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Abstract
For graphs G and H , the Ramsey number rk+1(G; H) is defined as the minimum N
such that any edge-coloring of KN by k+1 colors contains either a monochromatic G
in the first k colors or a monochromatic H in the last color. A book B(m)

n is a graph that
consists of n copies of Km+1 sharing a common Km . We shall give upper bounds for
rk+1(Kt,s; B(m)

n ) and rk+1(C2t ; B(m)
n ), some of which are sharp up to the sub-linear

term asymptotically.
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1 Introduction

For graphs G1, . . . ,Gk , the Ramsey number rk(G1, . . . ,Gk) is defined as the mini-
mum N such that if edges of KN are colored by k colors, then there is amonochromatic
Gi in a color i with 1 ≤ i ≤ k.We shallwrite rk+1(G, . . . ,G,Gk+1) as rk+1(G;Gk+1)

in short, and write two color Ramsey number r2(G1,G2) as r(G1,G2), and r(G,G)

as r(G).
Call graph B(m)

n a book that consists of n copies of Km+1 that share a common Km .
As usual, we write B(2)

n as Bn . Book graph plays an important role in graph Ramsey
theory. It was shown by Rousseau and Sheehan [10] that r(Bn) = 4n+2 for infinitely
many n, and r(Bm, Kn) was bounded from above by Li and Rousseau [6]. Moreover,
Conlon [3] obtained r(B(m)

n ) ∼ 2mn as n → ∞.
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For large n, complete bipartite graph Km,n and book B(m)
n seem to look like each

other, and the Ramsey numbers involving them are known to be close in some cases.
Chung and Graham [2] established

rk(Km,n) ≤ (n − 1)(k + k1/m)m

for k ≥ 2, n ≥ m ≥ 2, and

rk(K2,n) ≤ (n − 1)k2 + k + 2.

Recently, Wang et al. obtained the following result. For positive functions f (n) and
g(n), we write f (n) = o(g(n)) if f (n)/g(n) → 0 as n → ∞.

Lemma 1 [11] Let integers k ≥ 1 and s ≥ t ≥ m ≥ 1. Then

rk+1(Kt,s; Km,n) ≤ n + (1 + o(1))(s − t + 1)1/t kmn1−1/t (1)

as n → ∞. There are infinitely many n such that (1) becomes an equality for
rk+1(K2,s; K1,n), rk+1(K3,3; K1,n), r(K2,s, K2,n) and r(K3,3, Km,n) for m ≤ 3.

Since rk+1(G; Km,n) ≤ rk+1(G; B(m)
n ), we shall generalize Lemma 1 by replacing

Km,n with B(m)
n .

Theorem 1 Let s ≥ t ≥ 2 and k,m ≥ 1 be fixed integers. If n is large, then

rk+1(Kt,s; B(m)
n ) ≤ n + (1 + o(1))(s − t + 1)1/t kmn1−1/t . (2)

Corollary 1 Let s ≥ 2 and m ≥ 1 be fixed integers. Then, there are infinitely many n
such that

r(K2,s, B
(m)
n ) = n + (1 + o(1))m

√
(s − 1)n,

and r(K2,s, Km,n) = n + (1 + o(1))m
√

(s − 1)n as such n → ∞.

Corollary 2 Let m ≥ 1 be an integer. Then, there are infinitely many n such that

r(K3,3, B
(m)
n ) = n + (1 + o(1))mn2/3,

and r(K3,3, Km,n) = n + (1 + o(1))mn2/3 as such n → ∞.

Ramsey numbers involving cycles and large stars have attracted much attention.
Parsons [9] obtained

r(C4, K1,n) ≤ n + �√n 	 + 1

for any n ≥ 2, and the equality holds for infinitely many n, and if q is a prime power,
then r(C4, K1,q2) = q2 + q + 1 and r(C4, K1,q2+1) = q2 + q + 2.
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Zhang, Chen and Cheng [13] showed that

rk+1(C4; K1,n) ≤ n + �k
√
n + (k2 + 2k − 3)/4	 + k(k + 1)

2
,

and r3(C4; K1,n) = n + √
4n + 1 + 3 for infinitely many n.

