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Abstract
In this paper, we consider the graphs that have a unique set that achieves a domination
parameter and determine the maximum value of the associated parameter, both in
graphs in general and in graphs without end-vertices. For example, for a graph G of
order n without an end-vertex, we show an upper bound of n/3 if G has a unique
minimum dominating set, an upper bound of (n − 1)/2 if G has a unique minimum
total dominating set or a unique minimum 2-dominating set, and an upper bound of
n/2 if G has a unique paired dominating set.

Keywords graph · unique minimum dominating set · total domination

1 Introduction

Many graph parameters are defined to be the minimum or maximum size of a set with
some particular property. Examples include connectivity, independence number, and
domination number. For such a parameter ψ , we say a graph is ψ-unique if there is a
unique set that achieves the extremum.

In this paper, we focus on domination parameters. In this regard, a γ -unique graph
is one with a unique minimum dominating set, and these have been investigated by
Gunther et al. [9], Fischermann and Volkmann [7] and others. A γt -unique graph is
one with a unique minimum total dominating set, and these have been investigated
by Fischermann [6], Haynes and Henning [12] and others. And other domination
parameters have been discussed including paired [2], semipaired [13], independent
[8, 14] and multiple [15]. Most of the research so far has focussed on trees, especially
characterizations thereof, but there has been some work on general properties. Note
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that there are also several other notations for the concept including UTD [12] for total,
UPD [1] for paired, and UI [14] for independent.

In this paper, we investigate, for various domination parameters, the ψ-unique
graphs G with the maximum value of the parameter as a function of the order n. For
instance, we note that an isolate-free γ -unique graph G has γ (G) ≤ n/3 and this is
sharp even for graphs without end-vertices. While Fischermann [6] showed that an
isolate-free γt -unique graph has γt (G) ≤ 3n/5 in general, we show that if such a G
has no end-vertex then γt (G) ≤ (n − 1)/2, and this is sharp. We also show that for
paired domination that an isolate-free γpr -unique graph has γpr (G) ≤ n/2, and this
is sharp. At the same time, we provide results for connected, independent, semipaired
and 2-domination, including a new bound on the latter parameter in isolate-free graphs
with a constraint on the end-vertices.

2 Definitions and Some Constructions

A dominating set D of a graph G is a set of vertices such that every other vertex
in the graph has at least one neighbor in D. It is total dominating if the subgraph
G[D] induced by D has no isolates; independent dominating if G[D] has no edges;
paired dominating if G[D] has a perfect matching; connected dominating if G[D] is
connected; and k-dominating if every vertex outside D has at least k neighbors in the
set D. The associated parameters are denoted γ (G), γt (G), i(G), γpr (G), γc(G) and
γk(G) respectively. (Note that the latter notation is also sometimes used for distance-k
domination.) A semipaired dominating set D is such that there is a semi-matching
for the vertices of D: this is a partition of D into pairs such that each vertex is within
distance 2 of its partner (as measured in G). The associated parameter is denoted
γpr2(G). See for example [4, 10, 11] for more on these parameters.

Given a dominating set D and vertex v ∈ D, an external private neighbor of v

(with respect to D) is a vertex outside D whose unique neighbor in D is v; an internal
private neighbor of v is a vertex of D whose unique neighbor in D is v. A support
vertex is a vertex adjacent to at least one end-vertex; a strong support is adjacent to
at least two end-vertices.

A useful construction is the following graph, that is sometimes called a generalized
corona. Given a graph F with distinguished root vertex v, takemultiple disjoint copies
of F and then add edges arbitrarily between the copies of the root v to make the graph
connected. An example is given in Fig. 4.

For integers m1,m2 ≥ 3 and k ≥ 0, we define a dumbbell to be the graph of order
m1 + m2 + k obtained from the cycles Cm1 and Cm2 by joining a vertex of the first
cycle to a vertex of the second cycle and subdividing the resulting edge k times. Note
that the graph can also be defined by taking a path on m1 + m2 + k vertices and then
adding a suitable edge incident to each end-vertex. An example is given in Fig. 1.
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3 Ordinary Domination

Graphs with unique minimum dominating sets, especially a construction for trees,
were studied by Gunther et al. [9] and Fischermann and Volkmann [7] inter alia. The
former proved the following:

Lemma 1 [9] If D is the unique dominating set of isolate-free graph G, then every
vertex of D has at least two external private neighbors.

