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Abstract
We study finite groups G having a subgroup H and D ⊂ G\H such that (i) the
multiset {xy−1 : x, y ∈ D} has every element that is not in H occur the same number
of times (such a D is called a relative difference set); (ii) G = D ∪ D(−1) ∪ H ; (iii)
D ∩ D(−1) = ∅. We show that |H | = 2, that H is central and that G is a group
with a single involution. We also show that G cannot be abelian. We give infinitely
many examples of such groups, including certain dicyclic groups, by using results of
Schmidt and Ito.

Keywords Difference set · Subgroup · Hadamard difference set · Schur ring ·
Dicyclic group
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1 Introduction

Here G will always be a finite group. We identify X ⊆ G with the element
∑

x∈X x ∈
QG, and let X (−1) = {x−1 : x ∈ X}. We write Cn for the cyclic group of order n. Let
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H ≤ G and h = |H |. Then a (v, k, λ)-relative difference set (relative to H ) is a subset
D ⊂ G\H , |D| = k, v = |G|, such that DD(−1) = λ(G − H) + k, so that g ∈ G\H
occurs λ times in the multiset {xy−1 : x, y ∈ D}.

We now further assume

(1) D ∩ D(−1) = ∅;
(2) G = D ∪ D(−1) ∪ H (disjoint union).

A group having a difference set of the above type will be called a (v, k, λ)-skew
relative Hadamard difference set group (with difference set D and subgroup H ); or
a (v, k, λ)-SRHDS group. Recall the following related concept: a group G is a skew
Hadamard difference set if it has a difference set D where G = D ∪ D(−1) ∪ {1} and
D ∩ D(−1) = ∅. Such groups have been studied in [1–8].

In this paper we find infinitely many examples of such SRHDS groups. We also
find groups that cannot be SRHDS groups, but which satisfy certain properties of a
SRHDS group, as given in:

Theorem 1.1 For a (v, k, λ) SRHDS group G with difference set D and subgroup H
we have:

(i) |H | = 2;
(ii) H 	 G;
(iii) G is a group having a single involution;
(iv) v ≡ 0mod 8;
(v) G is not abelian.
(vi) A Sylow 2-subgroup is a generalized quaternion group.

For part (vi), suppose that G is a finite groupwith a unique involution. Then a Sylow
2-subgroup of G also has a unique involution. Now 2-groups with unique involution
were determined by Burnside (see [9, Theorems 6.11, 6.12] and [10, 11]); they are
cyclic or generalized quaternion groups. Corollary4.5 shows they cannot be cyclic.

Groups with a single involution are studied in [12–14]. Dicyclic groups Dicv are
examples of such groups and we show that each Dic8p, 1 ≤ p < 9 is an SRHDS
group. However, we show that Dic72 has no SRHDS (Proposition 8.1).

We now establish a connection between SRHDS groups and Hadamard groups.
Recall that a Hadamard group is a group G containing H ≤ Z(G) of order 2 such
that there is an H -transversal D, |D| = v/2, that is a relative difference set relative
to H (so that DD(−1) = λ(G − H) + |D| and H D = G).

We show that if D ⊂ G is a SRHDS, then G is also a Hadamard group (where
E = D + 1 is the relative difference set); see Proposition2.5. Thus it is natural to try
to obtain results for SRHDS groups that are similar to the results of Schmidt and Ito
[15, 16] from the Hadamard group situation. For example Schmidt and Ito show that
if 4p − 1 or 2p − 1 is a prime power, then the groups Dic8p or Dic4p (respectively)
are Hadamard groups. For dicyclic SRHDS groups we show:

Theorem 1.2 If p ∈ N and 4p − 1 is a prime power, then Dic8p is a SRHDS group.

There is no analogous result when 2p − 1 is prime. Now Ito [16] determines a
‘doubling process’ that takes a Hadamard difference set for Dicv and produces a
Hadamard difference set for Dic2v. For us this doubling process gives:
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Theorem 1.3 If p ∈ N and 4p − 1 is a prime power, then Dic16p is a SRHDS group.

We note that this doubling process does not work in general in the context of a
SRHDS, however in our next paper we will show that it does work for a SRHDS
under an additional hypothesis that we call doubly symmetric that is satisfied in the
situation of Theorem1.2, so that in this case we obtain an SRHDS in Dic16p. This will
allow us to prove, in the next paper, among other things:

Theorem 1.4 Let G = Dic8·2u be a generalized quaternion group for some u ∈ Z≥0.
Then G contains a doubly symmetric SRHDS if and only if 2u+1 − 1 is either prime
or 1.

Lastly, the following is a consequence of Proposition8.2.

Theorem 1.5 Let G = C p × Dic8n with p > 2 prime and n odd. Then G is not a
SRHDS group.

2 |H| = 2 and Normality of H

Recall that for p ≥ 2 the dicyclic group of order 4p is

Dic4p = 〈x, y|x2p = y2, y4 = 1, x y = x−1〉.

A generalized quaternion group, Q2a , is the dicyclic group Dic2a , a ≥ 3.

Proposition 2.1 Let G be a SRHDS group with subgroup H. Then G has a single
involution t, and H = 〈t〉. In particular h = 2, H ≤ Z(G) and H 	 G.

Proof Let D ⊂ G be a SRHDS. Now D has no involutions since D ∩ D(−1) = ∅.
Since G − (D + D(−1)) = H all involutions are contained in H .

If di ∈ D, hi ∈ H , i = 1, 2, with h1d1 = h2d2 ∈ Hd1 ∩ Hd2, then h−1
2 h1 =

d2d−1
1 ∈ H , so that h−1

2 h1 = d2d−1
1 = 1 (since DD(−1) = λ(G − H) + k implies

that the only element of H of the form d2d−1
1 is 1). Thus d1 = d2 and h1 = h2.

Thus the cosets Hd, d ∈ D, are disjoint and so |∪d∈D Hd| = |H |·|D| = hk. Since
Hd ⊂ G−H for d ∈ D, we see that hk = |∪d∈D Hd| ≤ |G\H | = |D+D(−1)| = 2k.
Thus h ≤ 2 and so h = 2 as h > 1. The rest of the result follows. ��

This proves (i), (ii) and (iii) of Theorem1.1. In what follows we will let H = 〈t〉,
where t ∈ Z(G) has order 2. Then:

G = D + D(−1) + H , D · D(−1) = λ(G − H) + k · 1. (2.1)

These equations give: v = 2k + 2, k2 = k + λ(v − 2), and solving gives (i) of

Lemma 2.2 (i) v = 2k + 2, λ = (k − 1)/2 = (v − 4)/4 and 4|v.
(ii) DH = H D = D(−1)H = H D(−1) = G − H .