Liu and Li [8] determined r(C2t+1, B
(m)
n ) = 2(m + n − 1) + 1 for t,m ≥ 1, and

Lin and Peng [7] obtained r(Cn, B
(m)
n ) = (m + o(1))n as m ≥ 3 and n → ∞.

We shall investigate the behavior of rk+1(C2t ; B(m)
n ) for large n as follows.

Theorem 2 Let k, t and m be positive integers. If n is large, then

rk+1(C2t ; B(m)
n ) ≤ n + (1 + o(1))ct kmn1/t ,

where ct > 0 is a constant depends on t only. Furthermore, for each t ∈ {2, 3, 5},
there are infinitely many n such that

rk+1(C2t ; B(m)
n )) ≥ n + (1 − o(1))ckn1/t

for such n if n is large, where c = c(t) > 0 is a constant.

2 Proofs of Main Results

For a graph G, denote by v(G) and e(G) the numbers of vertices and edges of G,
respectively. A graph G is said to be H -free if G contains no H as a subgraph. The
Turán number ex(n, H) of H is defined as the maximum e(G) of an H -free graph G
of order n.

A well known result of Kövari, Sós and Turán [5] tells us

ex(N , Kt,s) ≤ 1

2

[
(s − 1)1/t N 2−1/t + (t − 1)N

]
(s ≥ t ≥ 1).

Füredi [4] showed

ex(N , Kt,s) ≤ 1

2

[
(s − t + 1)1/t N 2−1/t + t N + t N 2−2/t ]

for s ≥ t ≥ 1. Thus we know that if s ≥ t ≥ 2, then

ex(N , Kt,s) ≤ (1 + o(1))
1

2
(s − t + 1)1/t N 2−1/t (3)

as N → ∞. For even cycles C2t , Bondy and Simonovits [1] proved for any t ≥ 2,

ex(N ,C2t ) ≤ ct N
1+1/t (4)

for large N , where ct > 0.
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We also need the following result from [11], for which we can replace the condition
ex(N , H) ∼ cN 2−η with ex(N , H) ≥ cN 2−η from the proof as we need a lower
bound for rk+1(H ; K1,n) only. Let δ(G) and Δ(G) be the minimum and maximum
degree of graph G, respectively.

Lemma 2 [11] Let H be a bipartite graph with ex(N , H) ≥ cN 2−η as N → ∞,
where c and η are positive constants. If there are extremal graphs GN of order N for
ex(N , H) such that δ(GN ) ∼ Δ(GN ) as N → ∞, then

rk+1(H ; K1,n) ≥ n + (1 − ε)2kcn1−η

for large n, where ε > 0.

In following proofs, when we color the edges of KN by k + 1 colors, we shall
write the monochromatic graph induced by edges in color i as Gi for 1 ≤ i ≤ k + 1.
For a vertex v, we denote by di (v) as the degree of v in the graph Gi , and thus∑k+1

i=1 di (v) = N − 1 for any v.
We shall not distinguish �x	 and �x� from x for large x as the differences are

negligible for asymptotic computation.

Proof of Theorem 1 For any ε > 0, let

�m = (1 + ε)km(s − t + 1)1/t n1−1/t

and Nm = n + �m . We shall show

rk+1(Kt,s; B(m)
n ) ≤ Nm = n + �m (5)

for all large n by induction on m.
To simplify the proof, we shall start at m = 0 instead of m = 1, in which K0,n is

admitted as Kn that consists of n vertices without any edge.
For the casem = 0, the claimed upper bound follows as any graph of order N0 = n

contains Kn as a subgraph.
Next, we assume that (5) holds for any m ≥ 0, and we shall show that it holds for

m + 1.
Consider an edge coloring of KNm+1 by k + 1 colors. We shall show that there is a