From this lemma the upper bound on the domination number is immediate:

Theorem 1 If isolate-free graph G on n vertices is γ -unique, then γ (G) ≤ n/3, and
this is sharp even for graphs without end-vertices.

Proof Let D be the unique minimum dominating set of G. By Lemma 1 there are at
least 2|D| vertices outside D. The upper bound follows.

Equality in the bound is achieved for example by a generalized corona of P3 with the
center as root. But also consider the dumbbell D(3r+1, 3s+1, 1) of order 3(r+s+1).
Since this graph has a Hamiltonian path, the domination number is at most r + s + 1.
We need to argue that the parameter is uniquely attained. Say the subdivision vertex
is x . Suppose one takes the neighbor of x in the C3r+1 in a dominating set. One still
needs r more vertices from that cycle, and s + 1 vertices to dominate the other cycle,
for a total of at least r + s + 2 vertices. It follows that vertex x is in every γ -set. And
then it can easily be observed that the minimum dominating set is unique within each
cycle. ��

Note that one can generalize this construction by taking multiple cycles of length
congruent to 1 mod 3 and identifying them at a single vertex, which is then used as
the attacher. Thus there are example graphs with arbitrarily large maximum degree.

4 Total Domination

Graphs with unique minimum total dominating sets, in particular constructions for
trees, were studied by Fischermann [6] and Haynes and Henning [12] inter alia. For
general graphs, Fischermann showed:

Lemma 2 [6] If D is the unique minimum total dominating set of isolate-free graph G,
then every vertex of D is either a support vertex or has at least two private neighbors
(or both).

Using this, Fischermann [6] deduced the bound on the total domination number:

Theorem 2 [6] If isolate-free graph G on n ≥ 3 vertices is γt -unique, then γt (G) ≤
3n/5, and this is sharp.

Equality is achieved inter alia by a generalized corona of P5 with the center as root.
(See [6].) In contrast, we show that the upper bound for graphs without end-vertices
is smaller:
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Fig. 1 A γt -unique graph where
n = 9 and γt = 4

Theorem 3 If graph G on n vertices with minimum degree δ(G) ≥ 2 is γt -unique,
then γt (G) ≤ (n − 1)/2, and this is sharp.

Proof Let D be the unique minimum total dominating set of G. Consider a vertex v

in D that does not have an external private neighbor. Then by Lemma 2, vertex v has
at least two internal private neighbors, say w and w′. In particular, the vertex v is not
a private neighbor of any vertex. Further, since each has no neighbor in D other than
v, both w and w′ have at least two external private neighbors.

Form disjoint subsets of V (G) as follows. First, for each vertex v of D that has no
external private neighbor, define subset Sv to contain v, its internal private neighbors,
and their (external) private neighbors. (So |D ∩ Sv| ≥ 3 and |Sv| ≥ 7.) Second, for
any vertex w of D not yet taken, define subset Tw to contain w and its external private
neighbors. (So |D ∩ Tw| = 1 and |Tw| ≥ 2.) The subsets so defined are disjoint and
collectively contain D. It follows that |D| ≤ n/2.

Suppose that |D| = n/2. By the above discussion, it is thus necessary that every
vertex w ∈ D has an external private neighbor and that neighbor is unique. Therefore
by Lemma 2, the vertex w also has an internal private neighbor, say w′. By the same
logic, vertex w is an internal private neighbor of w′. This implies that the subgraph
induced by the set D forms a collection of disjoint K2’s and that every vertex outside
D has a unique neighbor in D.

But, then it follows that the complement of D is also a total dominating set of G.
For, every vertex in D has an external neighbor, meaning a vertex in V (G) − D; and
every vertex outside D has a neighbor outside D because of the minimum-degree
condition. This is a contradiction. Hence |D| < n/2, as required.

A graph achieving equality in the bound of the result is the dumbbell D(4r+1, 4s+
3, 1) of order 4(r +s+1)+1. (See Fig. 1 for the case r = 1 and s = 0.) We claim that
the total domination number is 2(r + s) + 2. It is achieved by starting with x and its
neighbor in the second cycle: then 2r vertices totally dominate the remaining vertices
of the first cycle and 2s vertices totally dominate the remaining vertices of the second
cycle. If the total dominating set does not include the vertex x , then one needs at least
2r + 1 vertices from the first cycle and at least 2s + 2 vertices from the second, which
is too many. On the other hand, for a total dominating set we need a neighbor of x .
If one takes the neighbor in first cycle, then it can be checked that one still needs 2r
more vertices from that cycle, and more than 2s vertices from the second cycle, which
is too many. The claim follows. ��
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5 Paired and Semipaired Domination

We consider paired domination next. Given a paired dominating set D with matching
M , we refer to the partner of vertex u ∈ D as that vertex w ∈ D such that edge uw is
in M . We begin with the following property. This property was observed for trees by
Chen et al. [2]. Indeed, they proved for trees (and more generally graphs where every
block is complete) that the converse is true as well, though it does not hold in general.