(iii) G, D, D(−1), H all commute.
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Proof From D ⊂ G − H we have DH ∩ H = ∅, and DH ⊂ G − H ; but |G − H | =
2k = |DH |, so that

DH = H D = G − H = (G − H)(−1) = D(−1) H = H D(−1),

giving (ii).
Since D(−1) = G − D − H and H ≤ Z(G) it now follows that D and D(−1)

commute. This shows that G, D, D(−1), H all commute. ��

Lemma 2.3 Let G be a SRHDS group with difference set D and subgroup H = 〈t〉.
Then D(−1) = t D.

Proof We have D + Dt = (1 + t)D = H D = G − H = D + D(−1). ��

We now define Schur rings [17–20]. A subringS of ZG is a Schur ring (or S-ring)
if there is a partition K = {Ci }r

i=1 of G such that:

1. {1G} ∈ K;
2. for each C ∈ K, C (−1) ∈ K;
3. Ci · C j = ∑

k λi, j,kCk ; for all i, j ≤ r .

The Ci are called the principal sets of S. Then we have:

Lemma 2.4 {1}, {t}, D, D(−1) are the principal sets of a commutative Schur ring.

Proof Now {1}, {t}, D, D(−1) partition G and D(−1) = t D, t D(−1) = D, t2 =
1, D(−1) D = DD(−1) = λ(G − H) + k = λ(D + D(−1)) + k, D2 = t DD(−1) =
t(λ(D + D(−1)) + k). This concludes the proof. ��

Proposition 2.5 If D ⊂ G is a SRHDS, then G is a Hadamard group.

Proof Now DD(−1) = λ(G − H) + k. Let E = D + 1, so that E E (−1) = DD(−1) +
D + D(−1) + 1 = λ(G − H)+ k + (G − H) = (λ+ 1)(G − H)+ k + 1, as required.

��

3 Intersection Numbers

Let N 	 G and let g1, g2, . . . , gr be coset representatives for G/N . Then for each
1 ≤ i ≤ r there is 1 ≤ i ′ ≤ r such that gi gi ′ ∈ N i.e. Ngi · Ngi ′ = N in G/N . If G is
a SRHDS group with difference set D, then the numbers ni = |D ∩ Ngi | are called
the intersection numbers. Standard techniques give (see Section 7.1 of [21]):

Lemma 3.1 Let D ⊂ G be a SRHDS with subgroup H = 〈t〉, t2 = 1. Let N 	 G have
order s and index r in G. Let g1 = 1, g2, . . . , gr be coset representatives for G/N
and let ni = |D ∩ Ngi |, 1 ≤ i ≤ r . Then
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r∑

i=1

ni = k,

r∑

i=1

n2
i = λ|N\H | + k,

r∑

i=1

ni ni ′ = λ|N | + (λ + 1) · |H ∩ N | − k.

Lemma 3.2 Let N 	 G where D ⊂ G is a SRHDS with subgroup H and H ∩ N = {1}.
Let Ng3, · · · , Ngr be the cosets that don’t meet H, and let ni = |D ∩ Ngi |. Suppose
that we have distinct i, i ′ > 2 where gi gi ′ ∈ N. Then ni + ni ′ = |N |.
Proof We have ni = |D ∩ Ngi | = |D(−1) ∩ Ng−1

i | = |D(−1) ∩ Ngi ′ |. If i ≥ 3, then
Ngi ′ ⊂ G\H = D + D(−1), so that

|N | = |(D + D(−1)) ∩ Ngi ′ | = |D ∩ Ngi ′ | + |D(−1) ∩ Ngi ′ | = ni ′ + ni .

��
The next result concerns intersection numbers for subgroups that are not necessarily

normal:

Proposition 3.3 Let G be a SRHDS group with difference set D and subgroup H. Let
K ≤ G be any subgroup where t ∈ K . Let b = |G : K | and let g0 = 1, g1, . . . , gb−1
be coset representatives for K ≤ G. Let ki = |D ∩ K gi |, 0 ≤ i < b. Then k0 =
|K |/2 − 1 and ki = |K |/2, 0 < i < b.

Let Di = D ∩ K gi , i = 0, . . . , b − 1. Then
∑b−1

i=0 Di D(−1)
i = λ(K − H) + k.

Proof We have D(−1) = t D. Let Di = D ∩ K gi ; then t Di = t(D ∩ K gi ) =
(t D) ∩ t K gi = D(−1) ∩ K gi , so that D ∩ t D = ∅ and i > 0 gives

Di + t Di = (D ∩ K gi ) + (D(−1) ∩ K gi ) = (D + D(−1)) ∩ K gi

= (G − H) ∩ K gi = G ∩ K gi = K gi .

Taking cardinalities, again using D ∩ t D = ∅, gives 2ki = |K |, for i > 0. Then∑b−1
i=0 ki = k now gives

k0 + (b − 1)|K |/2 = k = v/2 − 1;

but v = b · |K |, from which we obtain k0 = |K |/2 − 1.
Now from DD(−1) = λ(G− H)+k and D = ∑b−1

i=0 Di gi we get
∑b−1

i=0 Di D(−1)
i +

· · · = λ(G − H) + k, so that
∑b−1

i=0 Di D(−1)
i ⊆ λ(K − H) + k. The last part will

follow if we can show that both sides of this equation have the same size.
From b = v/|K | and the first part, the size of the left hand side is

b−1∑

i=0

|Di |2 = (|K |/2 − 1)2 + (b − 1)|K |2/4 = 2p|K | − |K | + 1
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and (since H ⊂ K ) the number of elements of the right hand side is λ(|K |− 2)+ k =
2p|K | − |K | + 1, and we are done. ��

4 Direct Products andG is not Abelian

Let ζn = exp 2π i/n, n ∈ N. We first show

Theorem 4.1 Suppose that N � G, G/N ∼= C2a , a ≥ 2, and t /∈ N. Assume that
k = |G|/2 − 1 is not a perfect square. Then G is not a SRHDS group.

Proof Note that a ≥ 2 means that k is odd. Now assume that G is a SRHDS group and
that G/N = 〈r N 〉 ∼= C2a , r ∈ G. For g ∈ G we have g = r i b, 0 ≤ i < 2a, b ∈ N .
Then there is a linear character χ ′ : G/N → C×, χ ′(r N ) = ζ2a that induces χ :
G → C×, χ(r i b) = χ ′(r i N ). Here N = ker χ . Then we can write

D =
2a−1∑

j=0

r j N j , where N j ⊆ N .

