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Abstract
A graph G of order n is said to be k-factor-critical for integers 1 ≤ k < n, if the
removal of any k vertices results in a graph with a perfect matching. 1- and 2-factor-
critical graphs are the well-known factor-critical and bicritical graphs, respectively. A
k-factor-critical graph G is called minimal if for any edge e ∈ E(G), G − e is not
k-factor-critical. In 1998, O. Favaron and M. Shi conjectured that every minimally
k-factor-critical graph of order n has the minimum degree k + 1 and confirmed it for
k = 1, n − 2, n − 4 and n − 6. In this paper, we use a simple method to reprove the
above results. As a main result, the further use of this method enables us to prove the
conjecture to be true for k = n−8.We also obtain that every minimally (n−6)-factor-
critical graph of order n has at most n − �(G) vertices with the maximum degree
�(G) for �(G) ≥ n − 4.
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1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph
with vertex set V (G) and edge set E(G). The order of G is the cardinality of V (G).
For a vertex x of G, let dG(x) be the degree of x in G, i.e. the number of edges of G
incident with x , and let δ(G) and �(G) denote the minimum degree and maximum
degree of G, respectively.

B Heping Zhang
zhanghp@lzu.edu.cn

Jing Guo
guoj20@lzu.edu.cn

1 School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu 730000, People’s
Republic of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00373-023-02656-6&domain=pdf
http://orcid.org/0000-0001-5385-6687


60 Page 2 of 18 Graphs and Combinatorics (2023) 39 :60

A matching of G is an edge subset of G in which no two edges have a common
end-vertex. A matching M of G is said to be a perfect matching or a 1-factor if it
covers all vertices of G. A graph G is called factor-critical if the removal of each
vertex of G results in a graph with a perfect matching. A graph with at least an edge
is called bicritical if the removal of each pair of distinct vertices of G results in a
graph with a perfect matching. A 3-connected bicritical graph is the so-called brick.
Factor-critical and bricks were introduced by Gallai [6] and Lovász [7], respectively,
which play important roles in Gallai–Edmonds Structure Theorem and in determining
the dimensions of perfect matching polytopes and matching lattices; see a detailed
monograph due to Lovász and Plummer [11].

Generally, Favaron [3] and Yu [20] independently defined k-factor-critical graphs
for any positive integer k. A graph G of order n is said to be k-factor-critical for
positive integer k < n, if the removal of any k vertices of G results in a graph with
a perfect matching. They characterized k-factor-critical graphs in Tutte’s type and
showed that such graphs are (k + 1)-edge-connected. To date there have been many
studies on k-factor-critical graphs; see articles [5, 9, 10, 13, 15, 17, 18, 23] and a
monograph [21].

A graph G is called minimally k-factor-critical if G is k-factor-critical but G − e is
not k-factor-critical for any e ∈ E(G). O. Favaron and M. Shi [4] studied some prop-
erties of minimally k-factor-critical graphs and obtained an upper bound of minimum
degree of minimally k-factor-critical graphs as follows.

Theorem 1.1 ([4]) For a minimally k-factor-critical graph G of order n ≥ k + 4,
δ(G) ≤ n+k

2 − 1. If moreover n ≥ k + 6, then δ(G) ≤ n+k
2 − 2.

From Theorem 1.1, the following result is immediate.

Corollary 1.2 ([4]) Let G be a minimally k-factor-critical graph of order n. If k =
n − 2, n − 4 or n − 6, then δ(G) = k + 1.

Favaron and Shi [4] also pointed out that from the ear decomposition of factor-
critical graphs (see [11]), obviously a minimally 1-factor-critical graph has the
minimum degree two. Further, since a minimally k-factor-critical graph is (k + 1)-
edge-connected and thus has theminimum degree at least k+1, Favaron and Shi asked
a problem: does Corollary 1.2 hold for general k?

Similarly, for minimally q-extendable graphs, Lou [8] proved that every minimally
q-extendable bipartite graph hasminimum degree q+1 and Lou et al. [12] conjectured
that any minimally q-extendable graph G on n vertices with n ≤ 4q has minimum
degree q + 1, 2q or 2q + 1. Afterward, Zhang et al. [22] showed that a non-bipartite
graph of order n ≤ 4q − 2 is q-extendable if and only if it is 2q-factor-critical,
and formally reproposed the following conjecture. Since a q-extendable non-bipartite
graph may not be 2q-factor-critical when n = 4q (see Fig. 1), they pointed out that
except the case n = 4q, the conjecture of minimum degree of minimally q-extendable
graphs in which the value 2q can be excluded is actually part of Conjecture 1.3.

Conjecture 1.3 ([4, 22]) Let G be a minimally k-factor-critical graph of order n with
0 ≤ k < n. Then δ(G) = k + 1.
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Fig. 1 G is 2-extendable but not
4-factor-critical when
n = 8, q = 2

From the above discussions, we know that Conjecture 1.3 is true for k = 1, n −
2, n − 4, n − 6. To date Conjecture 1.3 remains open for 2 ≤ k ≤ n − 8 of the same
parity as n.

However, recently some great progresses have been made on related bicritical
graphs. A brick is minimal if the removal of any edge results in a graph that is non-
brick. From the construction of a brick, deCarvalho et al. [2] proved that everyminimal
brick contains a vertex of degree three. Norine and Thomas [16] proved that every
minimal brick has at least three vertices of degree three. Later, Lin et al. [14] obtained
that every minimal brick has at least four vertices of degree three. At the same time,
Bruhn and Stein [1] showed that every minimal brick G has at least 1

9 |V (G)| vertices
of degree at most four.

In this paper,we use a novel and simplemethod to reproveCorollary 1.2. Continuing
this method, we can prove Conjecture 1.3 to be true for k = n − 8. On the other
hand, the only (n − 2)-factor-critical graph of order n is complete graph Kn . Favaron
and Shi [4] characterized minimally (n − 4)-factor-critical graphs of order n in the
degree distribution. Finally, we obtain that every minimally (n − 6)-factor-critical
graph of order n has at most n − �(G) vertices with the maximum degree �(G) for
�(G) ≥ n − 4.

2 Some Preliminaries

In this section, we give some graph-theoretical terminologies and notations, and some
preliminary results for late use. For a vertex x of a graph G, the neighborhood N (x)
of x is the set of vertices of G adjacent to x , and the closed neighborhood is N [x] :=
N (x) ∪ {x}. Then N [x] := V (G) \ N [x] is called the non-neighborhood of x in G,
which has a critical role in subsequent discussions.

A vertex of a graph G with degree one is called a pendent vertex. An independent
set in a graph is a set of pairwise nonadjacent vertices. For a set S ⊆ V (G), let G[S]
denote the subgraph of G induced by S in G, and G− S = G[V (G)− S]. For an edge
e of G, G − e stands for the graph with vertex set V (G) and edge set E(G) − {e}.
Similarly, for distinct vertices u and v with e = uv /∈ E(G),G+e stands for the graph
with vertex set V (G) and edge set E(G) ∪ {e}. A claw of G is an induced subgraph
isomorphic to the star K1,3.
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A graph G is trivial if it has only one vertex. Let co(G) be the number of odd
components of G. The following is Tutte’s 1-factor theorem.