Lemma 3 If D is the unique minimum paired dominating set of connected graph G
with order at least 3, then every vertex of D has an external private neighbor.

Proof Suppose somevertex v in D does not have an external private neighbor.Consider
its partner w in D. If w has a neighbor x outside D, then one can replace v by x and
still have a paired dominating set. Thus every neighbor of w is in D. But then if v has
a neighbor y outside D, one can similarly replace w by y. Thus every neighbor of v

is in D. If neither v nor w is an end-vertex, one can delete both v and w and still have
a paired dominating set. So say v is an end-vertex.

Let x be one of the other neighbors of w and let y be its partner. If vertex y has a
neighbor z outside D, then one can replace v by z and still have a paired dominating
set. On the other hand, if vertex y has no neighbor outside D, then one can delete both
v and y and still have a paired dominating set. In all cases a contradiction is reached.��

As a consequence we obtain immediately the following theorem. For γpr -trees the
result is readily deduced from the characterization given by Chellali and Haynes [1]
(and re-discovered in [2]).

Theorem 4 If isolate-free graph G on n ≥ 3 vertices is γpr -unique, then γpr (G) ≤
n/2, and this is sharp even for graphs without end-vertices.

Proof An example of graphs achieving the upper bound is the generalized corona of
P4 with an end-vertex as the root. But also consider the dumbbell D(4r +1, 4s+1, 2)
of order 4(r +s+1). Say the subdivision vertices are x1 and x2, with x1 the one joined
to C4r+1. Since the graph has a Hamiltonian path, the paired domination number is at
most 2(r + s+1). Suppose one builds a paired dominating set starting with one of the
vertices of degree 3, say the one in C4r+1. Then one still needs 2r vertices more from
that cycle, and 2s + 2 vertices from what remains, for a total of at least 2(r + s) + 3
vertices. So neither degree-3 vertex is in a minimum paired dominating set. Without
the degree-3 vertices, the remaining graph is a collection of paths of length 2 or a
multiple of 4, and that has a unique minimum paired dominating set. ��

We consider semipaired domination next. Some of the results are similar to those
for paired domination. In Lemma 1 of [13] the following result (or rather a stronger
result) is proven for trees. We show that it holds for graphs in general. The proof is
(very) similar to that of Lemma 3.

Lemma 4 If D is the unique semipaired dominating set of connected graph G of order
at least 3, then every vertex of D has an external private neighbor.
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Proof Suppose somevertex v in D does not have an external private neighbor.Consider
its partner w in the semi-matching of D.

If v has no neighbor in D, then let x be a common neighbor of v and w (exists
since they are distance two apart). One can replace v by x and still have a semipaired
dominating set. So assume vertex v has a neighbor in D. Ifw has a neighbor x outside
D, then one can replace v by x and still have a semipaired dominating set. So every
neighbor ofw is in D. But then if v has a neighbor y outside D, one can replace replace
w by y. So every neighbor of v is in D. If both v and w have a neighbor in D other
than each other, then one can just delete them and still have a semipaired dominating
set. So it follows that v and w are adjacent, and one is an end-vertex, say v.

Let x be one of the other neighbors of w, and let y be its partner in D. If vertex y
has a neighbor z outside D, then one can replace v by z and still have a semipaired
dominating set. On the other hand, if vertex y has no neighbor outside D, then one
can delete both v and y and still have a semipaired dominating set. In all cases a
contradiction is reached. ��

In Lemma 5 of [13] the following result is proved for trees. But by applying that
result to a spanning tree of the graph, one immediately obtains the result for general
graphs:

Lemma 5 If connected graph G has even order, then there exists a perfect semi-
matching M of G with at least one pair of vertices that are adjacent.

Consequently we obtain the upper bound for general graphs, extending the result
of [13] for trees:

Theorem 5 If connected graph G on n ≥ 3 vertices is γpr2-unique, then γpr2(G) ≤
(n − 1)/2, and this is sharp.