Since t /∈ N wehaveχ(t) = −1 and soχ(H) = 0.Wecertainly haveχ(G) = 0. From
G = D+D(−1)+H we getχ(D)+χ(D(−1)) = 0, and from DD(−1) = λ(G−H)+k
we get χ(D)χ(D(−1)) = k. These give χ(D)2 = −k, and so χ(D) = ±√−k. But

±i
√

k = χ(D) = χ

⎛

⎝
2a−1∑

j=0

r j N j

⎞

⎠ =
2a−1∑

j=0

(ζ2a ) j |N j |, (4.1)

which gives
√

k ∈ Q(i, ζ2a ) = Q(ζ2a ), since a ≥ 2. But theGalois group ofQ(ζ2a )/Q

is C2 × C2a−2 . These groups have at most three subgroups of index 2. The Galois
correspondence tells us that Q(ζ2a ) contains at most three quadratic extensions, the
only possibilities being Q(i)/Q, Q(

√
2)/Q and Q(

√−2)/Q. But the hypothesis says
that k is not a perfect integer square, so that

√
k /∈ Z. Now k > 1 is also odd, and so√

k /∈ Q(i), Q(
√
2), Q(

√−2). This contradiction gives Theorem4.1. ��
Corollary 4.2 Suppose that N � G, G/N ∼= C2a , a ≥ 3, and t /∈ N. Then G is not a
SRHDS group.

Proof Since 2a ≥ 8 we see that k = (|G| − 2)/2 satisfies k ≡ 3mod 4, and so the
result follows from Theorem4.1. ��
Corollary 4.3 If G is abelian with |G| ≡ 0mod 8, then G is not a SRHDS group.

Proof Let G be an abelian SRHDS group, and write G = A × N where A is a Sylow
2-subgroup, and N is a subgroup of odd order. Since G has a single involution, we see
that A is cyclic, say of order 2a . The results now follow from Corollary 4.2. ��
Corollary 4.4 If G is a SRHDS group, then v = |G| ≡ 0mod 8.
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Proof Assume that G is a SRHDS group with subgroup H = 〈t〉 and difference set
D. Then we know that 4|v by Lemma2.2, so suppose that |G| = 4n where n is odd.
Then a Sylow 2-subgroup of G must be C4 = 〈r〉 and t = r2. Burnside’s theorem [9,
Theorem 5.13] shows that 〈r〉 has a complement N 	 G, |N | = n, G = N � 〈r〉. So
we can write D = D0 + D1r + D2r2 + D3r3, Di ⊂ N . Now D + D(−1) = G − H =
N + Nr + Nr2 + Nr3 − H then gives

D0 + D(−1)
0 = N − 1, D1 + (

D(−1)
3

)r3 = N , D2 + (
D(−1)
2

)r2 = N − 1

D3 + (
D(−1)
1

)r = N .

Next, D(−1) = t D gives

D(−1)
0 = t D0,

(
D(−1)
1

)r = t D3,
(
D(−1)
2

)r2 = t D2,
(
D(−1)
3

)r3 = t D1.

Using D1 + (
D(−1)
3

)r3 = N and
(
D(−1)
3

)r3 = t D1 we get D1(1 + t) = N . However
D1(1+ t) has an even number of elements (counting multiplicities), while |N | is odd.
This contradiction gives the result. ��

Corollaries4.3 and 4.4 now prove Theorem 1.1 (iv) and (v).

Corollary 4.5 If G is a SRHDS group, then a Sylow 2-subgroup of G is not cyclic.

Proof Assume G is a SRHDS group with cyclic Sylow 2-subgroup 〈r〉. By Corol-
lary4.4, |〈r〉| ≥ 8. Again, Burnside’s theorem [9, Theorem 5.13] shows that 〈r〉 has a
complement N 	 G, G = N � 〈r〉. This now contradicts Corollary 4.2. ��

This concludes the proof of Theorem1.1.

5 Construction of Some SRHDS Groups

We need the following set-up: For prime power q = 4p − 1, p ∈ N, we let Fqn be
the finite field of order qn . Let tr : Fq2 → Fq , β �→ βq be the trace function. Let
α ∈ Fq2 satisfy tr(α) = 0. Let F∗

q2 = 〈z〉. Let Q = {u2 : u ∈ Fq , u �= 0}. Then
−1 /∈ Q since q ≡ 3mod 4. Now choose D ∈ Fq\(Q ∪ {0}). Then any β ∈ Fq2 has

the form β = a + b
√

D, for some c, d ∈ Fq and tr(c + d
√

D) = c − d
√

D. Write
α = a + b

√
D. Then tr(α) = 0 if and only if a = 0, so we can choose α = √

D.

Let U ≤ F∗
q2 be the subgroup of order (q − 1)/2, and let π : F∗

q2 → W := F∗
q2/U

be the natural map.

Theorem 5.1 Suppose that 4p − 1 is a prime power. Then Dic8p contains a SRHDS.

Proof We follow [15, Theorem 3.3].
Let q = 4p − 1 and assume the above set-up. Let g := π(z) be a generator for W

and note that |W | = 2(q +1) = 8p. Let R = {π(x) : x ∈ F∗
q2 , tr(αx) ∈ Q}. Then by
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[22, Thm 2.2.12], R is a relative (q + 1, 2, q, (q − 1)/2) difference set in W relative
to the subgroup H := 〈g4p〉 of order 2.

Define R1, R2 ⊂ W2 := 〈g2〉 by R = R1 + R2g. Since R is a relative (q +
1, 2, q, (q − 1)/2) difference set, R R(−1) = q−1

2 (W − H) + q from which we get

R1R(−1)
1 + R2R(−1)

2 = q + q − 1

2
(W2 − H) .

If d ∈ F∗
q2 has order dividing q + 1, then dq = d−1 and so

tr(αd) = αd + αqdq = αd − αd−1 = −tr(αd−1).

Thus if tr(αd) ∈ Q, then tr(αd−1) ∈ −Q. But q ≡ 3mod 4 tells us that g4p = −1 /∈
Q, so that tr(αg4pd−1) ∈ Q. Thus g4pd−1 ∈ R1. Now the order of g4pd−1 is a divisor
of 2(q + 1) = |W |. This gives a bijection, Ud ↔ Ug4pd−1, between the elements of
R1 ⊂ W2, which then gives R(−1)

1 = g4p R1.
Now let G = Dic8p = 〈a, b|a2p = b2, b4 = 1, ab = a−1〉 and identify 〈a〉 with

W2, so that a ↔ g2. From R(−1)
1 = g4p R1 we see that if γ ∈ R1 ∩ R(−1)

1 , then

g4p ∈ R1R(−1)
1 , a contradiction to R being a relative difference set relative to H . It

follows that R1 ∩ R(−1)
1 = ∅. Now 1,−1 = g4p /∈ R1 as tr(α1) = 0 /∈ Q, and so

R1 + R(−1)
1 = W2 − H . (5.1)

Then (5.1) and R(−1)
1 = g4p R1 gives

W2 − H = R1(1 + g4p) = R1H ,

so that we have the first part of

Lemma 5.2 (i) R1 + 1 is a transversal for W2/H.
(ii) R2 is a transversal for W2/H.

