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Abstract

An equitable k-partition (k > 2) of a vertex set S is a partition of S into k subsets
(may be empty sets) such that the sizes of any two subsets of S differ by at most one.
A maximal-m-clique is a clique with m vertices which is not in a larger clique than
itself. A local-equitable k-coloring of G is an assignment of k colors to the vertices
of G such that, for every maximal clique of G, the coloring of this clique forms an
equitable k-partition of itself. Local-equitable coloring of graphs is a generalization
of proper vertex coloring of graphs. In K4-free planar graphs, the local-equitable 3-
coloring is precisely the same as the proper 3-vertex-coloring. The famous Grétzsch
Theorem states that triangle-free planar graphs are 3-colorable. In this paper we show
that maximal-3-clique-free planar graphs are local-equitable 3-colorable, which is a
generalization of Grétzsch Theorem.

Keywords Local-equitable coloring - Clique-coloring - Planar graph
Mathematics Subject Classification 05C15 - 05C69
1 Introduction

All graphs considered here are finite, simple and connected graphs with at least one
edge.
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Let G = (V, E) be a graph with vertex set V and edge set E. For a vertex v € V,
the open neighborhood N (v) of v is defined as the set of vertices adjacent to v, i.e.,
N(v) = {u | uv € E}. The degree of v is equal to |N (v)|, denoted by dg (v) or simply
d(v). By 6(G) and A(G), we denote the minimum degree and the maximum degree of
the graph G, respectively. For a subset S C V, the subgraph induced by S is denoted
by G[S]. As usual, K, and C, denote the complete graph and cycle on n vertices,
respectively.

A clique of a graph G is a set of pairwise adjacent vertices of G. A clique on
m vertices is called an m-clique of G, and the largest such m is called the clique
number w(G) of G. A maximal-m-clique is an m-clique which is not in a larger
clique than itself. A clique-coloring, also called weak coloring in the literature, of G
is an assignment of colors to the vertices of G in such a way that no maximal clique of
size at least two of G is monochromatic. A k-clique-coloring of G is a clique-coloring
with k colors. If G has a k-clique-coloring, we say that G is k-clique-colorable. The
clique-chromatic number of G, denoted by xc(G), is the smallest integer k£ such that
G is k-clique-colorable. Clearly, every proper vertex coloring of G is also a clique-
coloring and xc(G) < x(G). Clique-coloring has received considerable attention
(see [1-7,9-13, 15-17])).

Local-equitable coloring of graphs is a stronger version of clique-coloring by
coloring all the maximal cliques of a graph equitably, which is proposed in [13]. An
equitable k-partition (k > 2) of a vertex set S is a k-partition of S such that the sizes of
any two subsets of S differ by at most one. A local-equitable k-coloring (k > 2) of G is
an assignment of k colors to the vertices of G such that, for every maximal clique K of
G, the coloring on K is an equitable k-partition of K. Obviously, if a maximal clique
K of G has no more than k vertices, K must receive |K| colors in the local-equitable
k-coloring of G. Thus, if k > x(G), the local-equitable k-coloring of G is a proper
vertex coloring of G. Hence, the local-equitable coloring of graphs is a generalization
of the vertex coloring of graphs. If G has a local-equitable k-coloring, we say that
G is local-equitably k-colorable. The smallest integer k*, such that G admits a local-
equitable k-coloring of G when k > k*, is called the local-equitable chromatic number
and denoted by xrrg(G). Obviously, xc(G) = xLee(G) = x(G). In Ky-free
graphs, a local-equitable 3-coloring is the same as a 3-vertex-coloring. Hence, in
planar graphs, local-equitable 3-coloring includes the hot 3-color problem. In addition,
in K4-free graphs, a local-equitable 2-coloring is also the same as a 2-clique-coloring.
Hence, determining x g ¢ (G) is also hard as follows. First, the 3-color-problem is NP-
complete. Secondly, to decide whether a graph is 2-clique-colorable is NP-complete
on Ky4-free graphs [9], graphs with maximum degree 3 [2] and even (K4, diamond)-
free perfect graphs [6]. Recently, Liang et al. proved that the decision problem of
local-equitable 2-coloring of chordal graphs is NP-complete and the decision problem
of local-equitable 2-coloring of planar graphs is solvable in polynomial time.

The famous Grotzsch Theorem states that triangle-free planar graphs are 3-colorable
[8]. In this paper, we show that maximal-3-clique-free planar graphs are local-equitable
3-colorable, which is a generalization of Grétzsch Theorem.
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2 Local-Equitable Coloring in Planar Graphs

By the definition of local-equitable coloring of graphs, we can see that x; £ (G) < 4
by the Four Color Theorem for a planar graph G. Clearly, a planar graph G is local-
equitable 3-colorable if and only if every maximal 2-clique of G receives two colors
and every other maximal clique of G receives three colors. This implies that the
local-equitable 3-coloring in K4-free planar graphs is precisely the same as the proper
3-vertex-coloring.

Recall that, in planar graphs, the local-equitable 3-coloring is also a stronger ver-
sion of strong clique-coloring. A strong clique-coloring of a graph is defined as a
clique-coloring of G such that every triangle of G receives at least two colors. Mohar
and Skrekovskiwere [15] proved that planar graphs are strongly 3-clique-colorable.
However, a strong 3-clique-coloring of a planar graph is not equivalent to a local-
equitable 3-coloring of this graph, since, if a triangle is a maximal 3-clique, then it
should get three colors in the local-equitable 3-coloring.

