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Abstract
A set S of vertices in a graph G is a total dominating set if every vertex of G is 
adjacent to some other vertex in S. A total dominating set S is minimal if no proper 
subset of S is a total dominating set of G. The upper total domination number, Γ

t
(G) , 

of G is the maximum cardinality of a minimal total dominating set of G. A claw-
free graph is a graph that does not contain a claw K1,3 as an induced subgraph. It 
is known, or can be readily deduced, that if G ≠ K4 is a connected claw-free cubic 
graph of order n, then 1

3
n ≤ �(G) ≤

2

5
n , and 1

3
n ≤ Γ(G) ≤

1

2
n , and these bounds are 

tight, where �(G) and Γ(G) denote the independence number and upper domination 
number, respectively, of G. In this paper, we prove that if G is a connected claw-free 
cubic graph of order n, then 4

9
n ≤ Γ

t
(G) ≤

3

5
n.
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1  Introduction

An isolate-free graph is a graph that contains no isolated vertex, that is, every vertex 
has degree at least 1 in the graph. Let G be an isolate-free graph. A set S of verti-
ces in G is a total dominating set, abbreviated TD-set, of G if every vertex in G is 
adjacent to some other vertex in S. A minimal TD-set in G is a TD-set that contains 
no TD-set of G as a proper subset. The total domination number, �t(G) , of G is the 
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minimum cardinality of a TD-set of G, while the upper total domination number, 
Γt(G) , of G is the maximum cardinality of a minimal TD-set in G. By definition, 
we have �t(G) ≤ Γt(G) . A TD-set of cardinality �t(G) is called a �t-set of G, while 
a minimal TD-set of cardinality Γt(G) is called a Γt-set of G. For recent books on 
domination and total domination in graphs, we refer the reader to [10–12, 16].

A graph is F-free if it does not contain F as an induced subgraph. In particu-
lar, if F = K1,3 , then the graph is claw-free, while if F = K4 − e , then the graph is 
diamond-free. An excellent survey of claw-free graphs has been written by Flan-
drin et al. [7]. Chudnovsky and Seymour recently attracted considerable interest in 
claw-free graphs due to their excellent series of papers in Journal of Combinatorial 
Theory on this topic (see, for example, their paper [3]). A cubic graph (also called 
a 3-regular graph) is a graph in which every vertex has degree 3. Domination and 
total domination in claw-free cubic graphs has been extensively studied in the lit-
erature (see, for example, [5, 6, 8, 9, 13–15, 18, 19, 21, 22] and elsewhere). In this 
paper, we continue the study of total domination in claw-free cubic graphs. Let G 
be a connected, claw-free, cubic graph of order n. Since �t(G) ≥ n∕Δ(G) for every 
isolate-free graph, we observe that �t(G) ≥

1

3
n , and this bound is sharp. Recently, the 

authors [1, 2] proved that if we exclude four graphs, then �t(G) ≤
3

7
n . In this paper 

we prove that 4
9
n ≤ Γt(G) ≤

3

5
n.

1.1 � Graph Theory Notation and Terminology

For notation and graph theory terminology, we in general follow [16]. Specifically, 
let G be a graph with vertex set V(G) and edge set E(G), and of order n(G) = |V(G)| 
and size m(G) = |E(G)| . A neighbor of a vertex v in G is a vertex u that is adjacent 
to v, that is, uv ∈ E(G) . The open neighborhood NG(v) of a vertex v in G is the set of 
neighbors of v, while the closed neighborhood of v is the set NG[v] = {v} ∪ NG(v) . 
We denote the degree of v in G by dG(v) = |NG(v)| . As mentioned earlier, a graph is 
isolate-free if it does not contain an isolated vertex; that is, a vertex of degree 0. For 
disjoint subsets X and Y of vertices in G, we denote the set of edges between X and 
Y by [X, Y].