Proof (ii) We first show that R+1 is a transversal for W/H .
If u ∈ W , then tr(αu) ∈ Q, and it follows that tr(αg4pu) = −tr(αu) /∈ Q. This

sets up a bijection u ↔ g4pu of W − H where the orbits of this bijection are the
non-trivial H -cosets and a transversal corresponds to the elements of Q.

Since R+1 is a transversal for W/H and R1+1 is a transversal for W2/H it follows
that R2 is a transversal for W2/H . This concludes the proof. ��

Now ifα = √
D, β = a+b

√
D, then tr(αβ) = 2bD ∈ Q if and only if 2b ∈ F∗

q\Q.

Define S := a2p R1 + R2b. First we show that SS(−1) = λ (G − H) + k where
k = (v − 2)/2, λ = (k − 1)/2:

SS(−1) = (a2p R1 + R2b)
(
a2p R(−1)

1 + b−1R(−1)
2

)

= R1R(−1)
1 + R2R(−1)

2 + R1R2(1 + a2p)b
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= R1R(−1)
1 + R2R(−1)

2 + R1R2Hb

= R1R(−1)
1 + R2R(−1)

2 + R1W2b

= q + q − 1

2
(W2 − H) + |R1|W2b

= k + λ (W2 − H) + λW2b

= k + λ (W2 + W2b − H) = λ (G − H) + k, (5.2)

as desired. Next we need

Lemma 5.3 For S as above we have S ∩ S(−1) = ∅.

Proof So assume that r ∈ S ∩ S(−1), S = a2p R1 + R2b. Then there are two cases.

(a) First assume that r ∈ 〈a〉. Then there are xi , x j ∈ R1 where r = a2pai = a2pa− j

so we have i = − j . Since a corresponds to g2 the elements g2i , g−2 j satisfy
tr(αg2i ), tr(αg−2 j ) ∈ Q. Let gi = c + b

√
D. Then tr(αg2i ), tr(αg−2 j ) ∈ Q

(respectively) gives 4bcD ∈ Q,− 4bcD
(c2−b2D)2

∈ Q (respectively), which in turn
gives −1 ∈ Q, a contradiction.

(b) Next assume that r ∈ 〈a〉b. Then there are i, j such that r = ai b = (a j b)−1 =
a j+2pb, where ai , a j ∈ R2. Thus i = j + 2p. As in the first case this
gives tr(αg2i+1), tr(αg2 j+1) = tr(αg2i−4p+1) ∈ Q. Since tr(αg2i−4p+1) =
−tr(αg2i+1), this gives −1 ∈ Q, a contradiction.

From S ∩ S(−1) = ∅ = S ∩ H we get G = S + S(−1) + H and so Eq. (5.2) shows
that S is a SRHDS, giving Theorem5.1. ��

We next wish to show that we can double these examples (see Sect. 6 for the
definition of this doubling process), and we will need the following symmetry results:
Symmetry proof for R1.Now S = a2p R1 + R2b and if ai ∈ a2p R1, then i = 2p + j
where tr(αz2 j ) ∈ Q. We note that z, the generator of F∗

q2 , has order q2 − 1, and so
(zq)q = z, showing that the non-trivial Galois automorphism is given by z �→ zq .

So from tr(αz2 j ) ∈ Q we get tr(αq z2 jq) ∈ Q. But αq = −α = αz(q2−1)/2. Thus

tr(αq z2 jq) = tr(αz2 jq+(q2−1)/2) = tr(αz2( jq+(q2−1)/4)) ∈ Q.

This if j ′ = ( jq + (q2 − 1)/4), then a2p+ j ′ ∈ a2p R1, and so j �→ j ′ determines a
function R1 → R1 that one can show is an involution.

One can then check that j = p + r is sent to j ′ = p − r (recalling that j is defined
mod 4p). This gives a ‘reflective’ symmetry for R1.
Symmetry proof for R2.We now do a similar thing for R2. So let ai b ∈ R2b, so that
tr(αz2i+1) ∈ Q. Then acting by the Galois automorphism we get

tr(αq z(2i+1)q) = tr(αz(2i+1)q+(q2−1)/2) = tr(αz2(iq+(q2−1)/4+(2p−1))+1) ∈ Q.

This similarly gives the involutive map
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i �→ iq + (q2 − 1)/4 + (2p − 1) ≡ −i − 1mod 4p. (5.3)

��
6 The Doubling Process

Lemma 6.1 Let D ⊂ G = Dicv = 〈x, y〉, v = 4n, k = 2n − 1, λ = n − 1. Let
K = 〈x〉, k1 = n − 1, k2 = n and let D = D1 + D2y, Di ⊂ K , ki = |Di |. Then the
requirement that D = D1 + D2y is a SRHDS is equivalent to (a)–(d):

(a) D1H = K − H , (b) D(−1)
1 = t D1, (c) D2H = K ,

(d) λ(K − H) + k = D1D(−1)
1 + D2D(−1)

2 .

Proof One checks that D = D1 + D2y is a SRHDS is equivalent to the conditions

(i) D1 ∪{1} and D2 are transversals for K/H (this comes from looking at G − H =
D + D(−1) = D1 + D2y + (D(−1)

1 + (D2y)(−1))).

(ii) λD1H + k = D1D(−1)
1 + D2D(−1)

2 ;
(iii) λK y = D2D1y + D1D2y−1 (from DD(−1) = λ(G − H) + k);
(iv) D(−1)

1 = t D1 and Dy
i = D(−1)

i .

Now (iii) is equivalent to D1D2(1 + t) = λK or D1K = λK . But D1K = λK
follows directly from Di ⊂ K , and |D1| = λ. Thus (ii) and (iii) are equivalent to
λD1H + k = D1D(−1)

1 + D2D(−1)
2 . ��

Write D = D0 + D1y. We construct the set E ⊆ Dic16p as

E := E0 + E1y with E0 := D0 + D1x and E1 := D(−1)
1 x−1t + D(−1)

0 + 1.

We show that if D1 satisfies the symmetry: x2i ∈ D1 implies x4p−2i−2 ∈ D1, then E
is a (v2, k2, λ2)-SRHDS with v2 = 16p, k2 = 8p − 1, and λ2 = 4p − 1.