Theorem 2.1 ([19]) A graph G has a 1-factor if and only if co(G − X) ≤ |X | for any
X ⊆ V (G).

The following characterization and connectivity of k-factor-critical graphs were
obtained by Favaron [3] and Yu [20], independently.

Lemma 2.2 ([3, 20]) A graph G is k-factor-critical if and only if Co(G−B) ≤ |B|−k
for any B ⊆ V (G) with |B| ≥ k.

Lemma 2.3 ([3, 20]) If G is k-factor-critical for some 1 ≤ k < n with n + k even,
then G is k-connected, (k + 1)-edge-connected and (k − 2)-factor-critical if k ≥ 2.

Favaron and Shi [4] characterized minimally k-factor-critical graphs.

Lemma 2.4 ([4]) Let G be a k-factor-critical graph. Then G is minimal if and only if
for each e = uv ∈ E(G), there exists Se ⊆ V (G) − {u, v} with |Se| = k such that
every perfect matching of G − Se contains e.

Lemma 2.5 ([4]) Let G be a k-factor-critical graph of order n > k + 2 and maximum
degree �(G) = n − 1. Then G is minimal if and only if G contains one vertex of
degree n − 1 and n − 1 vertices of degree k + 1.

Plummer and Saito [18] obtained a necessary and sufficient condition of k-factor-
critical graphs.

Theorem 2.6 ([18])LetG beagraphof order n and let x and y be apair of nonadjacent
vertices of G with dG(x)+ dG(y) ≥ n+ k − 1. Then G is k-factor-critical if and only
if G ∪ {xy} is k-factor-critical.
Corollary 2.7 Let G be aminimally k-factor-critical graph of order n, where n ≥ k+5.
If �(G) = n − 2, then there are at most two vertices with degree n − 2 and such two
vertices are not adjacent.

Proof If G has three vertices of degree n−2, then two of them must be adjacent. So it
suffices to show that any two vertices with degree n−2 are not adjacent. Suppose to the
contrary that there exist two adjacent vertices u, v such that dG(u) = dG(v) = n − 2.
LetG ′ = G−uv. Since n ≥ k+5, we have dG ′(u)+dG ′(v) = 2n−6 ≥ n+k−1. By
Theorem 2.6, G ′ is also k-factor-critical, contradicting that G is minimally k-factor-
critical graph.

3 A Simple Proof of Corollary 1.2

In this section, we give a different and brief method to reprove Corollary 1.2. We
divide our proof into the two cases k = n − 4 and n − 6 for k ≥ 2.
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Fig. 2 The three configurations of G′ := G − e − Se

Lemma 3.1 ([4]) A graph G of order n ≥ 6 is (n − 4)-factor-critical if and only if it
is claw-free and δ(G) ≥ n − 3.

Proof of Corollary 1.2 for k = n − 4. By Lemma 2.3, δ(G) ≥ n − 3. To prove
δ(G) = n − 3, suppose to the contrary that δ(G) ≥ n − 2. Since G is a minimally
(n − 4)-factor-critical graph, for any e = uv ∈ E(G), G − e is not (n − 4)-factor-
critical. Since n = k+4 ≥ 6 and δ(G−e)≥ n−3, by Lemma 3.1,G−emust contain
a claw. Since G is (n − 4)-factor-critical, G is claw-free. Hence u and v must be two
pendent vertices of the claw. The third pendent vertex of the claw is not adjacent to u
and v. So its degree is at most n − 3, a contradiction. �	
Proof of Corollary 1.2 for k = n − 6. Obviously, δ(G) ≥ n − 5. Suppose to the
contrary that δ(G) ≥ n − 4. That is, the non-neighborhood of any vertex in G has at
most three vertices. Next we will obtain two claims.

Claim 1: For every e = uv ∈ E(G), there exists Se ⊆ V (G) − {u, v} with
|Se| = n− 6 such that G − e− Se is one of Configuration A1, A2 and A3 as shown in
Fig. 2. (The vertices within a dotted box induce a connected subgraph and the dotted
edges indicate optional edges.)

Since G is a minimally (n − 6)-factor-critical graph, by Lemma 2.4, for any given
e = uv ∈ E(G), there exists Se ⊆ V (G) − {u, v} with |Se| = n − 6 such that every
perfect matching ofG−Se contains e. ThenG ′ := G−e−Se has no perfect matching.
By Theorem 2.1, there exists X ⊆ V (G ′) such that Co(G ′ − X) > |X |. By parity,
Co(G ′ − X) ≥ |X | + 2. So |X | + 2 ≤ Co(G ′ − X) ≤ |V (G ′ − X)| = 6 − |X |.
Thus |X | ≤ 2. Since G ′ + e has a perfect matching, Co(G ′ − X) = |X | + 2 and u
and v belong separately to distinct odd components of G ′ − X . Since δ(G ′ + e) ≥ 2,
G ′ + e = G − Se has no pendent vertex. Then G ′ has no isolated vertex. Now we
discuss the following three cases depending on |X |.

If |X | = 0, then G ′ must consist of two odd components which each is isomorphic
to K3, and e joins them. So G ′ is A1.

If |X | = 1, then Co(G ′ − X) = 3. If G ′ − X has three trivial odd components, then
G ′ + e has a pendent vertex, a contradiction. So G ′ − X has exactly two trivial odd
components and one odd component with three vertices. Since G ′ + e has no pendent
vertex, e must join the two trivial odd components. So G ′ is A2.

If |X | = 2, then Co(G ′ − X) = 4. So G ′ − X consists of exactly four trivial odd
components, two of which are joined by e. Let X = {x, y}. If x or y ∈ N [u] ∩ N [v],
say y ∈ N [u] ∩ N [v], then ux, vx ∈ E(G ′) and G ′[w1, w2, y] is an odd component
of G ′ − {x}. Hence it is A2. Without loss of generality, assume that ux, vy ∈ E(G ′).
Then G ′ is A3. So Claim 1 holds.
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Next we obtain some properties for the set of vertices of G in both non-
neighborhoods of end-vertices of an edge from the three configurations.

Claim 2: (1) If G − e − Se is A1, then |N [u] ∩ N [v]| ≤ 1, for u1, u2 ∈ N (u) but
u1, u2 /∈ N (v) and u3, u4 ∈ N (v) but u3, u4 /∈ N (u);

(2) If G − e − Se is A2, then |N [u] ∩ N [v]| = 3 as N [u] ∩ N [v] = {v1, v2, v3};
(3) If G − e − Se is A3, then |N [u] ∩ N [v]| ≥ 2 as N [u] ∩ N [v] contains a pair

of non-adjacent vertices w1 and w2, which form an independent set of G.
By Claim 1, there are three cases to discuss, where contradictions always happen.
Case 1: G − e − Se is A1.

Consider edge e′ = uu1. By Claim 1, there exists Se′ ⊆ V (G) − {u, u1} with
|Se′ | = n − 6 such that G − e′ − Se′ is one of Configuration A1, A2 and A3. Since
N [u1] = {v, u3, u4} and uv ∈ E(G), N [u] ∩ N [u1] = {u3, u4}. By Claim 2 (1)
and (2), G − e′ − Se′ is neither A1 nor A2. Since u3u4 ∈ E(G), {u3, u4} is not an
independent set of G. So G − e′ − Se′ is not A3. This is a contradiction to Claim 1.