B(m+1)
n in Gk+1 or a Kt,s in some Gi for 1 ≤ i ≤ k.
If there is a vertex v such that dk+1(v) ≥ rk+1(Kt,s; B(m)

n ), then the neighborhood
of v in Gk+1, whose edges are colored by k + 1 colors, contains a subgraph B(m)

n in
color k + 1, hence that and v form a subgraph B(m+1)

n of Gk+1, and thus we are done.
So we may assume that for each vertex v,

dk+1(v) ≤ rk+1(Kt,s; B(m)
n ) − 1 ≤ n + �m − 1,

in which the second inequality comes from induction hypothesis. So we have

e(Gk+1) = 1

2

∑

v

dk+1(v) ≤ 1

2
Nm+1(n + �m − 1).
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Hence

k∑

i=1

e(Gi ) =
(
Nm+1

2

)
− e(Gk+1) ≥ Nm+1

2
(Nm+1 − n − �m)

= Nm+1

2
(�m+1 − �m),

where

�m+1 − �m =
[
(1 + ε)(m + 1) − (1 + ε)m

]
k(s − t + 1)1/t n1−1/t

= (1 + ε)k(s − t + 1)1/t n1−1/t

≥ (
1 + ε

2

)
k(s − t + 1)1/t N 1−1/t

m+1

as n ∼ Nm+1 for large n. Therefore, there is a G j with 1 ≤ j ≤ k such that

e(G j ) ≥ 1

k

k∑

i=1

e(Gi ) ≥ 1

2

(
1 + ε

2

)
(s − t + 1)1/t N 2−1/t

m+1 > ex(Nm+1, Kt,s),

where the last inequality comes from (3). Thus G j contains a Kt,s , and then we get
the desired upper bound. 
�
Proof of Corollary 1 Lemma 7 in [11] says that

r(K2,s, Km,n) ≥ n + (1 + o(1))m
√

(s − 1)n

for any s ≥ 2, m ≥ 1, and infinitely many n, which and Theorem 1 for k = 1 and
t = 2 imply the desired statements since r(K2,s; B(m)

n ) ≥ r(K2,s; Km,n). 
�
Proof of Corollary 2 Lemma 9 in [11] says that

r(K3,3, Km,n) ≥ n + (1 + o(1))mn2/3

for any m ≥ 1 and infinitely many n, which and Theorem 1 for k = 1 imply the
desired statements since r(K3,3; B(m)

n ) ≥ r(K3,3; Km,n). 
�
Proof of Theorem 2 For any ε > 0, let

�m = (1 + ε)ct kmn1/t

and Nm = n + �m , where ct > 0 is the constant in (4). We shall show

rk+1(C2t ; B(m)
n ) ≤ Nm = n + �m (6)
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for all large n. The proof is similar to that for Theorem 1 by induction on m ≥ 0, and
we go to the inductive step directly to show (6) for case m + 1 by considering an edge
coloring of KNm+1 with k + 1 colors, in which Gk+1 contains no B(m)

n .
The similar analysis and induction hypothesis imply

k∑

i=1

e(Gi ) ≥
(
Nm+1

2

)
− e(Gk+1) ≥ Nm+1

2
(�m+1 − �m),

where

�m+1 − �m ≥ (
1 + ε

2

)
ct kN

1/t
m+1.

So some G j with 1 ≤ j ≤ k has e(G j ) > ex(Nm+1,C2t ) and G j contains C2t .
Next, for t ∈ {2, 3, 5}, we shall show that there are infinitely many n such that

rk+1(C2t ; B(m)
n ) ≥ n + (1 − ε)ckn1/t

for these n. To this end, the starting point is the result of Wenger [12] as

ex(n,C2t ) ≥ cn1+1/t = cn2−(t−1)/t ,

where c = c(t) > 0 is a constant. Thus Lemma 2 implies

rk+1(C2t ; K1,n) ≥ n + (1 − o(1))2ckn1−(t−1)/t = n + (1 − o(1))2ckn1/t ,

and it follows by rk+1(C2t ; B(m)
n ) ≥ rk+1(C2t ; K1,n) as required. 
�
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