Theorem 6.2 Let Dic16p = 〈x, y | x4p = y2, y4 = 1, x y = x−1〉, t = y2. We let
Dic8p = 〈x2, y〉 ≤ Dic16p. Let D be a (v1, k1, λ1)-SRHDS in Dic8p, with v1 = 8p,
k1 = 4p − 1, and λ1 = 2p − 1. Then the unique involution t in Dic16p is the same as
the unique involution in Dic8p.

Write D = D0 + D1y, Di ⊂ 〈x2〉, and let E = E0 + E1y ⊆ Dic16p where:

E0 := D0 + D1x and E1 := D(−1)
1 x−1t + D(−1)

0 + 1.

Assume that D1 satisfies the symmetry: x2i ∈ D1 implies x4p−2i−2 ∈ D1. Then E is
a (v2, k2, λ2)-SRHDS with v2 = 16p, k2 = 8p − 1, and λ2 = 4p − 1.

Proof We note that D(−1) = t D implies that E (−1) = t E . We also observe that the
map x2i → x4p−2i−2 is an involution. Using Lemma6.1, to show E is a SRHDS it
suffices to show that E satisfies
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(1) E ∪ E (−1) = Dic16p − 〈t〉;
(2) E ∩ E (−1) = ∅;
(3) E0E (−1)

0 + E1E (−1)
1 = λ2(〈x〉 − 〈t〉) + k2.

This is sufficient because conditions (1) and (2) along with E (−1) = t E imply
conditions (a) and (c) of Lemma 6.1. First we note that E does not contain t or the
identity, as this would imply that D0 contains these. We now show (2), which will
imply (1). We split condition (2) into cases by considering the intersection of E with
each coset of 〈x2〉, all of which cosets are their own inverses. There are four such
cosets: 〈x2〉, 〈x2〉x, 〈x2〉y, and 〈x2〉xy.
〈x2〉 : For E ∩ 〈x2〉 = D0, we know that x2i ∈ D0 implies x−2i /∈ D0 since D0 ∩
D(−1)
0 = ∅.

〈x2〉x : We have E ∩ 〈x2〉x = D1x . We show D1x ∩ (D1x)(−1) = ∅.

x2i+1 ∈ D1x ⇐⇒ x2i ∈ D1 ⇐⇒ x4p−2i−2 ∈ D1

⇐⇒ x4p−2i−2y ∈ D1y ⇐⇒ t x4p−2i−2y /∈ D1y

⇐⇒ x−2i−2 /∈ D1 ⇐⇒ x−2i−1 /∈ D1x . (6.1)

Here we used the symmetry and the fact that (D1y) ∩ (D1y)(−1) = ∅ where
(D1y)(−1) = t D1y.
〈x2〉y : Here we have E ∩ 〈x2〉y = D(−1)

0 y + y. First we check that D(−1)
0 y doesn’t

contain any of its inverses:

x−2i y ∈ D(−1)
0 y ⇐⇒ (x−2i y)−1 = t x−2i y /∈ D(−1)

0 y.

We also check the additional y doesn’t have an inverse in D(−1)
0 y:

t /∈ D(−1)
0 ⇐⇒ y−1 = t y /∈ D(−1)

0 y.

〈x2〉xy : Here we have E ∩ 〈x2〉xy = D(−1)
1 x−1t y, and

x−2i−1t y ∈ D(−1)
1 x−1t y ⇐⇒ x2i ∈ D1 ⇐⇒ t x2i /∈ D1

⇐⇒ t x−2i /∈ D(−1)
1 ⇐⇒ x−2i−1y = t x−2i x−1t y /∈ D(−1)

1 x−1t y.

Thus E ∩ E (−1) = ∅. This concludes (2) and implies (1), since both E and E (−1)

don’t intersect 〈t〉 and |E | = k2 = 8p − 1.
Now we prove (3): we have
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E0E (−1)
0 + E1E (−1)

1 = (D0 + D1x)
(

D(−1)
0 + D(−1)

1 x−1
)

+
(

D(−1)
1 x−1t + D(−1)

0 + 1
)

(D1xt + D0 + 1)

= 2D0D(−1)
0 + 2D1D(−1)

1

+ (1 + t)D0D(−1)
1 x−1 + (1 + t)D1D(−1)

0 x

+ D1xt + D0 + D(−1)
1 x−1t + D(−1)

0 + 1. (6.2)

For E to be a SRHDS we need (6.2) to be equal to λ2(〈x〉 − 〈t〉) + k2. Looking at just
the even powers of x , we need

2D0D(−1)
0 + 2D1D(−1)

1 + D0 + D(−1)
0 + 1

to be equal to λ2(〈x2〉 − 〈t〉) + k2. We note that D0 + D(−1)
0 = 〈x2〉 − 〈t〉, and

D0D(−1)
0 + D1D(−1)

1 = λ1(〈x2〉 − 〈t〉) + k1 since D is a SRHDS for 〈x2, y〉. Since
k2−1
2 = λ2, we have

2(D0D(−1)
0 + D1D(−1)

1 ) + (D0 + D(−1)
0 ) + 1

= 2(λ1(〈x2〉 − 〈t〉) + k1) + (〈x2〉 − 〈t〉) + 1

= (2λ1 + 1)(〈x2〉 − 〈t〉) + (2k1 + 1) = λ2(〈x2〉 − 〈t〉) + k2,

as desired. We now look at the odd powers of x in (6.2), which must equal λ2〈x2〉x .
We see that

(1 + t)D0D(−1)
1 x−1 + (1 + t)D1D(−1)

0 x + D1xt + D(−1)
1 x−1t

= (1 + t) (D0 + 1) D(−1)
1 x−1 + (1 + t) (D0 + 1)(−1) D1x

− (D1x)(−1) + D1x . (6.3)

Looking at the first two terms of (6.3), D0 + 1 is a transversal of 〈t〉 in 〈x2〉, so
(1+ t) (D0 + 1) = 〈x2〉 and (1+ t) (D0 + 1)(−1) = 〈x2〉. So we can reduce (6.3) to

〈x2〉D(−1)
1 x−1 + 〈x2〉D1x − (D1x)(−1) + D1x .

To evaluate the last two terms of (6.3), we note that (6.1) gives us: if x2i ∈ D1,

then x−2i−2 /∈ D1. Thus D1 and
(
D1x2

)(−1)
are disjoint, so their sum is 〈x2〉 since

|D1| = 4p. Thus (D1x)(−1) + D1x =
((

D1x−2
)(−1) + D1

)
x = 〈x2〉x . So the sum

of the odd powered terms is

〈x2〉 (D1)
(−1) x−1 + 〈x2〉D1x − 〈x2〉x = D(−1)

1 〈x2〉x−1 + (D1 − 1)〈x2〉x
= |D1|〈x2〉x + (|D1| − 1)〈x2〉x = λ2〈x2〉x

as desired. Therefore we have shown (3), and E is a SRHDS. ��
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Corollary 6.3 The set E = E0 + E1y as defined above is an SRHDS in Dic16p if
D = D0 + D1y is an SRHDS in Dic8p and x2i ∈ D1 implies x−2i−2 ∈ D1.

