached. This is repeated so that
successive levels correspond to vertices with the same distance from the root. Let n
be the number of edges in T , and label the edges according to the order in which they
are added in the construction of the tree (so first we add edges adjacent to the root,
then the new edges adjacent to vertices of distance 1, etc.). An example with n = 5 is
shown in Fig. 1.

Consider depth-first-search (DFS) in T , starting from the root. Thus, one moves
down in the tree to a pendant vertex, then backtrack to vertex with an untraversed
edge e. Then one moves along e and further down to a pendant vertex, etc. Due to
the backtracking, this DFS constructs an “Euler 2-walk” in T in which every edge is
traversed exactly twice, once in a downward direction and once in an upward direction.
It corresponds to an ordinary Euler walk in the graph obtained from T by doubling
each edge. In this Euler 2-walk, the sequence of edges, in the order they are traversed,
defines a Stirling permutation. This is because each number j ≤ n occurs twice, and
between the two occurences of edge j we only traverse edges below j , and they have
higher numbers. Moreover, any Stirling permutation can be constructed in this way
from some plane tree.
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Fig. 1 Stirling permutations and plane trees

As an example consider the Stirling permutation σ5 = (1, 3, 5, 5, 3, 4, 4, 1, 2, 2).
The left plane tree T in Fig. 1 gives σ5 when we use the Euler 2-walk obtained by
choosing the left-most alternative in DFS search.

We now observe the following:

– For a given tree T there may be different labelings of the edges, i.e., dif-
ferent sequences of edge additions may result in the same tree T . Therefore
different Stirling permutations may correspond to the same tree (but different
labelings). See the right plane tree in Fig. 1 which corresponds to the permutation
(1, 4, 5, 5, 4, 3, 1, 2, 2).

– Every double-permutation corresponds to a plane tree which is a star (i.e., the root
and neighbor vertices). The Stirling permutation 12 · · · nn · · · 21 corresponds to a
path.

– Let σn be a Stirling permutation and let π1 and π2 be the corresponding order
projections. Let T be a plane tree and W an Euler 2-walk corresponding to σn .
We then note that π1 corresponds to the sequence of edges inW that are traversed
downward, while π2 corresponds to the sequence of edges in W that are traversed
upward. In the left example in Fig. 1 we get π1 = (1, 3, 4, 5, 2) (downward) and
π2 = (4, 3, 5, 1, 2) (upward).

– The operation used in Theorem 8 to go from σ
(k−1)
n to σ

(k)
n where, say, a j is

moved to the left, corresponds to a simple modification of the underlying plane
tree: shrink the edge uv with label j and replace it by a new pendant edge attached
to u, where u is the vertex closer to the root.

– The operation used later in Theorem 9 (denoted s) corresponds to deleting in the
plane tree T the edge corresponding to the largest label, and this is a pendant edge.

In order to give a characterization of Stirling permutations we introduce some
concepts. We say that a vector x = (x1, x2, . . . , xm) ∈ R

m is an AM-vector (Adjacent
Max), or simply x is AM, if there is a k < m such that

xk = xk+1 > x j ( j �= k, k + 1).

Thus a maximum component occurs precisely twice and in adjacent positions. If
x ∈ R

m is AM, we define a mapping ρ by ρ(x) ∈ R
m−2 is the subvector of x obtained

by deleting the two (adjacent) largest components in x . We say that x is AM-closed
if x (1) := ρ(x) is AM, x (2) := ρ(x (1)) is AM etc., i.e., repeated applications of the
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deleting the largest pair gives only AM vectors until we, finally, have a vector in R
2

with two equal components. Next, let σn = (i1, i2, . . . , i2n) be a 2-permutation of
{1, 2, . . . , n} . Let j ≤ n and define the interval

I j (σn) = {p, p + 1, . . . , q} (4)

where p < q and i p = iq = j . (Note that p and q are uniquely defined by the
2-permutation and j .) The interval family (4) clearly uniquely determines the 2-
permutation. We say that a family I ′

1, I
′
2, . . . , I

′
n of intervals is decreasing cross-free

if

I ′
i ∩ I ′

j = ∅ or I ′
j ⊂ I ′

i (1 ≤ i < j ≤ n).

Here ⊂ denotes strict inclusion.
The next theorem characterizes Stirling permutations.