Proof It is immediate from Lemma 4 that the semipaired domination number is thus at
most n/2. Suppose that there is a semipaired dominating set D of half the order with
semi-matching M . Then by that lemma, every vertex not in D is the private neighbor
of some vertex of D; in particular every vertex in D has exactly one private neighbor.
From this it follows that, for vertices at distance 2 in M , every common neighbor is
in D. In particular, every component in the graph induced by D has even order. By
Lemma 5, this means that the semi-matching M can be chosen so that some vertex
v ∈ D is adjacent to its partner in D. But then one can take D and replace v by its
private neighbor and so get another semipaired dominating set of G. A contradiction
of the uniqueness. ��

An example of equality is obtained from a star with an even number of edges by
subdividing every edge once. (For the comprehensive list of trees, see [13].)However, it
is unclear what themaximumvalue of the parameter is for graphswithout end-vertices.
The best examples we know have semipaired domination number asymptotically 2

5
their order. Such an example is obtained for instance by taking a cycle with 5k + 1
vertices and adding one chord joining two vertices at distance 3. The value of the
parameter is 2k. See Fig. 2 for the case that k = 3.
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Fig. 2 A γpr2-unique graph
where n = 16 and γpr2 = 6

6 2-Domination

In this section we consider 2-domination. Consider first the restriction to graphs with-
out end-vertices. For such a graph G, a general result of Cockayne et al. [3] shows
that γ2(G) ≤ 2n/3, and this is best possible because of the generalized corona of K3.
We show that the upper bound can be improved if the graph is also γ2-unique. We will
need the following observation:

Lemma 6 If G is a graph with δ(G) ≥ 2 and D is the unique minimum 2-dominating
set of G, then V (G) − D is a 2-dominating set of G.

Proof Suppose V (G)− D is not a 2-dominating set of G. Then there is some vertex v

of D that has at most one neighbor in V (G) − D. By the minimum-degree condition,
vertex v has at least one neighbor in D. If v has no neighbor in V (G) − D, then
D − {v} is a 2-dominating set of G, a contradiction. If v has a unique neighbor w in
V (G) − D, then (D − {v}) ∪ {w} is a 2-dominating set of G of the same size, again a
contradiction. ��

As a consequence we obtain:

Theorem 6 If G is a graph of order n with δ(G) ≥ 2 that is γ2-unique, then γ2(G) ≤
(n − 1)/2.

Proof Suppose that γ2(G) ≥ n/2 and D is the unique minimum 2-dominating set.
Then V (G) − D is a 2-dominating set that contradicts either the minimality of D or
the uniqueness of D.

We construct a graph that achieves the upper bound as follows. Let n ≥ 5 be odd,
and take an (n − 1)-cycle and duplicate one vertex (so that the two vertices are not
adjacent but have the same neighborhood). See Fig. 3 for L11. It is easily checked
that the resultant graph Ln has a unique minimum 2-dominating set consisting of the
neighbors of the twins and every alternate vertex on the cycle. Thus the graph Ln is
γ2-unique with γ2(Ln) = (n − 1)/2. ��

6.1 Graphs with No Strong Support

If end-vertices are allowed, then the 2-domination number of a graph of order n can
be as high as n − 1 achieved by the star; and which is γ2-unique. However, things are
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Fig. 3 A γ2-unique graph where
n = 11 and γ2 = 5

more interesting if one forbids a strong support; that is, no vertex is adjacent to more
than one end-vertex. An immediate question is the upper bound for the parameter for
such graphs. This we answer next.

Theorem 7 If G is a connected graph of order n ≥ 3 and no vertex is adjacent to more
than one end-vertex, then γ2(G) ≤ 3n/4 and this is sharp.

Proof The proof is by induction.

Claim We may assume that:

(i) there is no edge between vertices of degree 3 or more; and
(ii) there is no edge between a vertex of degree 1 and a vertex of degree 2.

Proof First, if there is an edge between two vertices of degree 3 or more, one can just
delete it. (This cannot create a component of order 2.) Thus we may assume that the
graph has the first property.

Now, suppose there exists some end-vertex u whose neighbor v has degree 2. Letw
be the other neighbor of v. If w has degree at least 3, then proceed as follows. Add the
edge between u and w. Any 2-dominating set D of the resultant graph must contain
at least two vertices from the set {u, v, w}. Without loss of generality we may assume
this pair is u and w; thus the set D is a 2-dominating set of the original graph. Further,
the resultant graph still has the first property.