Case 2: G − e − Se is A2.
Since G − Se has a perfect matching M , without loss of generality, assume that

xv1, v2v3 ∈ M . Let e′ = ux ∈ E(G). Obviously, N [u] ∩ N [x] ⊆ {v2, v3}. By Claim
2 (2) and Case 1, G − e′ − Se′ is neither A1 nor A2 for any Se′ ⊆ V (G) − {u, x} with
|Se′ | = n − 6. Because v2v3 ∈ E(G), {v2, v3} is not an independent set of G. Then
G − e′ − Se′ is also not A3. This contradicts Claim 1.

Case 3: G − e − Se is A3.
Without loss of generality, assume that ux, vy ∈ E(G). Let e′ = ux ∈ E(G).

Clearly, w1, w2 ∈ N (x) and w1, w2 /∈ N (u). Then |N [u] ∩ N [x]| ≤ 1. By Claim
2 and Case 1, G − e′ − Se′ is not A1, A2 or A3 for any Se′ ⊆ V (G) − {u, x} with
|Se′ | = n − 6, which contradicts Claim 1. �	

4 TheMinimumDegree of Minimally (n− 8)-Factor-Critical Graphs

Going one step further, we confirm that Conjecture 1.3 is true for k = n − 8.

Theorem 4.1 If G is a minimally (n − 8)-factor-critical graph of order n ≥ 10, then
δ(G) = n − 7.

Proof By Lemma 2.3, δ(G) ≥ n − 7. Suppose to the contrary that δ(G) ≥ n − 6.
Claim 1: For every e = uv ∈ E(G), there exists Se ⊆ V (G) − {u, v} with

|Se| = n−8 such that G−e− Se is one of Configuration B1 to B8 as shown in Fig. 3.
(The vertices within a dotted box induce a connected subgraph.)

Since G is a minimally (n − 8)-factor-critical graph, by Lemma 2.4, for any e =
uv ∈ E(G), there exists Se ⊆ V (G)−{u, v}with |Se| = n−8 such that every perfect
matching of G − Se contains e. Then G − e − Se has no perfect matching. Let G ′ :=
G − e − Se. By Theorem 2.1, there exists X ⊆ V (G ′) such that Co(G ′ − X) > |X |.
By parity,Co(G ′ − X) ≥ |X |+2. So |X |+2 ≤Co(G ′ − X) ≤ |V (G ′ − X)|= 8−|X |.
Thus |X | ≤ 3. Since G ′ + e has a 1-factor, Co(G ′ − X) = |X | + 2 and u and v belong
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Fig. 3 The eight configurations of G′ := G − e − Se

respectively to two distinct odd components of G ′ − X . Moreover, δ(G − Se) ≥ 2.
Then G ′ + e = G − Se has no pendent vertex and G ′ has no isolated vertex.

If |X | = 0, then G ′ has exactly two odd components, one of which is K3 and the
other has five vertices. Since G ′ + e has a 1-factor, e joins the two odd components,
and we may assume that u3u4, u5u6 are two independent edges. So G ′ is B1.

If |X | = 1, then Co(G ′ − X) = 3. Let X = {a}. G ′ − X has at most two trivial
odd components which are joined by e. Otherwise, G ′ + e has a pendent vertex, a
contradiction. The other odd component has three or five vertices. So G ′ is B2 or
B3. Specially, if G ′ − X has exactly one trivial odd component, then the other two
nontrivial odd components are both with three vertices. Since G ′ + e has no pendent
vertex, e joins the trivial odd component and a nontrivial odd component with three
vertices. Besides, there must exist an edge joining a and the nontrivial odd component,
otherwise, it is B1. Then G ′ is B4.

If |X | = 2, then Co(G ′ − X) = 4. Hence G ′ − X has either four trivial odd
components or three trivial odd components and one nontrivial odd component with
three vertices. Since G ′ + e has a 1-factor, e joins two of the four odd components of
G ′ − X . If G ′ − X has four trivial odd components, then G ′ is B5. If G ′ − X has three
trivial odd components, then G ′ is B6 or B7.

If |X | = 3, then Co(G ′ − X) = 5. Thus G ′ − X consists of exactly five trivial odd
components, two of which are joined by e. So G ′ is B8.

For every x ∈ V (G), N [x] has at most five vertices of G. Then we can obtain the
following claim by observing the eight configurations.

Claim 2: (1) If G − e − Se is B1, then |N [u] ∩ N [v]| ≤ 3. Since u1, u2 ∈ N (u)

but u1, u2 /∈ N (v), N [v] has at most three elements in N [u];
(2) If G − e − Se is B2 or B3, then |N [u] ∩ N [v]| = 5;
(3) If G − e− Se is B4, then 3 ≤ |N [u]∩ N [v]| ≤ 4 as N [u] = {x1, x2, x3, x4, x5}

and {x3, x4, x5}⊆ N [v] but x1 or x2 ∈ N (v);
(4) If G − e − Se is B5 or B6, then |N [u] ∩ N [v]| ≥ 4;
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(5) If G − e − Se is B7, then 2 ≤ |N [u] ∩ N [v]| ≤ 4 as {p1, p2, p3, p4} ⊆N [u]
and {p1, p2}⊆ N [v] but p3 or p4 ∈ N (v);

(6) If G − e − Se is B8, then |N [u] ∩ N [v]| ≥ 3 as N [u] ∩ N [v] contains an
independent set {w1, w2, w3}.

By Claim 1, there are eight cases to distinguish.

Case 1: G − e − Se is B1.
Since G − Se has a perfect matching M , uv, u1u2 ∈ M . So, without loss of gener-

ality, we assume that u3u4, u5u6 ∈ M .
Consider edge e′ = uu1. Clearly, N [u1] = {v, u3, u4, u5, u6} and N [u] ∩

N [u1] ={u3, u4, u5, u6}. By Claim 1, there exists Se′ ⊆ V (G) − {u, u1} with
|Se′ | = n − 8 such that G − e′ − Se′ is one of Configuration B1 to B8. By Claim 2 (1)
and (2), G − e′ − Se′ may not be B1, B2 or B3. Furthermore, since G[N [u] ∩ N [u1]]
contains two independent edges, by Claim 2 (4) and (6), G − e′ − Se′ can not be B5,
B6 or B8. Then G − e′ − Se′ would be B4 or B7.

Suppose that G − e′ − Se′ is B4. Since G[N [u1]] is a connected subgraph of G, u
(resp. u1) belongs to the trivial (resp. nontrivial) odd component of B4−{a}. The odd
component containing u1 must be K3. Otherwise, there is a vertex in N [u] ∩ N [u1]
which is not adjacent to the other three vertices, contradicting that u3u4, u5u6 are two
independent edges. But then |N [u] ∩ N [u1]| = 3, a contradiction.