Proof This follows by applying the automorphism ϕ(x) = x, ϕ(y) = x2p y to Dic16p

in the preceding theorem. We have that D is a SRHDS for Dic8p if and only if ϕ(D)

is, and similarly E is a SRHDS for Dic16p if and only if ϕ(E) is. The condition
x2i ∈ ϕ(D1) implies x−2i−2 ∈ ϕ(D1) is equivalent to the condition x2i ∈ D1 implies
x4p−2i−2 ∈ D1. ��
Many other equivalent symmetries can be obtained by using a different automorphism
that fixes 〈x〉. The one we have used is that obtained at the end of Theorem5.1. In
the SRHDS S = a2p R1 + R2b of Dic8p from Theorem 5.1, we showed that ai ∈ R2
impliesa−i−1 ∈ R2.See (5.3).As a subgroup ofDic16p, this is the necessary symmetry
condition for Corollary 6.3 to apply. Thus Dic16p is a SRHDS group when 4p − 1 is
a prime power. This proves Theorem1.3. ��

7 D and Cosets ofQ8

Let G be a SRHDS group with subgroup H and difference set D. Suppose that Q ≤ G
has even order and that g0 = 1, . . . , gp−1 is a transversal for Q ≤ G. Then we can
write

D = F0g0 + F1g1 + · · · + Fp−1gp−1, Fi ⊂ Q. (7.1)

Lemma 7.1 Let Q ≤ G be as above. For all subsets F ⊆ Q of size greater than |Q|/2,
the multiplicity of t in F F (−1) is greater than zero. ��
Proof Now t ∈ Q, so H ≤ Q and if |F | > |Q|/2, then some coset of H ≤ Q meets
F in two elements and so t ∈ F F (−1). ��

Now DD(−1) = λ(G − H) + k and a part of the left hand side is
∑p−1

i=0 Fi F (−1)
i .

Thus |Fi | ≤ |Q|/2 when D is written as in Eq. (7.1).
Now let fi = |Fi |, 0 ≤ i < p − 1, so that

p−1∑

i=0

fi = |D| = k = (|G| − 2)

2
= (|Q|p − 2)

2
= |Q|

2
p − 1.

Since fi ≤ |Q|/2 we must have fi = |Q|/2 for all 0 ≤ i ≤ p − 1 except one. To
see that f0 = |Q|/2 − 1 we just note that Q − H has |Q| − 2 elements that come in
inverse pairs. Thus f0 = |Q|/2 − 1.

Next note that DD(−1) = λ(G − H) + k and Fi F (−1)
i ⊆ Q. We want to show

p−1∑

i=0

Fi F (−1)
i = λ(Q − H) + k. (7.2)
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Now, v = 8p, k = |Q|
2 p − 1, λ = |Q|

4 p − 1 and so λ(Q − H) + k has (
|Q|
4 p −

1)(|Q| − 2) + (
|Q|
2 p − 1) = |Q|2

4 p − |Q| + 1 elements, while
∑p−1

i=0 Fi F (−1)
i has

( |Q|
2 − 1

)2 + (p −1)
( |Q|

2

)2 = |Q|2
4 p −|Q|+1 elements, so we must have Eq. (7.2).

For Q = Q8, considering those Fi of size |Q|/2 = 4 a Magma [12] calculation
gives the following result by finding all those subsets F ⊂ Q8 such that F F (−1) does
not contain t :

Lemma 7.2 Suppose that Q = Q8 ≤ G. Then each Fi of size 4 is one of the following
16 sets:

{1, x, y, xy}; {1, x, y, x3y}; {x, x2, x2y, x3y}; {1, x, x2y, x3y};
{1, x3, x2y, x3y}; {1, x3, y, xy}; {x, x2, y, x3y}; {x2, x3, y, x3y};
{x, x2, xy, x2y}; {x2, x3, xy, x2y}; {x2, x3, y, xy}; {1, x, xy, x2y};
{x, x2, y, x2y}; {x2, x3, x2y, x3y}; {1, x, xy, x2y}; {1, x3, y, x3y}.��

Each of these is a relative difference set for Q8. Thus each Fi , i > 0, is a relative
difference set for Q8. It follows then from Eq. (7.2) that F0 is a SRHDS for Q8. Thus
F0 is determined by

Lemma 7.3 The following sets are equal:

(i) The set of all SRHDS for Q8 = 〈i, j, k〉.
(ii) The set of all conjugate (by elements of Q8)-translates (by elements of H ) of

{i, j, k}.
(iii) The set of all {a, b, c} ⊂ Q8\H where |{a, b, c}| = 3 and t /∈ {uv−1 : u, v ∈

{a, b, c}}. ��
Call this common set S and note that |S| = 8.
Now any F0 must satisfy (iii), so F0 ∈ S. Further, we can choose F0 to be any

element of S by applying the operations in (ii) to D, which still result in a SRHDS.
Assume that G = Dic8p so that a transversal of Q8 ≤ G is 1, x, . . . , x p−1. Now

we can write D = F0 + F1x + F2x2 + · · · + Fp−1x p−1 where Fi ⊂ Q8 and F0 ∈ S.
Here each Fi , i > 0, is one of the 16 subsets of Q8 in Lemma7.2 and Fi =

(1 + x p)(a + by) = a + by + x pa + x pby, where a, b ∈ 〈x p〉.
Now D(−1)t = D and so if Fi xi ⊂ D, then t(Fi xi )(−1) = t x−i F (−1)

i ⊂ D. Here

F (−1)
i = a−1 + bty + x−pa−1 + x pbty, and so

t(Fi xi )(−1) = t x−1F (−1)
i = t x−i (a−1 + bty + x−pa−1 + x pbty)

= ta−1x−i + t x−pa−1x−i + byxi + x pbyxi .

Thus Fi and t(Fi xi )(−1) have byxi + x pbyxi in common and so

Fi xi ∪ t(Fi xi )(−1) = axi + byxi + x paxi + x pbyxi + ta−1x−i + t x−pa−1x−i .

We denote this by Ji (a, b), so that D is a union of D0 and some of the Ji (a, b).
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Now Ji (a, b) has four elements in Q8xi and has two elements in Q8x−i . Since we
know that each non-trivial coset of Q8 has to contain four elements of D we know
that D has to contain some J−i (c, d) so that

(a + x pa)xi + (a−1 + x−pa−1)t x−i = (c + x pc)x−i + (b−1 + x−pb−1)t xi .