So assume that vertex w has degree 2. Say x is its other neighbor. If x has degree 2,
then either we are in P5, when the theorem is clear, or x does not have an end-vertex
neighbor. In the latter case, the graph G ′ = G − {u, v} satisfies the hypothesis of the
theorem, and so we can induct to yield a 2-dominating set D′ of G ′ of size at most
3
4 (n − 2). Since vertex w is in every 2-dominating set of G ′, we can add just vertex
u to D′ and obtain a 2-dominating set of G of the desired size.

Finally, if vertex x has degree 3 or more, then let G ′′ = G − {u, v, w}. The graph
G ′′ satisfies the hypothesis of the theorem, and so by the induction hypothesis has a
2-dominating set D′′ of size at most 3

4 (n − 3). And D′′ ∪ {u, w} is a 2-dominating set
of G of the desired size. ��

If the graph G is 2-regular, then the bound is trivial (and known). So assume G
is not a cycle. Let X denote the vertices of degree at least 3 and define a “tract” as
a maximal connected subgraph all of whose vertices have degree 2 in G. Note that a
tract forms a path, and both ends of the path have a neighbor in X (by the claim).
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Fig. 4 A graph where γ2 is 3
4 the order

Claim We may assume that the number of tracts is at least |X |.
Proof Suppose some vertex v of X is incident with (at most) one tract. Then it must
be that v has an end-vertex neighbor and the graph contains only one tract, and both
ends thereof are adjacent to v. That is, the graph G is a cycle with one end-vertex
added adjacent to one vertex. The bound of the theorem is easily checked for such a
graph. Thus we may assume that each vertex of X is incident with at least two tracts,
and the bound follows. ��

Construct set D as follows. Start with X and all end-vertices. Then for each tract,
take every alternate vertex, starting with the second. The set D is a 2-dominating set
of G: one need only check that the degree-2 vertices are 2-dominated.

Now, for accountancy purposes, arbitrarily assign tracts to vertices of X such that
each vertex v ∈ X is assigned at least one tract. (This is possible by the above claim.)
Then let Sv be the set consisting of v, its end-vertex neighbor if it exists, and the one or
more tracts assigned to v. The sets Sv form a partition of V (G). Let s denote the number
of vertices of D in the tract(s) assigned to v. Then |D∩ Sv|/|Sv| ≤ (s+2)/(2s+2) ≤
3/4 if s ≥ 1, and |D ∩ Sv|/|Sv| ≤ 2/3 if s = 0. The bound of the theorem follows.

Equality in the bound is achieved by the corona of a corona, or equivalently the
generalized corona using P4 rooted at one of the inner vertices. See Fig. 4 for an
illustration. ��

We consider next the restriction to graphs with unique minimum 2-dominating sets.
We believe the upper bound is two-thirds the order. We can prove it for trees.

Theorem 8 If T is a γ2-unique tree on n ≥ 3 vertices with no vertex adjacent to more
than one end-vertex, then γ2(T ) ≤ 2n/3 and this is sharp.

Proof The proof is by induction on the order. Let D be the minimum 2-dominating
set of T . Let X be the set of vertices of degree 3 or more.

Claim We may assume that the vertices of X form an independent set.

Proof Assume that vertices x1, x2 ∈ X are adjacent. The removal of the edge x1x2
yields two trees, say T1 and T2, that have no strong support. So it suffices to show that
both T1 and T2 are γ2-unique.

If both x1 and x2 are in D, then clearly removing edge x1x2 does not affect the
domination by D, and so D restricted to each subtree is a 2-dominating set of that
subtree. If either subtree has a smaller 2-dominating set, it contradicts the minimality
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of D; and if either subtree has another 2-dominating set of the same size, it contradicts
the uniqueness of D. The case that both x1 and x2 are out of D is identical.

So assume that every edge between vertices of X has one end in D and one out
of D. Say x1 ∈ D and x2 /∈ D, and let y be a neighbor of x2. Suppose y is not in
D. Then y has at least two neighbors in D and hence y is in X ; but that means that
edge x2y contradicts our assumption. It follows that every neighbor of x2 is in D.
In particular, the set D restricted to T2 is a 2-dominating set of T2. The conclusion
follows as before. ��

Now, consider a diametrical path P of T , say abcd . . . (Note that P3 is precluded by
the hypothesis.) By the maximality of P and the lack of strong supports, it follows that
vertex b has degree 2. Furthermore, it holds that b /∈ D, since otherwise (D−b)∪{c}
is another 2-dominating set. Thus in particular c ∈ D.