Theorem 9 Let σn be a 2-permutation of {1, 2, . . . , n}. Then the following statements
are equivalent:

(i) σn is a Stirling permutation.
(i i) σn is AM-closed.
(i i i) The interval family I j (σn) ( j ≤ n) is decreasing cross-free.

Proof (i) ⇔ (ii): Let σn = (i1, i2, . . . , i2n) be a Stirling permutation. Then σn is
AM as maxk ik = n, and n cannot occur in two nonadjacent positions in σn . Let
ρ(σn) = (x1, x2, . . . , x2n−2). Then maxi xi = n − 1, and n − 1 cannot occur in two
nonadjacent positions in x , because then some smaller number would be between,
and this violates that σn is a Stirling permutation. By repeating this argument we
conclude that σn is AM-closed. The converse implication is shown by induction on n.
In fact, assume σn is AM-closed, and let x = ρ(σn). Then x is also AM-closed, so,
by induction, x is a Stirling permutation in Ŝ×2

n−1. By adding in the two adjacent n’s
we obtain σn which is then a Stirling permutation.

(i)⇔ (iii): Let σn be a Stirling permutation. Consider its intervals in (4) I j = I j (σn)
for j = 1, 2, . . . , n. If (ii) does not hold, then there are two possibilities. Either, for
some i < j , Ii ⊂ I j , or, alternatively, Ii and I j intersect, but neither set is contained in
the other. In each of these two cases, σ contains an i between two j’s, contradicting the
Stirling property. This proves that (i) implies (ii). The converse follows by induction
on n by observing that (iii) implies that In = {k, k+1} for some k. Then we “remove”
k and k + 1, and apply the induction hypothesis. 	


Define the iterated mapping ρk(σ ) by applying the mapping ρ k times to a Stirling
permutation σn (k = 1, 2, . . . , n − 1). Thus, ρ(σ) = ρ1(σ ) where ρn−1(σ ) = (1, 1).
We also write [p, q] to indicate the integer interval {p, p + 1, . . . , q} where p < q.

Example 7 For instance, let n = 4 and consider the Stirling permutation σ4 =
12443321. Then

ρ(σ4) = 123321, ρ2(σ4) = 1221, ρ3(σ4) = 11.
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Moreover,

I1(σ4) = [1, 8], I2(σ4) = [2, 7], I3(σ4) = [5, 6], I4(σ4) = [3, 4].

	

We now consider how Stirling permutations may be constructed, essentially by

using the inverse of the operator ρ defined above.

Algorithm 2:

Input: natural number n
1.Initialize v: let v = (n, n).
2.for = j = n − 1, n − 2, . . . , 1do

-insert two j’s in vsuch that none of these is between any
two k’s (k > j)

Output: vector vof length 2n.

Corollary 2 Algorithm 2 produces a Stirling permutation, and any Stirling permutation
may be produced in this way.

Proof The output vector v contains each integer 1 ≤ j ≤ n two times. Step 2 assures
that the Stirling property holds in each iteration, and, by induction, the output v is a
Stirling permutation.

Next, let σn be a Stirling permutation in Ŝ×2
n . By Theorem 9, σn is AM-closed.

Thus, in Algorithm 1 we can start by putting the two n’s in positions as in σn , then
delete these and repeat the placement of n − 1. The AM-property and induction then
assures that the constructed v equals σ . 	


For instance, to construct the Stirling permutation σ4 = (1, 3, 4, 4, 3, 2, 2, 1)Algo-
rithm 2 would do the following

(i) (4, 4), (i i) (3, 4, 4, 3), (i i i) (3, 4, 4, 3, 2, 2), (iv) (1, 3, 4, 4, 3, 2, 2, 1) = σ.

6 Coda

For completeness we briefly discuss a generalization of Stirling permutations.
We call a general multipermutation σn of {1, 2, . . . , n} inversion-even provided the

multiplicities of each of its inversions is even.
In an inversion-even 2-permutation

. . . a . . . b . . . a . . . with a > b implies . . . a . . . b . . . b . . . a . . . .
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Example 8 The 2-permutations of {1, 2} and their number of inversions are given in
the table below with identification of those that are Stirling permutations::

2-permutations number of inversions 21 Stirling permutation

1122 0 Yes
1212 1 No
1221 2 Yes
2211 4 Yes
2121 3 No
2112 2 No

.