For a set S ⊆ V(G) , its open neighborhood is the set NG(S) = ∪v∈SNG(v) , and 
its closed neighborhood is the set NG[S] = NG(S) ∪ S . Thus, a set S ⊆ V(G) is 
a TD-set of G if NG(S) = V(G) . The open S-private neighborhood of v is defined 
by pnG(v, S) = {w ∈ V(G) ∶ NG(w) ∩ S = {v}} . The open S-external private 
neighborhood of v is the set epnG(v, S) = pnG(v, S) ⧵ S , while the open S-internal 
private neighborhood of v is defined by ipnG(v, S) = pnG(v, S) ∩ S . We note that 
pnG(v, S) = ipnG(v, S) ∪ epnG(v, S) . If the graph G is clear from the context, we 
omit writing it in the above expressions. For example, we simply write epn(v, S) and 
ipn(v, S) rather than epnG(v, S) and ipnG(v, S) , respectively.

A fundamental property of minimal TD-sets was established by Cockayneet 
al. [4].

Lemma 1  ([4]) A TD-set S in a graph G is a minimal TD-set in G if and only if for 
every vertex v ∈ S , |epn(v, S)| ≥ 1 or |ipn(v, S)| ≥ 1.
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For a set of vertices S ⊆ V(G) , the subgraph induced by S is denoted by G[S]. We 
denote the subgraph obtained from G be deleting a set S of vertices and all edges 
incident with vertices in S by G − S . In particular, if S = {v} , then we simply denote 
G − S by G − v (rather than G − {v} ). We denote the path, cycle, and complete graph 
on n vertices by Pn , Cn , and Kn , respectively, and we denote the complete bipartite 
graph with partite sets of cardinality n and m by Kn,m . A triangle in G is a subgraph 
isomorphic to K3 , whereas a diamond in G is an induced subgraph of G isomorphic 
to K4 with one edge missing, denoted by K4 − e . For k ≥ 1 an integer, we use the 
standard notation [k] = {1,… , k}.

1.2 � A Triangle‑Diamond Necklace

We define in this section what we have coined a triangle-diamond-necklace. A tri-
angle-necklace was defined by the authors in [2] as follows.

Definition 1  ([2]) For k ≥ 1 an integer, let F2k be the connected cubic graph con-
structed as follows. Take 2k disjoint copies T1, T2,… , T2k of a triangle, where 
V(Ti) = {xi, yi, zi} for i ∈ [2k] . Let

where addition is taken modulo 2k (and so, z1 = z2k+1 ). Let F2k be obtained 
from the disjoint union of these 2k triangle by adding the edges Ea ∪ Eb ∪ Ec . 
We call the resulting graph F2k a triangle-necklace with 2k triangles. Let 
Tcubic = {F2k ∶ k ≥ 1} . The triangle-necklaces F2 and F4 are shown in Fig.  1a, b, 
respectively.

Definition 2  For k ≥ 1 an integer, let D1,… ,Dk be k disjoint copies of a dia-
mond, where V(Di) = {ai, bi, ci, di} where aibi is the missing edge in Di for i ∈ [k] . 
Adopting the notation in Definition  1, let G2k be obtained from a triangle-neck-
lace F2k with 2k triangles by deleting the k edges z2iz2i+1 from F2k for all i ∈ [k] , 
adding the k diamonds D1,… ,Dk , and adding the edges aiz2i and biz2i+1 for all 
i ∈ [k] (where addition is taken modulo 2k). We call the resulting graph G2k a 

Ea = {x2i−1x2i ∶ i ∈ [k]}

Eb = {y2i−1y2i ∶ i ∈ [k]}

Ec = {z2iz2i+1 ∶ i ∈ [k]},

(a) F2 (b) F4

Fig. 1   The triangle-necklaces F2 and F4
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triangle-diamond-necklace with k diamonds. Let Gcubic = {G2k ∶ k ≥ 1} . The tri-
angle-diamond-necklace G2 and G4 are shown in Fig. 2a, b, respectively.

2 � Known Results

Li and Virlouvet  [17] established the following upper bound on the independence 
number of a claw-free graph with minimum degree at least �.

Theorem 1  ([17]) If G is a claw-free graph of order n, then �(G) ≤ 2n

�(G)+2
.

Southey and Henning  [20] established upper bounds on the upper domination 
number Γ(G) and the upper total domination number Γt(G) of a r-regular graph for 
all r ≥ 1.

Theorem 2  ([20]) For r ≥ 1 if G is an r-regular graph of order n, then Γ(G) ≤ 1

2
n 

and Γt(G) ≤
n

2−
1

r

.