So G − e′ − Se′ is B7. Since u3u4, u5u6 ∈ M and {p1, p2} is an independent set
of G, {p1, p2} = {u3, u5}, {p1, p2} = {u4, u6}, {p1, p2} = {u3, u6} or {p1, p2} =
{u4, u5}. By symmetry, we may assume that {p1, p2} = {u3, u5}. If u1 is a trivial odd
component of B7 − {c1, c2}, then u4 or u6 ∈ {p3, p4}. But u3u4, u5u6 ∈ E(G), a
contradiction. Then u (resp. u1) belongs to the trivial (resp. nontrivial) odd component
of B7 − {c1, c2}. The odd component containing u1 must be K3. Otherwise, say
u1 p4 /∈ E(G), so p4 ∈ {u4, u6}, contradicting that p1 p4, p2 p4 /∈ E(G). But then
|N [u] ∩ N [u1]| ≤ 3, a contradiction.

Case 2: G − e − Se is B7.
We may assume that uc1, vp3 ∈ E(G). Since G − S has a perfect matching,

p3 p4 ∈ E(G). Let e′ = c1 p1 ∈ E(G). Obviously, N [p1] ={u, v, p2, p3, p4}. Then
N [c1] ∩ N [p1] ⊆ {v, p3, p4} (see Fig. 4 (1)). By Claim 1, there exists Se′ ⊆ V (G) −
{c1, p1} with |Se′ | = n − 8 such that G − e′ − Se′ is one of Configuration B1 to B8.
Since {v, p3, p4} is not an independent set of G, G − e′ − Se′ is not B8. By Claim 2
and Case 1, G − e′ − Se′ would be B4 or B7.

If G − e′ − Se′ is B4, then N [c1] ∩ N [p1] = {v, p3, p4} = {x3, x4, x5}. Hence
c1 (resp. p1) belongs to the trivial (resp. nontrivial) odd component of B4 − {a}.
Otherwise, N [p1] = {x1, x2, x3, x4, x5}, so u ∈ {x1, x2}, but uv ∈ E(G), a
contradiction. Moreover, the odd component of B4 − {a} containing p1 must be
K3 as |N [c1] ∩ N [p1]| = 3. Then x1, x2 /∈ {u, p2}. Since p3 ∈ {x3, x4, x5},
{x1, x2} ⊆ N [p3]. Then {c1, u, p1, p2, x1, x2} ⊆ N [p3]. Hence dG(p3) ≤ n − 7,
a contradiction (see Fig. 4 (2)).

SoG−e′ − Se′ is B7, whose vertices are relabelled by c′
1, c

′
2, p

′
1, p

′
2, p

′
3, p

′
4, u

′, v′.
Then {u′, v′} = {c1, p1}. Since {p′

1, p
′
2} ⊆ N [c1]∩N [p1] ⊆ {v, p3, p4}, vp4 /∈ E(G).

We may assume p′
1 = v, p′

2 = p4. It is easy to see that N [p4] ={u, v, c1, p1, p2}. On
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Fig. 4 G − e′ − Se′ is B4 and G − e′ − Se′ is B7

the other hand, N [p4] ={v, c1, p1, p′
3, p

′
4}. So {u, p2} = {p′

3, p
′
4}. But p′

3 p
′
4 ∈ E(G),

up2 /∈ E(G), a contradiction (see Fig. 4 (3)).

Case 3: G − e − Se is B5.
Clearly, N [y1] ={u, v, y2, y3, y4}. Without loss of generality, assume that ua1 ∈

E(G). Let e′ = y1a1 ∈ E(G). Then N [a1] ∩ N [y1] ⊆ {v, y3, y4}. By Claim 1, there
exists Se′ ⊆ V (G) − {y1, a1} with |Se′ | = n − 8 such that G − e′ − Se′ is one of
Configuration B1 to B8. Since y3y4 ∈ E(G), {v, y3, y4} is not an independent set of
G. So G − e′ − Se′ is not B8. By Claim 2, Case 1 and Case 2, G − e′ − Se′ would be
B4.

If G − e′ − Se′ is B4, then N [a1] ∩ N [y1] ={v, y3, y4}, which induces a connected
subgraph of G. But vy3, vy4 /∈ E(G), a contradiction.

Case 4: G − e − Se is B4.
Since G − Se has a perfect matching M , without loss of generality, assume that

x1x2, ax3, x4x5 ∈ M . Let e′ = ua ∈ E(G). Obviously, N [u] = {x1, x2, x3, x4, x5}.
Hence N [a] ∩ N [u]⊆ {x1, x2, x4, x5}. By Claim 1, there exists Se′ ⊆ V (G) − {u, a}
with |Se′ | = n − 8 such that G − e′ − Se′ is one of Configuration B1 to B8. By Claim
2, Cases 1, 2 and 3, G − e′ − Se′ would be B4, B6 or B8.

Since x1x2, x4x5 ∈ E(G), {x1, x2, x4, x5} has no subset, which is an independent
set with size three. So G − e′ − Se′ is not B8. Because there are no edge joining
{x1, x2} and {x4, x5}, for any T ⊆ {x1, x2, x4, x5}with |T | = 3, G[T ] does not induce
a connected subgraph of B4 − {a} or B6 − {b1, b2}. So G − e′ − Se′ can not be B4
or B6. This is a contradiction to Claim 1.

Case 5: G − e − Se is B6.
Without loss of generality, we may assume that b1z2 ∈ E(G). Let e′ = b1z1.

Clearly, N [z1] ={u, v, z2, z3, z4}. By Claim 1, there exists Se′ ⊆ V (G) − {b1, z1}
with |Se′ | = n− 8 such that G − e′ − Se′ is one of Configuration B1 to B8. Moreover,
b1, b2 /∈ N [u] ∩ N [v], otherwise, it is B2 or B3. Assume that ub1, vb2 ∈ E(G). So
N [b1]∩ N [z1] ⊆ {v, z3, z4}. By Claim 2, Cases 1, 2 and 4, G − e′ − Se′ would be B8.

If G − e′ − Se′ is B8, then N [b1] ∩ N [z1] = {v, z3, z4} and {v, z3, z4} is an
independent set of G. So z3z4 /∈ E(G). Thus z2z3, z2z4 ∈ E(G). Since δ(G −
Se) ≥ 2, b2z3, b2z4 ∈ E(G). Now consider edge e′′ = z2z3. We have N [z3] =
{u, v, b1, z1, z4}. Since b1z2, z2z4 ∈ E(G), N [z2] ∩ N [z3] = {u, v, z1}. By Claim 2,
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Cases 1, 2, 4 and uv ∈ E(G), G − e′′ − Se′′ is not one of Configuration B1 to B8 for
any Se′′ ⊆ V (G) − {z2, z3} with |Se′′ | = n − 8, a contradiction.

Case 6: G − e − Se is B2 or B3.
Since G − Se has a perfect matching M , without loss of generality, assume

that av1, v2v3, v4v5 ∈ M . Now consider edge e′ = ua. Then N [u] ∩ N [a] ⊆
{v2, v3, v4, v5}. By Claim 2 and Cases 1 to 5, G − e′ − Se′ would be B8 for some
Se′ ⊆ V (G) − {u, a} with |Se′ | = n − 8 only when G − e − Se is B3. Since
v2v3, v4v5 ∈ E(G), for any T ⊆{v2, v3, v4, v5}with |T | = 3, T is not an independent
set of G. So G − e′ − Se′ is not B8. This is a contradiction to Claim 1.