Thus an odd number of inversions in a 2-permutation of {1, 2} implies that the two
integers 1 and 2 alternate. 	


It follows fromExample 8 that a 2-permutation σn of {1, 2, . . . , n} is inversion-even
if and only if it does not contain two integers a and b that alternate in their occurrences,
that is, avoid the pattern 1212 and its reverse 2121. Such 2-permutations are called
quasi-Stirling in [1] and are also considered in [8]. An equivalent definition of a quasi-
Stirling permutation is that between any two integers equal to k and for any integer
j , either both occurrences of j are between the two k’s or neither are. The two 2-
permutations 311, 322 and 213, 312 are examples of quasi-Stirling permutations that
are not Stirling permutations. The pattern 1212 gives 1 inversion and the pattern 2121
gives 3 inversions. The reverse of a quasi-Stirling permutation is also a quasi-Stirling
permutation because 1212 and 2121 are reverses of one another. Thus quasi-Stirling
permutations, as do Stirling permutations, have inversions only of multiplicities 2and
4. The 2-permutations 233112, 322113, 332112, and 321123 have inversions only of
multiplicities 2 and 4, and hence they are quasi-Stirling permutations but they are not
Stirling permutations, as they contain the pattern 2112. Since a 2-permutation is a
Stirling permutation if and only if it avoids the pattern 212, and a 2-permutation is
a quasi-Stirling permutation if and only if it avoids the patterns 1212 and 2121, we
obtain the following characterization.

Corollary 3 A quasi-Stirling permutation is a Stirling permutation if and only if it
avoids the pattern 2112.

Recall from Sect. 5 that Stirling permutations may be characterized by Euler 2-
walks in labeled trees. Note that the edges of the tree T must be labeled according to
the order in which they are added in a construction of the tree. See again the example
in Fig. 1. It is natural to ask if also quasi-permutations can be constructed via trees.
The following proposition is in [1].

Proposition 2 A 2-permutation is a quasi-Stirling permutation if and only if it cor-
responds to a closed Euler 2-walk in a labeled tree with arbitrary labeling of the
edges.

Proof Let T be a plane tree with an arbitrary edge labeling (i.e., via a bijection from
its set of edges E into {1, 2, . . . , n − 1}). An Euler 2-walk in T gives a 2-permutation
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Fig. 2 Quasi-Stirling
permutation and plane tree

3 1

5

4

2

(as each edge is traversed twice) with the additional property that each edge e = uv

is traversed before and after the two times traversal of any edge e′ = pq that is below
e in T . Here “below” means that if e is deleted then e′ is disconnected from the root
of T . This clearly gives a quasi-Stirling permutation.

Conversely, let σn be a quasi-Stirling permutation, and construct a plane tree T as
follows, using induction (on n). Let k = σn(1) and let T consist of a single edge uv

where u is the root, and give this edge the label k. Say that the other k is in position
s > 1, so σn(s) = k. Then, s must be even and in positions 2, 3, . . . , s − 1 there are
s/2 − 1 numbers, where each occurs twice, by the quasi-Stirling property. Then, by
induction, these numbers can be used as labels on a subtree attached to vertex v. Also,
if s < 2n, we can extend the tree by another edge attached to the root, with label
σn(s + 1) and placed to the right of the edge uv. We continue like this and eventually
meet an integer p which is also the last component of σn , and then the desired tree T
is constructed. 	

Example 9 The quasi-Stirling permutation σ5 = (3, 5, 4, 4, 5, 2, 2, 3, 1, 1) corre-
sponds to the Euler 2-walk in the plane tree T in Fig. 2 when choosing the left-most
alternative in DFS search. 	


Corresponding to a permutation σn = (i1, i2, . . . , in) ∈ Sn is a graph called a
permutation graph G(σn). The vertices of this graph are 1, 2, . . . , n and there is
an edge joining k and l if and only if ik > il , 1 ≤ k < l ≤ n. Thus the edges
correspond to inversions. A characterization of a permutation graph is that both it and
its complement with respect to the complete graph Kn are transitively orientable, that
is, both are comparability graphs (see [9, 10, 12]. We orient the permutation graph
G(σn) by orienting the edge joining k and l by k → l if ik > il .