Both bounds in Theorem  2 are sharp, and the infinite families of graphs that 
achieve equality in these bounds are characterized in [20].

2.1 � The Independence Number and Upper Domination Number

A lower bound on the independence number �(G) of a connected claw-free cubic 
graph follows from a more general result. For k ≥ 3 , let G ≠ Kk+1 be a connected 
k-regular graph of order n. By Brooks Coloring Theorem, the chromatic number 
�(G) of G is at most the maximum degree, namely k. Since the independence num-
ber �(G) ≥ n∕�(G) for all graphs G, this yields �(G) ≥ n∕k . In the special case 
when k = 3 , we have that if G ≠ K4 is a connected cubic graph of order n, then 
�(G) ≥ n∕3 . In particular, this yields the following trivial lower bound on the inde-
pendence number of a claw-free cubic graph, which is certainly known, but we were 
unable to find a reference.

Observation 1  If G ≠ K4 is a connected claw-free graph of order n, then �(G) ≥ 1

3
n.

(a) G2 (b) G4

Fig. 2   The triangle-diamond-necklaces G2 and G4
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The bound of Observation 1 is tight, as may be seen, for example, by taking a 
connected claw-free graph that is diamond-free.

As a special case of Theorem 1, we have the following upper bound on the inde-
pendence number of a connected claw-free cubic graph.

Theorem  3  ([17]) If G is a connected claw-free cubic graph of order n, then 
�(G) ≤

2

5
n.

We remark that the bound of Theorem  3 is tight. For example, suppose that 
G ∈ Gcubic is a triangle-diamond-necklace of order n. Thus, G = G2k for some 
k ≥ 1 , and so G has order n = 10k and �(G) = 4k =

2

5
n . The shaded vertices in 

Fig. 3a, b are examples of an �-set in the graphs G2 and G4 , respectively.
Since Γ(G) ≥ �(G) for all graphs G, the following lower bound on the upper 

domination number of a claw-free cubic graph follows from Observation 1.

Observation 2  If G ≠ K4 is a connected claw-free graph of order n, then Γ(G) ≥ 1

3
n.

As a consequence of the characterizations given in [20], we can readily deduce 
the extremal family of connected claw-free graphs with largest possible upper 
domination number. For k ≥ 1 , let H1 = kK3 and H2 = kK3 consist of k disjoint 
copies of K3 . Let H be the graph obtained from the disjoint union H1 ∪ H2 by 
adding a perfect matching between V(H1) and V(H2) in such a way that the result-
ing graph H is connected. We note that H is a claw-free cubic graph of order 
n = 6k . Moreover, the set V(H1) is a minimal dominating set of H, implying that 
Γ(H) ≥ |V(H1)| =

1

2
n . By Theorem 2, Γ(H) ≤

1

2
n . Consequently, Γ(H) =

1

2
n . Let 

Hcubic be the family of all such graphs H so constructed.

Theorem  4  ([20]) If G is a connected claw-free cubic graph of order n, then 
Γ(G) ≤

1

2
n , with equality if and only if G ∈ Hcubic.

Combining the above lower and upper bounds on the independence number 
and upper total domination number yields the following known result.

Theorem 5  If G ≠ K4 is a connected claw-free cubic graph of order n, then the fol-
lowing properties hold. 

(a) G2 (b) G4

Fig. 3   Claw-free cubic graphs G of order n with �(G) = 2

5
n
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(a)	 1

3
n ≤ �(G) ≤

2

5
n , and

(b)	 1

3
n ≤ Γ(G) ≤

1

2
n.

3 � Main Result

Our aim in this paper is to provide lower and upper bounds on the upper total 
domination number of a claw-free connected cubic graph. We shall prove the fol-
lowing theorem.

Theorem  6  If G is a connected claw-free cubic graph of order n, then 
4

9
n ≤ Γt(G) ≤

3

5
n.