Case 7: G − e − Se is B8.
Since δ(G − Se) ≥ 2, without loss of generality, assume that w1a1, w1a2 ∈ E(G).

Let e′ = w1a1 ∈ E(G) and Se′ ⊆ V (G) − {w1, a1} with |Se′ | = n − 8 satisfying
Claim 1. Then {u, v, w2, w3} ⊆ N [w1]. By Claim 2 and Cases 1 to 6, G − e′ − Se′
would be B8. Then it suffices to show that there is an independent set S′

0 with size
three inG−Se′ and every vertex in S′

0 is not adjacent tow1 and a1. Since S′
0 ⊆ N [w1],

w2 or w3 ∈ S′
0, say w2 ∈ S′

0. Then w2a2, w2a3 ∈ E(G) as dG−Se (w2) ≥ 2.

Subcase 7.1: w1a3 /∈ E(G).
Clearly, N [w1] = {u, v, w2, w3, a3}. So a3 /∈ S′

0 andw3 ∈ S′
0. Thenw3a2, w3a3 ∈

E(G). Thus S′
0 is either {u, w2, w3} or {v,w2, w3}, say {u, w2, w3}. Now consider

edge e′′ = w1a2. Then N [a2] ∩ N [w1] ⊆ {u, v, a3}. By Claim 2, Cases 1, 2, 4 and
uv ∈ E(G), G − e′′ − Se′′ is not one of Configuration B1 to B8 for any Se′′ ⊆
V (G) − {w1, a2} with |Se′′ | = n − 8, which contradicts Claim 1.

Subcase 7.2: w1a3 ∈ E(G).
Let e′′ = w1a2 ∈ E(G) and Se′′ ⊆ V (G) − {w1, a2} with |Se′′ | = n − 8 satisfying

Claim 1. We denote the independent set with size three in G − Se′′ by S′′
0 and every

vertex in S′′
0 is not adjacent to w1 and a2. Then w3 ∈ S′′

0 . So w3a1, w3a3 ∈ E(G).
Hence w3 /∈ S′

0. Thus u or v ∈ S′
0, say u ∈ S′

0. Then S′
0 = {u, w2, w}, where

w ∈ N [w1]∩N [a1]. Since w2 /∈ S′′
0 , u or v ∈ S′′

0 .
If u ∈ S′′

0 , then S′′
0 = {u, w3, w}, where w ∈ N [w1]∩N [a2]. Thus {u, w1, w2, w3,

a1, a2} ⊆ N [w]. So dG(w) ≤ n − 7, a contradiction.
Ifv ∈ S′′

0 , then S
′′
0 = {v,w3, w},wherew ∈ N [w1]∩N [a2]. Thus {u, v, w1, w2, w3,

a1, a2} ⊆ N [w]. So dG(w) ≤ n − 8, a contradiction.
Combining Cases 1 to 7, we complete the proof. �	

5 Some Properties of Minimally (n− 6)-Factor-Critical Graphs

In this section, we obtain that every minimally (n−6)-factor-critical graph G of order
n has at most n − �(G) vertices with the maximum degree �(G) for �(G) ≥ n − 4.

By Lemma 2.5, for any minimally (n−6)-factor-critical graph G of order n, G has
only one vertex of degree n−1 and n−1 vertices of degree n−5 when�(G) = n−1.
So we consider the cases of n − 4 ≤ �(G) ≤ n − 2.
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Fig. 5 The four configurations of G′ := G − e − Se

Lemma 5.1 Let G be a minimally (n − 6)-factor-critical graph of order n ≥ 8. For
every e = uv ∈ E(G) with dG(u) ≥ n − 4, dG(v) ≥ n − 4, there exists Se ⊆
V (G)−{u, v} with |Se| =n− 6 such that G − e− Se is one of Configuration C1, C2,
C3 and C4 as shown in Fig.5. (The dotted edge indicates an optional edge.)

Proof Since G is a minimally (n − 6)-factor-critical graph, for every e = uv ∈ E(G)

with dG(u) ≥ n − 4, dG(v) ≥ n − 4, there exists Se ⊆ V (G) − {u, v} with |Se| =
n − 6 such that every perfect matching of G − Se contains e by Lemma 2.4. Then
G − e − Se has no 1-factor. Let G ′ := G − e − Se. By Theorem 2.1, there exists
X ⊆ V (G ′) such that Co(G ′ − X) > |X |. By parity, Co(G ′ − X) ≥ |X | + 2. So
|X | + 2 ≤ Co(G ′ − X) ≤ |V (G ′ − X)| = 6− |X |. Then |X | ≤ 2. Since G ′ + e has a
1-factor, Co(G ′ − X) = |X | + 2 and u and v belong respectively to two distinct odd
components ofG ′−X . Since dG(u) ≥ n−4 and dG(v) ≥ n−4, dG−e(u) ≥ n−5 and
dG−e(v) ≥ n−5. The vertices of G − e distinct from u and v have the same degree as
inG. So δ(G−e) = δ(G) = n−5 by Corollary 1.2. Then δ(G−e−Se) = δ(G ′) ≥ 1.
Thus G ′ has no isolated vertex.

If |X | = 0, then G ′ has exactly two odd components, each of which has three
vertices. Since G ′ + e has a 1-factor, e joins the two odd components. So G ′ is C1.

If |X | = 1, then Co(G ′ − X) = 3. Let X = {a}. G ′ − X has either two trivial odd
components and an odd component with three vertices or three trivial odd components
and an even component with two vertices. For the former case, if e joins two trivial odd
components, then G ′ is C2. If e joins a trivial odd component and the odd component
with three vertices, then G ′ is C3. For the latter case, e joins two of the three trivial
odd components, say x3 belongs to the third trivial odd component and G[{x1, x2}]
is the even component. For concise, we attribute it to C2. Then note that the vertices
within a dotted box in C2 may induce a disconnected subgraph.

If |X | = 2, then Co(G ′ − X) = 4. So G ′ − X consists of exactly four trivial
odd components, two of which are joined by e. Let X = {a1, a2}. Then a1, a2 /∈
N [u] ∩ N [v], otherwise, it is C2 or C3. So G ′ is C4. �	

Since dG(u) ≥ n − 4 and dG(v) ≥ n − 4, there are at most three vertices of G in
each of N [u] and N [v]. By a close inspection of the four configurations of Lemma
5.1, we can easily obtain some properties, which play important roles in the proofs of
Theorem 5.3, 5.4 and 5.5.

Proposition 5.2 Let G, e, Se be as of Lemma 5.1. If G−e− Se is one of Configuration
C1, C2, C3 and C4, then the following statements hold:
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(1) If G − e− Se is C1, then |N [u] ∩ N [v]| ≤ 2, n − 4 ≤ dG(u), dG(v) ≤ n − 3 and
|N (u) ∩ N (v)| ≤ n − 6.