With a Stirling permutation σn ∈ Ŝn , we can associate a 2-graph1 as follows.
The inversion 2-graph G2(σn) of σn is the 2-graph with vertices 1, 2, . . . , n whose
edges, aswith permutations, correspond to inversions. Themultiplicity of an (ordinary)
inversion in a Stirling permutation is 2 or 4. We assign the weight 1 to an inversion of
multiplicity 2 and weight 2 to an inversion of multiplicity 4; so the edges of G2(σn)

1 A 2-graph is a graph whose edges have weight 1 or 2.
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have weights 1 or 2. The 2-complement of a 2-graph G is taken with respect to the
complete 2-graph 2Kn , obtained by assigning weight 2 to each of the edges of the
complete graph Kn , and is denoted by 2Kn\G. The 2-complement of the 2-graph of a
Stirling permutation is also the 2-graph of a Stirling permutation, namely the Stirling
permutation obtained by reversing the order of its elements. This leads to the following
question.

Question 1 Can Stirling permutations be characterized in terms of their inversion 2-
graphs similar to the way that permutations are characterized in term of orientability
of their permutation graphs and complements? 	


In this regard consider the next example.

Example 10 Consider the 5!! = 5 · 3 · 1 = 15 Stirling permutations of {1, 2, 3} given
below:

112233
113322
112332
122133
122331

123321
133221
133122
221133
221331

223311
233211
331122
332211
331221

.

The inversion 2-graphs of those Stirling permutations which contain a path of length 2
(otherwise they do not enter into transitivity considerations) are specified in the table
below by giving the weights of edges (recall that these weights in the case of Stirling
permutations are the number of inversions divided by 2):

3 → 2 2 → 1 3 → 1 Stirling instance

2 2 2 332211
2 1 2 331221
2 1 1 133221
1 2 2 233211
1 1 1 123321
2 2 1 ∅
1 2 1 ∅
1 1 2 ∅

.

Instances of 2-permutations with all nonzero even weights in the 2-graph that are not
included above are (again the number of inversions divided by 2):

3 → 2 2 → 1 3 → 1 non-Stirling instance

2 2 1 ∅
1 2 1 322113
1 1 2 233112

Thus we see that 121 and 112 need to be ruled out since they occur for a non-Stirling
permutation but not for a Stirling permutation. Each of 212 and 111 occur for both
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a Stirling permutation and a non-Stirling permutation; thus we need to differentiate
Stirling and non-Stirling permutations in these cases among those 2-permutations with
all even weights. The pattern 221’ is possible for neither Stirling nor non-Stirling per-
mutations so this pattern can’t occur. (Note that in the general case of a 2-permutation,
we can have odd weights. For example, in 122313, 3 → 1 only occurs once as an
inversion.) 	


An orientation
→
G of a 2-graph G is obtained by assigning a direction to each of its

edges. Thus each edge of weight 1 or 2 of G becomes a (directed) edge of weight 1

or 2, respectively. (Note well that there are no edges of
→
G joining a pair of vertices in

opposite directions.) We define a 2-graph G to be transitively orientable provided it

has an orientation
→
G so that the following property holds

x
a→ y, y

b→ z implies x
c≥min{a,b}−→ z, (5)

where a, b, c denote the weights of 1 or 2 of the corresponding edges of
→
G . Thus as

noted above, the following are possible for a Stirling permutation:

(1) x
1→ y, y

1→ z, x
1→ z;

(2) x
1→ y, y

2→ z, x
2→ z;

(3) x
2→ y, y

1→ z, x
1→ z;

(4) x
2→ y, y

1→ z, x
2→ z;

(5) x
2→ y, y

2→ z, x
2→ z,

.

Of these, (1), and (4) are possible for a non-Stirling 2-permutation, namely, 321,123
(whose reverse is equal to itself) and 332,112, respectively, while (2), (3), and (5) are
not. Thus more then (5) is needed to characterize Stirling permutations. In addition
the following are not possible for a Stirling permutation as shown:

x
1→ y, y

1→ z, x
2→ z; 233112

x
1→ y, y

2→ z, x
1→ z; 322113

All satisfy the condition (5) for transitive orientability. Note that the triple x
2→ y, y

2→
z, x

1→ z which does not occur for any 2-permutation with all even weights does not
satisfy (5).
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