This is true if and only if we have a+x pa = b−1t +x−pb−1t and (a−1+x−pa−1)t =
b + x pb. However these equations are equivalent and we note that for any choice of
a ∈ 〈x p〉 there is a b ∈ 〈x p〉 that solves the first equation.

Thus we now obtain eight element sets by taking the union of these two J ′s. We
denote these by Li (a, b, c):

(a + x pa)xi + (a−1 + x−pa−1)t x−i + (by + x pby)xi + (cy + x pcy)x−i

= (1 + x p)(a + by)xi + (1 + x p)(x pa−1 + cy)x−i .

We note that Li (a, b, c) = L j (a′, b′, c′) if and only if i = j, a = a′, b = b′, c = c′.
For 1 ≤ i ≤ p − 1 let Li = {Li (a, b, c) : a, b, c ∈ 〈x p〉}. Then |Li | = 64.

8 Groups that are not SRHDS Groups

Proposition 8.1 The dicyclic group Dic72 is not a SRHDS group.

Proof Suppose it is and that D is the SRHDS. Let G = Dic72 = 〈x, y|x36 = 1, y2 =
x18, x y = x−1〉. Then by the above section there are Di ∈ Li , 1 ≤ i ≤ 4, such that
D = D0 + ∑4

i=1 Di . There are 64 = |Li | choices for each Di , 1 ≤ i ≤ 4. Using
the standard irreducible representation ρ : Dic72 → GL(2, C) given by ρ(x) =[
ζ36 0
0 ζ−1

36

]

, ρ(y) =
[
0 −1
1 0

]

, ζ36 = e2π i/36, we have ρ(G) = ρ(H) = 0. From D +
D(−1) = G − H we then have ρ(D)+ρ(D(−1)) = 0. By DD(−1) = λ(G − H)+k we
have ρ(D)ρ(D(−1)) = k I2 = 35I2. Therefore, 35I2 = ρ(D)ρ(D(−1)) = −ρ(D)2.
A Magma calculation determines that of the 644 possibilites for D, only 648 have
ρ(D)2 = −35I2. Another Magma [23] calculation verifies that none of these 648 give
a SRHDS, completing the proof. ��
Proposition 8.2 Let G be a group where Q8 ≤ G. Suppose that there is an epimor-
phism π : G → Cp × Q8 for p prime where π(Q8) = {1} × Q8 and | ker π | is odd.
Then G is not a SRHDS group.

Proof So suppose that G is a SRHDS group with difference set D and subgroup
H = 〈t〉. Let Q8 = 〈x, y|x4, x2 = y2, x y = x−1〉 ≤ G, so that t = x2, π(x) =
x, π(y) = y. First note that p must be odd since G has a unique involution. Let
N = ker π . Put Cp = 〈π(r)〉, r ∈ G, so that we can write

D =
p−1∑

i=0

3∑

j=0

r i x j D0,i, j +
p−1∑

i=0

3∑

j=0

r i x j y D1,i, j , Dk,i, j ⊂ N .
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We note that |Di, j,k | ≤ |N |.
Let p2 = (p − 1)/2. We can also write D = ∑p−1

i=0 r i Di , Di ⊂ 〈x, y, N 〉 so that

Di =
3∑

j=0

x j D0,i, j +
3∑

j=0

x j y D1,i, j

From D(−1) = t D we get D(−1)
i r−i = tr p−i Dp−i , 0 ≤ i < p, so that Dp−i =

tr−p(D(−1)
i )r−i

. Thus D = D0 + ∑p2
i=1 r i Di + r−i t(D(−1)

i )r−i
.

Now let ρ : Q8 → GL(2, Q(i)), i =
√−1, be an irreducible faithful unitary

representation of Q8 where ρ(x) =
[

i 0
0 −i

]

, ρ(y) =
[
0 −1
1 0

]

. Then the Q-span of

the image of ρ has basis

B1 = I2, B2 = ρ(x) =
[

i 0
0 −i

]

, B3 = ρ(y) =
[
0 −1
1 0

]

, B4 = ρ(xy) =
[
0 −i
−i 0

]

since ρ(x2) = −B1. We note from Lemma7.3 that we may assume D0 = {x, y, xy},
so ρ(D0) =

[
i −i − 1

1 − i −i

]

= B2 + B3 + B4.

Let ω = exp 2π i/p. Then π, ρ and r �→ ωI2 determine an irreducible unitary
representation of G that we also call ρ. Then ρ(r i Di ) = ωi ∑4

j=1 ai j B j , where
ai j ∈ Z, so that

ρ
(
r−i t

(
D(−1)

i

)r−i ) = −ω−iρ
(
D(−1)

i

)r−i ) = −ω−iρ
(
D(−1)

i

) = −ω−i
4∑

j=1

ai j B∗
j .

Here B∗
1 = B1, B∗

2 = −B2, B∗
3 = −B3, B∗

4 = −B4.
This gives

ρ(D) =
[

i −i − 1
1 − i −i

]

+
p2∑

i=1

ρ
(
Dir

i + r−i t
(
D(−1)

i

)r−i )

=
[

i −i − 1
1 − i −i

]

+
p2∑

i=1

4∑

j=1

(
ai j B jω

i − ai j B∗
j ω

−i ). (8.1)

We can write this as

ρ(D) =
[

i −i − 1
1 − i −i

]

+
4∑

u=1

au Bu, where au ∈ Z[ω]. (8.2)

From DD(−1) = λ(G − H) + k and D(−1) = t D we get D2 = λ(G − H) + kt .
Now if ρ(D)2 = (ei j ), then from (ei j ) = ρ(D2) = ρ(λ(G − H) + tk) = −k I2 and
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Eq. (8.2) we get

0 = e11 − e22 = 4ia1(1 + a2), 0 = e12 = 2a1(i + 1 + a3 + ia4),

0 = e21 = 2a1(−1 + i − a3 + ia4).

Solving, we must have either

(i) a1 = 0; or (i i) a2 = −1, a3 = −1, a4 = −1.

Now we find a1, · · · , a4 in terms of the ai j . From (8.1) and (8.2) we have

4∑

u=1

au Bu =
p2∑

i=1

4∑

j=1

ai j B jω
i − ai j B∗

j ω
−i

=
p2∑

i=1

ai1B1ω
i − ai1B1ω

−i + ai2B2ω
i + ai2B2ω

−i

+ ai3B3ω
i + ai3B3ω

−i + ai4B4ω
i + ai4B4ω

−i .