(2) If G − e − Se is C2, then |N [u] ∩ N [v]| = 3 and dG(u) = dG(v) = n − 4.
(3) If G − e − Se is C3, then 1 ≤ |N [u] ∩ N [v]| ≤ 2. Moreover, dG(u) = n − 4,

dG(v) ≥ n − 4 and dG(y1) = n − 5.
(4) If G−e−Se is C4, then 2 ≤ |N [u]∩N [v]| ≤ 3 and n−4 ≤ dG(u), dG(v) ≤ n−3.

Moreover, {w1, w2} is an independent set of G.

We show only Proposition 5.2 (1). The proof of other cases are similar and thus
omitted.

Proof (1) Suppose that G − e − Se is C1. Since u1, u2 ∈ N [v] and u3, u4 ∈ N [u],
we have dG(u), dG(v) ≤ n − 3. Moreover, u1 /∈ N [u] and u3 /∈ N [v]. Then |N [u] ∩
N [v]| ≤ 2. Since both N [u] and N [v] have atmost one element in Se, |N (u)∩N (v)| ≤
n − 6. �	

If n is odd, then both n − 2 and n − 4 are odd. Thus the total number of vertices
of degree n − 2 or n − 4 is even. If n is even, then both n − 3 and n − 5 are odd. So
the total number of vertices of degree n − 3 or n − 5 is even. Thus the total number of
vertices of degree n−2 or n−4 is also even. Therefore, G contains even total number
of vertices of degree n − 2 or n − 4.

Theorem 5.3 Let G be a minimally (n − 6)-factor-critical graph of order n ≥ 8. If
�(G) = n−2, then G has at most two vertices with degree n−2 and the two vertices
are not adjacent. In particular, if G has exactly two vertices with degree n − 2, then
the other vertices of G have degree n − 5. If G has one vertex with degree n − 2, then
there is only one vertex with degree n − 4 and the other vertices of G have degree
n − 5.

Proof Firstly, by Corollary 2.7, G has at most two vertices with degree n − 2 and the
two vertices are not adjacent. Let dG(u) = dG(v) = n − 2 and uv /∈ E(G). If G has
a vertex x with degree n − 3 or n − 4, then ux, vx ∈ E(G). Consider edge ux . By
Lemma 5.1, there exists S ⊆ V (G) − {u, x} with |S| = n − 6 such that G − ux − S
is one of Configuration C1, C2, C3 and C4. Then, by Proposition 5.2, G − ux − S
would be C3 only when dG(x) = n− 4. Hence x (resp. u) belongs to the trivial (resp.
nontrivial) odd component of C3 − {a}. So y1 = v and dG(v) = dG(y1) = n − 5, a
contradiction. Thus all vertices of G − {u, v} have degree n − 5.

If G has only one vertex u with degree n − 2, then u is adjacent to every vertex
of G except one. Suppose that G has three vertices with degree n − 4, say dG(v1) =
dG(v2) = dG(v3) = n − 4. Then we may assume that uv1, uv2 ∈ E(G). Let e1 =
uv1 ∈ E(G) and S1 ⊆ V (G) − {u, v1} with |S1| = n − 6 satisfying Lemma 5.1.
By Proposition 5.2, G − e1 − S1 is only C3. Then v1 (resp. u) belongs to the trivial
(resp. nontrivial) odd component of C3−{a}. Assume another trivial odd component
of C3 − {a} is spanned by {w1}. So uw1, v1w1 /∈ E(G). Hence uv3 ∈ E(G). Let
e2 = uv2 ∈ E(G) and e3 = uv3 ∈ E(G). Similar to the discussion above, we have
w2v2, w3v3 /∈ E(G), where {wi } spans a trivial odd component ofC3−{a}which are
corresponding to ei for i = 2, 3. Since dG(u) = n − 2 and uw1, uw2, uw3 /∈ E(G),
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we have w1 = w2 = w3. Then N [w1] ={u, v1, v2, v3}. Therefore, G[{u, v2, v3}] is
the nontrivial odd component of G − e1 − S1. So v1v2, v1v3 /∈ E(G). Similarly, we
have v2v3 /∈ E(G). But then G − S1 has no 1-factor, a contradiction. Therefore, if
dG(u) = n − 2, G has only one vertex with degree n − 4.

Suppose that dG(u) = n − 2 and dG(v1) = n − 4. If G has a vertex y with degree
n − 3, then uy /∈ E(G). Otherwise, by Proposition 5.2, G − uy − S′ is not one of
Configuration C1, C2, C3 and C4 for any S′ ⊆ V (G) − {u, y} with |S′| = n − 6, a
contradiction. So uv1 ∈ E(G). However, from the above discussions,G−uv1−S1 can
only beC3. Thus y belongs to the trivial odd component ofC3−{a}. So dG(y) = n−5,
a contradiction. Thus all vertices of G − {u, v1} have degree n − 5. �	
Theorem 5.4 Let G be a minimally (n − 6)-factor-critical graph of order n ≥ 9. If
�(G) = n − 3, then G has at most three vertices with degree n − 3. In particular, if
dG(u) = dG(v) = dG(w) = n − 3, then uv, uw, vw /∈ E(G) and the other vertices
of G have degree n − 5.

Proof If G has four vertices with degree n− 3, then two of them must be adjacent. So
it suffices to show that any three vertices with degree n − 3 are not adjacent to each
other. Assume that dG(u) = dG(v) = dG(w) = n − 3. Suppose to the contrary that
there is at least one pair of adjacent vertices among {u, v, w}, say uv ∈ E(G). Let
e = uv ∈ E(G). By Lemma 5.1, there exists S ⊆ V (G) − {u, v} with |S| = n − 6
such that G − e − S is one of Configuration C1, C2, C3 and C4.

Case 1: uv ∈ E(G), uw, vw /∈ E(G).
Then |N [u]∩N [v]| ≤ 2 and |N (u)∩N (v)| ≥ n−5. By Proposition 5.2,G−e− S

would be C4.
If G − e − S is C4, then |N [u] ∩ N [v]| = 2 and w ∈ N [u] ∩ N [v]. Since w is

adjacent to every vertex in V (G)−{u, v, w}, there is not an independent set with size
two containing w and a vertex in V (G) − {u, v, w}. So G − e − S is not C4. This
contradicts Lemma 5.1.

Case 2: uv, vw ∈ E(G), uw /∈ E(G).
Then |N [u]∩N [v]| ≤ 1 and |N (u)∩N (v)| ≥ n−6. By Proposition 5.2,G−e− S

would be C1.
IfG−e− S isC1, then |N (u)∩N (v)| = n−6 and |N [u]∩N [v]| = 0. Hence S =

N (u) ∩ N (v). Moreover, w belongs to the odd component of G − e − S containing
v. But w is adjacent to at least one vertex in N (u)\N [v] as dG(w) = n − 3. Thus
G − e − S is connected which can not be C1. This is a contradiction to Lemma 5.1.

Case 3: uv, uw, vw ∈ E(G).
Then |N [u]∩N [v]| ≤ 2 and |N (u)∩N (v)| ≤ n−4.We discuss the three subcases.