The upper bound in Theorem  6 follows from the more general result 
given in Theorem 2 that if G is a cubic graph of order n, then Γt(G) ≤

3

5
n . We 

remark that this bound is tight, even for claw-free cubic graphs. For exam-
ple, consider a triangle-diamond-necklace G ∈ Gcubic of order n. Thus, G = G2k 
for some k ≥ 1 , and so n = 10k . Adopting the notation in Definition  2, let 
C = {c1,… , ck} , D = {d1,… , dk} , X = {x2i−1 ∶ i ∈ [k]} , Y = {y2i ∶ i ∈ [k]} , and 
Z = {z1, z2,… , z2k} . The set C ∪ D ∪ X ∪ Y ∪ Z is a minimal TD-set of G2k , and so 
Γt(G2k) ≥ 6k =

3

5
n . By Theorem 2, Γt(G2k) ≤

3

5
n . Consequently, Γt(G2k) =

3

5
n . For 

example, the shaded vertices in Fig. 4a, b form a Γt-set of G2 and G3 , respectively. 
We state this formally as follows.

Observation 3  If G ∈ Gcubic has order n, then Γt(G) =
3

5
n.

4 � Proof of Theorem 6

As remarked earlier, the tight upper bound in Theorem 6 follows from Theorem 2. 
In this section, we establish the lower bound in Theorem 6. In order to prove this 

(a) G2 (b) G4

Fig. 4   Claw-free cubic graphs G of order n with Γt(G) =
3

5
n
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lower bound, we need to prove a stronger result. For this purpose, we introduce 
the concept of a special subcubic graph.

Definition 3  We call a graph G a special subcubic graph if the following three prop-
erties hold: (i) G is connected, (ii) Δ(G) ≤ 3 , and (iii) every vertex belongs to a tri-
angle in G.

Every special subcubic graph has minimum degree at least 2, noting that every 
vertex belongs to a triangle. We note that possibly there are no vertices of degree 
2, in which case the special subcubic graph is a claw-free connected cubic graph. 
Hence, the family of claw-free connected cubic graphs is a subfamily of the family 
of special subcubic graphs. An identical proof to that presented in [14] yields the 
following structural property of special subcubic graph.

Lemma 2  If G ≠ K4 is a special subcubic graph, then the vertex set V(G) can be 
uniquely partitioned into sets each of which induces a triangle or a diamond in G.

Adopting the notation in [14] used for claw-free cubic graphs, we refer to the 
unique partition given in Lemma 2 as a triangle-diamond partition of G, abbreviated 
Δ-D-partition. Further we call every triangle and diamond induced by a set in our Δ
-D-partition a unit of the partition. A unit that is a triangle is called a triangle-unit 
and a unit that is a diamond is called a diamond-unit. (We note that a triangle-unit is 
a triangle that does not belong to a diamond.) We say that two units in the Δ-D-par-
tition are adjacent if there is an edge joining a vertex in one unit to a vertex in the 
other unit. If two triangle-units are joined by two edges, then we call these triangle-
units double-bonded. The special subcubic graph G9 , for example, shown in Fig. 5 
has two-triangle units that are double-bonded.

If G ≠ K4 is a special subcubic graph of order n with nt triangle-units and nd dia-
mond-units, then since triangle-unit contributes 3 to the order and every diamond-
unit contributes 4 to the order we note that n = 3nt + 4nd . We are now in a position 
to present our key result.

Theorem 7  If G is a special subcubic graph of order n, then Γt(G) ≥
4

9
n.

Proof  We proceed by induction on the order n ≥ 3 of the special subcubic graph. 
If n = 3 , then G = K3 and Γt(G) = 2 =

2

3
n >

4

9
n . If n = 4 , then either G = K4 or 

G = K4 − e . In both cases, Γt(G) = 2 =
1

2
n >

4

9
n . Since there is no special subcubic 

Fig. 5   The graph G9
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graph on five vertices, n ≠ 5 . Suppose that n = 6 . In this case, G is one of the three 
graphs G6.1 , G6.2 and G6.3 shown in Fig. 6a–c, respectively, where the shaded vertices 
are examples of a Γt-set in the respective graphs. If G = G6.1 , then Γt(G) = 3 , and if 
G = G6.2 or if G = G6.3 , then Γt(G) = 4 . In all cases, Γt(G) ≥ 3 =

1

2
n >

4

9
n.

If n = 7 , then G is one of the two graphs G7.1 and G7.2 shown in Fig. 7a, b, respec-
tively, where the shaded vertices are examples of a Γt-set in the respective graphs. In 
both cases, Γt(G) = 4 =

4

7
n >

4

9
n.