The famous Grotzsch Theorem states that triangle-free planar graphs are 3-
colorable. It is natural to ask whether every maximal-3-clique-free planar graph is
local-equitably 3-colorable. If the answer is positive, it would be a generalization of
Grotzsch Theorem. In this section we will answer the question. First, we give some
results, which will be useful.

Theorem 1 [8] Every triangle-free planar graph G is 3-colorable. Moreover, every
3-coloring of a 4-cycle or a 5-cycle of G can be extended to a 3-coloring of the whole
graph.

Theorem 2 [15] Every planar graph is 3-clique-colorable.

Lemma 3 [15] Let G be a connected plane graph whose outer cycle C is a 3-cycle. Let
¢ be a coloring of C with 2 or 3 colors. Then ¢ can be extended to a 3-clique-coloring
of G.

Lemma4 Let G be a planar graph. If G has only maximal 4-cliques, then G is local-
equitable 3-colorable. In addition, for any one given edge e = x1x3 of G, there is a
local-equitable 3-coloring of G such that the ends of e receive different colors or the
same color.

Proof By the 4-Color Theorem, there is a 4-coloring of G. For i = 1,2,3,4, let
U; C V(G) be the set of vertices colored i. Without the loss of generality, assume
that x; € Uy and xp € Up. Letc(v) =2ifv €e Uy U U, c(v) = 3if v € U3 and
c(v) =4 if v € Uy. Then c is a local-equitable 3-coloring of G such that the ends of
e receive the same color. Let c(v) = 1 ifv € Uy, c(v) =2 if v € Uz and ¢(v) = 3
if v € U3 U Us. Then c is a local-equitable 3-coloring of G such that the ends of e
receive different colors. m]

Now, we prove our main result.

Theorem 5 Every planar graph G with no maximal 3-clique is local-equitably 3-
colorable.
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Proof Suppose that G is a counterexample to the theorem with the smallest number
of vertices and assume that G is embedded in the plane already. Clearly, G has both
maximal 2-cliques and maximal 4-cliques. If G has no 4-clique, by Theorem 1, G
is 3-colorable and thus local-equitably 3-colorable, a contradiction. If G has only 4-
cliques, by Lemma 4, we still has a contradiction. Now, we consider the properties of
the minimal counterexample G.

Let K! = [x1x2x3x4] represent an arbitrary 4-clique of G. Assume that x; is inside
the cycle C; = [x2x3x4] in the embedding of G in the plane, and call C; the outer
cycle of K'!. We call that a maximal clique (a 2-clique or a 4-clique) is embedded in
a 4-clique K ! if all the vertices of this clique are on or inside the outer cycle of K.
Further, we can also say that a maximal clique K (a 2-clique or a 4-clique) is younger
than a 4-clique K ! if K2 is embedded in the 4-clique K '. We first have the following
claim about G.

Claim 1. There is no maximal 2-clique of G which is embedded in a 4-clique of G.

Suppose not, let K = [y1y2y3y4] be a4-clique such that there is a maximal 2-clique
embedded in K, and for every 4-clique K’ which is younger than K, no maximal 2-
cliques are embedded in K’. We may assume that [y, y3y4] is the outer cycle of K and
there exist maximal 2-cliques embedded in T = [y y2y3]. We construct G*, G and
G7 as follows. Let G* be the graph obtained from G by deleting the vertices inside
T. Then G* has no maximal 3-clique and is local-equitable 3-colorable since G is the
smallest counterexample. Let Gr be the graph induced by the vertices on 7" and the
vertices inside 7. Then T is a maximal-3-clique of G7 by our assumption that, for
every 4-clique K’ which is younger that K, no maximal 2-cliques are embedded in
K’. We construct G. from G as follows: for every 4-clique K* in Gr which are not
embedded in other 4-clique of G, we deleting all the vertices inside the outer cycle
of K*. Then G%. has no 4-cliques. Let ¢ be the local-equitable-3-coloring of G*. Then
the triangle T receives at least two colors. By Lemma 3, we can extend the coloring on
T into a 3-clique-coloring of G’.. Then every triangle in G, receive at least two colors.
For every triangle 7* in G’ different from 7', we consider the graph G 7+ induced by
the vertices of G which are on or inside 7*. Then G7» has only maximal 4-cliques.
By Lemma 4, we can extend the coloring on 7™ into a local-equitable 3-coloring of
Gr+. Thus we get a local-equitable 3-coloring of G, a contradiction.

According to Claim 1, we consider every 4-clique K* in G which are not embedded
in other 4-clique of G. Let T* be the outer cycle of every K* and G+ be the graph
induced by the vertices on and inside T*. By Claim 1, G+ has only 4-cliques. Let
G’ be the graph obtained by deleting all the vertices inside the outer cycle of every
K* of G. Then G’ has no 4-clique. By Theorem 2, G’ is 3-clique-colorable. Let ¢ be
the 3-clique-coloring of G’. Then every triangle T* of G’ receives at least two colors.
For every triangle T* of G’, by Lemma 4, we can extend the coloring on T* into a
local-equitable 3-coloring of G7+. Thus we get a local-equitable 3-coloring of G, still
a contradiction. O
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