Subcase 3.1: |N [u] ∩ N [v]| = 2.
Let N [u]∩ N [v] = {x, y}. Obviously, |N (u)∩ N (v)| = n−4. By Proposition 5.2,

G − e − S would be C4.
If G − e − S is C4, then {x, y} is an independent set of C4. Thus xy /∈ E(G).

If wx ∈ E(G), wy /∈ E(G) or wx /∈ E(G), wy ∈ E(G), we consider edge uw or
vw the same as Subcase 3.2. If wx , wy ∈ E(G), we consider edge uw or vw the
same as Subcase 3.3. Assume that wx , wy /∈ E(G). Since δ(G) = n − 5, x and y are
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adjacent to every vertex in V (G)\{u, v, w, x, y}. Let S′ ⊆ V (G)\{u, v, w, x, y} with
|S′| = n−6. ThenG−S′ has no 1-factor, contradicting thatG is (n−6)-factor-critical.

Subcase 3.2: |N [u] ∩ N [v]| = 1.
Let N [u] ∩ N [v] = {x}. Clearly, |N (u) ∩ N (v)| = n − 5. By Proposition 5.2,

G− e− S can not be Configuration C1, C2, C3 or C4, which contradicts Lemma 5.1.
Subcase 3.3: |N [u] ∩ N [v]| = 0.
Clearly, |N (u)∩N (v)| = n−6. Next, we consider the cardinalities of N [u]∩N [w]

and N [v] ∩ N [w].
Subcase 3.3.1: |N [u] ∩ N [w]| = 1 or |N [v] ∩ N [w]| = 1.
We consider edge uw or vw the same as Subcase 3.2.
Subcase 3.3.2: |N [u] ∩ N [w]| = 2 or |N [v] ∩ N [w]| = 2.
Without loss of generality, assume that |N [u]∩N [w]| = 2. Then |N [v]∩N [w]| = 0

and |N (u)∩N (w)| = n−4. Let N [u]∩N [w] = {x, y}. By Proposition 5.2,G−e−S
would be C1. Then S = N (u) ∩ N (v) and G[{v, x, y}] is an odd component of C1.
Since G − S has a 1-factor, xy ∈ E(G). However, by Proposition 5.2, G − uw − S′
would be C4 for some S′ ⊆ V (G) − {u, w} with |S′| = n − 6. Hence {x, y} is an
independent set of G. So xy /∈ E(G), a contradiction.

Subcase 3.3.3: |N [u] ∩ N [w]| = 0 and |N [v] ∩ N [w]| = 0.
By Proposition 5.2, G − e − S would be C1. Hence S = N (u) ∩ N (v).
Let S′

1 = N (u)\N [v], S′
2 = N (v)\N [u], S′

3 = N (u)\N [w] and S0 = N (u) ∩
N (v)∩N (w). Then |S′

1| = |S′
2| = |S′

3| = 2 and |S0| = n−|S′
1|−|S′

2|−|S′
3|−3 = n−9.

If G − e − S is C1, then S = N (u) ∩ N (v)=S′
3 ∪ S0 ∪ {w} and there are no edge

joining S′
1 and S′

2. Let e1 = uw, S1 ⊆ V (G)−{u, w}with |S1| = n−6 and e2 = vw,
S2 ⊆ V (G) − {v,w} with |S2| = n − 6. By Proposition 5.2, both G − e1 − S1 and
G − e2 − S2 are also C1. Then S1 = N (u) ∩ N (w)=S′

1 ∪ S0 ∪ {v} and there are no
edge joining S′

2 and S′
3. Moreover, S2 = N (v) ∩ N (w)=S′

2 ∪ S0 ∪ {u} and there are
no edge joining S′

1 and S′
3. Therefore, there are no edge joining S′

1, S
′
2 and S′

3 each
other. Since δ(G) = n − 5 and G[S′

1 ∪ S′
2 ∪ S′

3] has a 1-factor, every vertex in S′
i is

adjacent to at least n − 8 vertices in S0 for i = 1, 2, 3. But |S0| = n − 9 < n − 8, a
contradiction.

Therefore, if dG(u) = dG(v) = dG(w) = n − 3, then uv, uw, vw /∈ E(G).
Now suppose that G has two vertices x, y with degree n − 4. Then every vertex in

{u, v, w} is adjacent to x and y. Let e′′ = ux ∈ E(G) and S′′ ⊆ V (G) − {u, x} with
|S′′| = n − 6 satisfying Lemma 5.1. Then |N [u] ∩ N [x]| = 0 and |N (u) ∩ N (x)| =
n − 7. By Proposition 5.2, G − e′′ − S′′ would be C1. Thus G[{x, v, w}] must be an
odd component of C1. Since vw /∈ E(G), G − S′′ has no 1-factor, a contradiction.
So G − e′′ − S′′ is not C1. This contradicts Lemma 5.1. Therefore all vertices of
G − {u, v, w} have degree n − 5. �	
Theorem 5.5 Let G be a minimally (n − 6)-factor-critical graph of order n ≥ 11. If
�(G) = n − 4, then G has at most four vertices with degree n − 4 and the other
vertices of G have degree n − 5.

Proof Since G has an even number of vertices with degree n − 4, suppose that G has
six vertices with degree n−4, say {u, v, w, x, y, z}. Let S0 = {u, v, w, x, y, z}. Every
vertex in S0 is adjacent to at most n−6 vertices in V (G)− S0. Then δ(G[S0]) ≥ 2. So
G[S0] must contain a cycle. Moreover, G[S0] has a 1-factor. Thus we can always find
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Fig. 6 The two configurations of C1

a path P with length three in G[S0]. To prove the theorem, we need only to show that
G does not contain such a path P with length three, in which each vertex has degree
n − 4.

Suppose to the contrary thatG contains such a path P = uvxy. Let e = uv ∈ E(G).
By Lemma 5.1, there exists S ⊆ V (G) − {u, v} with |S| = n − 6 such that G − e− S
is one of Configuration C1, C2, C3 and C4. We discuss the two cases depending on
|N [u] ∩ N [v]|.

Case 1: |N [u] ∩ N [v]| = 1.
Clearly, N [u]∩N [v] = {y} and |N (u)∩N (v)| = n−7. Let N (u)\N [v] = {u1, u2}

and N (v)\(N [u] ∪ {x}) = {v1}. By Proposition 5.2, G − e − S would be C1 or C3.

Subcase 1.1: G − e − S is C1.
Then N (u) ∩ N (v) ⊆ S and C1 must be Configuration (a) or (b) (see Fig. 6).
Suppose C1 is (a). Since dG(y) = n − 4, yu1 or yu2 ∈ E(G), a contradiction.
SupposeC1 is (b). Then S = N (u)∩N (v)∪{y}. Hence x is adjacent to every vertex

in V (G)−{u, u1, u2}. Now consider edge e′ = vx . Clearly, N [v] ∩ N [x] ={u1, u2}
and |N (v)∩ N (x)| = n−6. By Proposition 5.2, there exists S′ ⊆ V (G)−{v, x} with
|S′| = n − 6 such that G − e′ − S′ would be C1 or C3.

If G − e′ − S′ is C1, then S′ = N (v)∩ N (x). Hence u1 and u2 belong respectively
to two distinct odd components of G − e′ − S′. But u1u2 ∈ E(G), a contradiction.