Case 1: Vertex c has degree at least 3.
Then by the claim, every neighbor of c has degree at most 2. Let B denote the degree-
2 neighbors of vertex c other than d. By the maximality of the path P , every vertex
b′ ∈ B has an end-vertex neighbor. If every vertex of T is within distance 2 of c, then
T is the graph obtained from a star centered at c by dividing all or all but one edges;
and such a graph has γ2(T ) ≤ 
n/2 + 1�. Since P4 is not γ2-unique, this quantity is
at most 2n/3, as required.

So assume that there is some vertex at distance 3 or more from c. Let T ′ be the tree
obtained from T by deleting the end-vertex neighbor of c if it exists, all of B and all
vertices thus isolated. We claim that D ∩ V (T ′) is the unique minimum 2-dominating
set of T ′. Note that c is an end-vertex in T ′ and thus is in every 2-dominating set of T ′.
Every 2-dominating set of T ′ can be extended to a 2-dominating set of T by adding
the end-vertices of V (T )−V (T ′). Conversely, every minimum 2-dominating set of T
contains these end-vertices and a minimum 2-dominating set of T ′. The claim follows.

Sincewe are assuming there is some vertex at distance 3 from c, andwe knowvertex
d has degree 2, it follows that the tree T ′ satisfies the hypothesis of the theorem. So by
the induction hypothesis, it holds that γ2(T ′) ≤ 2n′/3 where n′ denotes the order of
T ′. Let ε = 1 if vertex c has an end-vertex neighbor in T and 0 otherwise. The number
of vertices in D − V (T ′) is |B| + ε while the number in T − V (T ′) is 2|B| + ε. The
ratio (|B| + ε)/(2|B| + ε) is at most 2/3 (with equality only if ε = |B| = 1). The
bound follows.

Case 2: Vertex c has degree 2.
If vertex d does not have an end-vertex neighbor, then we can define T ′ as above
(which in this case means just removing vertices a and b), and induct as before. So
assume vertex d has an end-vertex neighbor. If d has degree 2, then T is P5, where
the bound holds. Otherwise d has degree at least 3. Then either d ∈ D, or by the
above claim all its neighbors have degree 2 or less and so are in D. In either case, we
can define the tree T ′′ = T − {a, b, c} and observe that D restricted to V (T ′′) is a
2-dominating set thereof. And hence apply the induction hypothesis and add {a, c}.
The bound follows.

Equality in the bound is obtained by the corona of the extremal γ -unique graphs.
But there are more extremal graphs. For example, for m ≥ 2 let Hm be the cater-
pillar that is obtained from the spine P2m+1 by adding an end-vertex at vertices
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Fig. 5 The γ2-unique tree H5 where γ2 is 2
3 the order

Fig. 6 An i-unique graph with
maximum value of i

Fig. 7 A γ -unique graph where γ is 2
7 the order

1, 2, 4, 6, . . . , 2m, 2m + 1. The graph H5 is shown in Fig. 5. The gaph Hm is γ2-
unique. ��

7 Independent and Connected Domination

In contrast to the parameters discussed above, constraining the extremal set to be
unique does not significantly affect the upper bound when it comes to independent
and connected domination.

Favaron determined the maximum value of the independent domination number:

Theorem 9 [5] If G is an isolate-free graph on n vertices, then i(G) ≤ n + 2 − 2
√
n

and this is sharp.

The maximum value is achieved by the generalized corona constructed by taking
r copies of K1,r−1 and adding all edges between the centers. If one now adds a single
end-vertex and joins it to a vertex of the clique, then the resultant graph is i-unique,
and has independence number 
n+2−2

√
n�. See Fig. 6. A similar idea is possible if

there is a minimum-degree condition. The extremal graphs for the parameter are split
graphs where, in particular, each vertex in the independent set I has the same degree
δ and every vertex of the clique has the same degree. Again if we clone one vertex in
I , we obtain an i-unique graph.
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It is trivial and well-known that the path has maximum connected domination
number (namely n − 2) and it is γc-unique. If one forbid leaves, then consider the
barbell D(3, 3, n − 6). This graph is γc-unique, and the value n − 4 is best possible.

8 FutureWork

Apart from resolving the questions about semipaired and 2-domination discussed
above, it would be interesting to determine what happens if the minimum degree is
required to be at least 3. For example, for ordinary domination the best example we
know is the generalized corona formed using the graph that is obtained from K3,3 by
subdividing one edge and setting that vertex to be the root. See Fig. 7.
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