From this we get

a1 =
p2∑

i=1

ai1(ω
i − ω−i ); a2 =

p2∑

i=1

ai2(ω
i + ω−i );

a3 =
p2∑

i=1

ai3(ω
i + ω−i ); a4 =

p2∑

i=1

ai4(ω
i + ω−i ).

Now if we have (i) a1 = 0, then p > 2 is a prime means that the ωi − ω−i , i =
1, 2, · · · , p2 are linearly independent over Q, so that we must than have ai1 = 0 for
all i .

Observe from previous definitions that ai1 = |D0,i,0|−|D0,i,2|. From D(−1) = t D
and D ∪ D(−1) = G −〈t〉 we have |D0,i,0| + |D0,i,2| = |N |. So |D0,i,0| = |D0,i,2| =
|N |/2. Thus |N | is even, which contradicts our assumption on ker π .

So now assume (ii), so that

ρ(D) =
[

i −i − 1
1 − i −i

]

+
4∑

i=1

ai Bi

=
[

i −i − 1
1 − 1 −i

]

+ a1B1 − B2 − B3 − B4 = a1 I2.

But −ρ(D2) = ρ(DD(−1)) = k I2 then gives a2
1 = −k. Here a1 ∈ Q[ω]. Recall that

ω = e
2π i

p , so the Galois group of [Q(ω) : Q] is cyclic of even order p − 1. By the
Galois correspondence, Q(ω) has a unique quadratic subfield. In particular, we can
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verify that the subfield is exactly Q(
√

p) if p ≡ 1 (mod 4), and Q(
√−p) if p ≡ 3

(mod 4). This follows from the Gauss sum:

⎛

⎝
p−1∑

n=0

(
n

p

)

ωn

⎞

⎠

2

= (−1)
p−1
2 p

Note that k ≡ 3 (mod 4) so k is not an integer square. Therefore a2
1 = −k implies

k = px2 for some x ∈ Z. However, k = 4p|N | − 1 so we have a contradiction, as k
must be congruent to both 0 and −1 (mod p). ��

9 Groups of Order Less Than or Equal to 72

Here are the non-dicyclic groups (using magma notation) of order at most 72 that meet
the following requirements: (i) they are not abelian; (ii) their Sylow 2-subgroups are
generalized quaternion groups; (iii) they have a single involution.

G24,3, G24,11, G40,11, G48,18, G48,27, G48,28, G72,3,

G72,11, G72,24, G72,25, G72,26, G72,31, G72,38

We note that all of the dicyclic groups of order less than 72 and divisible by 8 are
SRHDS groups by Theorems1.2 and 1.3, while Dic72 is not by Proposition 8.1.

We will determine whether the remaining groups have a SRHDS. If they have a
SRHDS then we give a SRHDS explicitly. If not, then we give a proof that the group
is not a SRHDS group.

In the cases of G72,3, G72,11, G72,24, G72,25, and G72,31, we use the following
process to show they are not SRHDS groups: Given one of the four groups G, we take
a right transversal g0 = 1, . . . , g8 for Q8 ≤ G. Assuming there is an SRHDS D, we
write D as in (7.1). We can assume F0 = {x, y, xy} by Lemma7.3. By Lemma 7.2,
there are 16 possibilities for each Fi , and a Magma [23] calculation verifies that none
of these combinations give a SRHDS.

(1) G24,3 = SL(2, 3) = 〈a, b, c, d|a3 = 1, b2 = d, c2 = d, d2, ba = c, ca = b
c, cb = cd〉. Here D = {a2cd, abcd, acd, cd, a2bd, a2d, a2bc, a, bc, ab, b}.

(2) G24,11 = C3 × Q8. This is not a SRHDS group by Proposition 8.2.
(3) G40,11 = C5 × Q8. This is not a SRHDS group by Proposition 8.2.
(4) G48,18 = C3 � Dic16 = 〈a, b, c, d, e|d2 = e3 = 1, a2 = b2 = c2 = d, ba =

bc, ca = cb = cd, da = db = dc = d, ea = e2, eb = ec = ed = e〉 and let D
be

{ade2, de2, ae, e, abce2, abc, bce2, abde2, bde2, bce, acd, acde2, abd,

cde2, cd, acde, cde, bde, bcd, a, abcde, b, abe}.

(5) G48,27 = C3×Dic16.We showG48,27 is not aSRHDSgroup.LetC3 = 〈r〉. Then
D = D0+D1r +D2r2, Di ⊂ Dic16. Now D(−1) = t D gives D(−1)

0 = t D0 and
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D2 = t D(−1)
1 . AlsoLemma3.1 shows that the sizes of D0, D1, D2 are 7, 8, 8 (in

some order). By replacing D by r i D if necessary we may assume that |D0| = 7
and that D0+1, D1, D2 are transversals for G/H . Using D(−1)

0 = t D0 one sees
that there are 64 possible D0s and 256 possible D1s. Further, D2 is determined
by D2 = t D(−1)

1 . There are thus 64 · 256 possibilities for D and one checks
that none of these give a SRHDS.

(6) Let G48,28 = 〈a, b, c, d, e|b3 = e2 = 1, a2 = c2 = d2 = e, ba = b2, ca =
d, cb = de, da = c, db = cd, dc = de, ea = eb = ec = ed = e〉. Here one D
is

{ab2de, ab2cde, b2cde, ce, abc, b2c, bc, d, ade, ab2ce, ac, ab2, acd, cd,

b2d, b2e, abde, bde, bcd, a, ab, abcde, b}.

(7) G72,3 = Q8 � C9 = 〈i, j, b|i4 = j4 = b9 = 1, i j = i−1, i2 = j2, ib =
j, jb = i j〉. The Magma search described at the beginning of this section
shows this is not an SRHDS group.

(8) G72,11 = C9×Q8. TheMagma search described at the beginning of this section
shows this is not an SRHDS group.

(9) G72,24 = C23 � Q8 = 〈a, b, i, j |a3 = b3 = i4 = j4 = 1, ab = ba, i j =
i−1, i2 = j2, ai = a, bi = b2, a j = a2, b j = b〉. The Magma search
described at the beginning of this section shows this is not an SRHDS group.

(10) G72,25 = C3 × SL(2, 3). The Magma search described at the beginning of this
section shows this is not an SRHDS group.

(11) G72,26 = C3 × Dic24. This is not an SRHDS group by Proposition8.2.
(12) G72,31 = C23 � Q8 = 〈a, b, i, j |a3 = b3 = i4 = j4 = 1, ab = ba, i j =

i−1, i2 = j2, ai = a2, bi = b2, a j = a, b j = b〉. The Magma search
described at the beginning of this section shows this is not an SRHDS group.

(13) G72,38 = C23 × Q8. This is not an SRHDS group by Proposition8.2.
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