If G − e′ − S′ is C3, then v (resp. x) belongs to the trivial (resp. nontrivial) odd
component of C3− {a}. Otherwise, {y1, y2, y3} = {u, u1, u2}, a contradiction. Since
N [v] = {y, u1, u2} and xy ∈ E(G), y1 ∈ {u1, u2}, say y1 = u1. So {y2, y3} = {u2, y}.
Then u1u2 = y1y2 ∈ E(G) or u1u2 = y1y3 ∈ E(G), a contradiction.

Subcase 1.2: G − e − S is C3.
Obviously, y1 = y. If u belongs to the trivial odd component of C3 − {a}, then

G[{v, x, v1}] is the nontrivial odd component of C3− {a}. But xy ∈ E(G), a contra-
diction. If v belongs to the trivial odd component of C3 − {a}, then G[{u, u1, u2}] is
the nontrivial odd component of C3−{a}. But yu1 or yu2 ∈ E(G) as dG(y) = n−4,
a contradiction.

Therefore, G − e − S is not C1 or C3 when |N [u] ∩ N [v]| = 1.

Case 2: |N [u] ∩ N [v]| = 2.
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Let N [u] ∩ N [v] = {y, v1} and N (u)\N [v] = {u1}. Then N [u] = {x, y, v1} and
N [v] = {u1, y, v1}. Obviously, |N (u)∩N (v)| = n−6. By Proposition 5.2, G−e− S
would be C1,C3 or C4.

Subcase 2.1: G − e − S is C1.
Then S = N (u)∩N (v). SoG[{v, x, y}] andG[{u, u1, v1}] are two odd components

of C1. But yu1 or yv1 ∈ E(G) as dG(y) = n − 4, a contradiction.

Subcase 2.2: G − e − S is C3.
Let e′ = vx ∈ E(G). By Lemma 5.1, there exists S′ ⊆ V (G) − {v, x} with

|S′| = n − 6 such that G − e′ − S′ is one of Configuration C1, C2, C3 and C4.

Subcase 2.2.1: u (resp. v) belongs to the trivial (resp. nontrivial) odd component
of C3 − {a}.

Then {y1, y2, y3} = {x, y, v1}. Since xy ∈ E(G), y1 = v1. Hence xv1, yv1 /∈
E(G). So u1v1 ∈ E(G) as dG(v1) ≥ n − 5 and yu1 ∈ E(G) as dG(y) = n − 4.

(2.2.1.1) |N [v] ∩ N [x]| = 2.
Then N [v] ∩ N [x] = {u1, v1} and |N (v) ∩ N (x)| = n − 6. By Proposition 5.2,

G − e′ − S′ would be C1,C3 or C4.
IfG−e′ − S′ isC1, then S′ =N (v)∩N (x). Hence u1 and v1 belong respectively to

two distinct odd components ofC1. But u1v1 ∈ E(G). Then G−e′ − S′ is connected,
which is a contradiction. Moreover, N [v] = {y, u1, v1} and N [x] = {u, u1, v1}. But
{y1, y2, y3} �= {y, u1, v1} and {y1, y2, y3} �= {u, u1, v1}. So G − e′ − S′ is not C3.
Since {u1, v1} is not an independent set of G, G − e′ − S′ is not C4.

(2.2.1.2) |N [v] ∩ N [x]| = 1.
Then N [v] ∩ N [x] = {v1} and u1x ∈ E(G). Let {w} = (N (u) ∩ N (v))\N (x). By

Proposition 5.2, G − e′ − S′ would be C1 or C3.
If G−e′ − S′ is C1, then S′ = N (v)∩ N (x)∪{u1}. G[{u, v, w}] and G[{x, y, v1}]

are two odd components of C1. But yw, v1w ∈ E(G). So G − e′ − S′ is connected,
a contradiction.

If G − e′ − S′ is C3, then y1 = v1. Since N [v] = {y, u1, v1} and u1v1 ∈ E(G), v
does not belong to the trivial odd component ofC3−{a}.Moreover, N [x] = {u, v1, w}
and v1w ∈ E(G). Then x does not belong to the trivial odd component of C3 − {a}.
So G − e′ − S′ is not C3.

Subcase 2.2.2: v (resp. u) belongs to the trivial (resp. nontrivial) odd component
of C3 − {a}.

Then {y1, y2, y3} = {u1, y, v1}. Because uu1 ∈ E(G) and yu1 or yv1 ∈ E(G),
y1 = v1. Then u1v1, yv1 /∈ E(G). So yu1 ∈ E(G) as dG(y) = n−4 and xv1 ∈ E(G)

as dG(v1) ≥ n − 5.
(2.2.2.1) |N [v] ∩ N [x]| = 0.
Then u1x ∈ E(G). Let {w1, w2} = (N (u) ∩ N (v))\N (x). By Proposition 5.2,

G − e′ − S′ would be C1. However, the odd component of C1 containing v must
contain w1 or w2 and the odd component of C1 containing x must contain y or v1.
But yw1, yw2, v1w1, v1w2 ∈ E(G). In each case, G − e′ − S′ is connected and can
not be C1.

(2.2.2.2) |N [v] ∩ N [x]| = 1.
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Then u1x /∈ E(G) and N [v] ∩ N [x] = {u1}. Let {w1} = (N (u) ∩ N (v))\N (x).
By Proposition 5.2, G − e′ − S′ would be C1 or C3.

IfG−e′ − S′ isC1, then the odd component ofC1 containing x must contain y and
the odd component of C1 containing v must contain u1 or w1. But yu1, yw1 ∈ E(G),
a contradiction.

If G − e′ − S′ is C3, then y1 = u1. Since N [v] = {y, u1, v1} and yu1 ∈ E(G), v
does not belong to the trivial odd component ofC3−{a}. Because N [x] = {u, u1, w1}
and uu1 ∈ E(G), x does not belong to the trivial odd component of C3 − {a}. Then
G − e′ − S′ is not C3.

Thus, if G − e− S is C3, then there is an edge e′ = vx such that G − e′ − S′ is not
one of Configuration C1, C2, C3 and C4, which contradicts Lemma 5.1.

Subcase 2.3: G − e − S is C4.
Then {y, v1} is an independent set of G. So yv1 /∈ E(G).
If xv1 /∈ E(G), then y and v1 are adjacent to every vertex in V (G)−{u, v, x, y, v1}.

We consider edge e′ = vx the same as Subcase 2.2.1.
If xv1 ∈ E(G), then |N [v]∩N [x]| ≤ 1 and y is adjacent to every vertex in V (G)−

{u, v, y, v1}. We consider edge e′ = vx with similar discussion in Subcase 2.2.2.
Therefore, G − e − S is not C1, C3 or C4 when |N [u] ∩ N [v]| = 2.
From the above discussion, for any e = uv ∈ E(G), there exists no S ⊆ V (G) −

{u, v} with |S| = n − 6 such that G − e − S is one of Configuration C1, C2, C3
and C4, which contradicts Lemma 5.1. Then G does not contain a path P with length
three, in which each vertex has degree n − 4. �	
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