If n = 8 , then G is one of the two graphs G8.1 and G8.2 shown in Fig. 7c, d, respec-
tively, where the shaded vertices are examples of a Γt-set in the respective graphs. In 
both cases, Γt(G) = 4 =

1

2
n >

4

9
n.

If n = 9 , then G consists of three triangle-units, with at least two additional edges 
between the triangle-units. Either G = G9 , in which case Γt(G) = 4 =

4

9
n , or G is 

obtained from G9 by removing one or two edges, in which case Γt(G) = 6 >
4

9
n . 

This establishes the base cases when 3 ≤ n ≤ 9 . Let n ≥ 10 and assume that if G′ 
is a special subcubic graph of order n′ where n′ < n , then Γt(G

�) ≥
4

9
n� . We proceed 

further with a series of claims.

Claim 1  If G contains a diamond-unit, then Γt(G) >
4

9
n.

Proof  Suppose that G contains a diamond-unit D. Let V(D) = {u1, u2, u3, u4} where 
u1u2 is the missing edge in D. Since n ≥ 10 , at least one of u1 and u2 has degree 
3 in G. Let G� = G − V(D) , and let G′ have order n′ , and so n� = n − 4 . We note 
that either G′ is connected, in which case G′ is a special subcubic graph, or G′ has 
exactly two components, each of which is a special subcubic graph. Applying the 
inductive hypothesis to G′ if G′ is connected, or to the two components of G′ if G′ 

(a) G6.1 (b) G6.2 (c) G6.3

Fig. 6   The three special subcubic graphs of order 6

(a) G7.1 (b) G7.2 (c) G8.1 (d) G8.2

Fig. 7   The four special subcubic graphs of order 7 and 8
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is disconnected, we have by linearity that Γt(G
�) ≥

4

9
n� =

4

9
(n − 4) . Every Γt-set of 

G′ can be extended to a minimal TD-set of G by adding to it the vertices u3 and u4 , 
implying that Γt(G) ≥ Γt(G

�) + 2 ≥
4

9
(n − 4) + 2 >

4

9
n . 	�  ◻

By Claim 1, we may assume that G contains no diamond-unit, that is, every 
unit in G is a triangle-unit.

Claim 2  If G contains double-bonded triangle-units, then Γt(G) ≥
4

9
n.

Proof  Suppose that G contains two triangle-units T1 and T2 , where V(Ti) = {xi, yi, zi} 
for i ∈ [2] and where x1x2 and y1y2 are edges in G. Thus, T1 and T2 form dou-
ble-bonded triangle-units. Since n ≥ 10 , at least one of z1 and z2 has degree 3 
in G. We may assume that dG(z2) = 3 . Let z3 be the neighbor of z2 not in T2 . 
Let T3 be the triangle-unit that contains z3 , and let V(T3) = {x3, y3, z3} . Let 
G� = G − (V(T1) ∪ V(T2) ∪ V(T3)) , and let G′ have order n′ , and so n� = n − 9 . We 
note that G′ contains at most three components, and each component of G′ is a spe-
cial subcubic graph. Applying the inductive hypothesis to the components of G′ , 
we have by linearity that Γt(G

�) ≥
4

9
n� =

4

9
(n − 9) =

4

9
n − 4 . Every Γt-set of G′ can 

be extended to a minimal TD-set of G by adding to it the vertices x1, y1, z2 and z3 , 
implying that Γt(G) ≥ Γt(G

�) + 4 ≥
4

9
n . 	�  ◻

By Claim  2, we may assume that G contains no double-bonded triangle-units. 
Thus, by our earlier assumptions, every unit in G is a triangle-unit and every two 
triangle-units are joined by at most one edge.

Claim 3  If a triangle-unit of G contains two vertices of degree 2 in G, then 
Γt(G) >

4

9
n.

Proof  Suppose that G contains a triangle-unit T that contains two vertices of degree 
2 in G. Let V(T) = {x, y, z} , where x and y have degree 2 in G. Let G� = G − V(T) , 
and let G′ have order n′ , and so n� = n − 3 . Applying the inductive hypothesis to the 
special subcubic graph G′ , we have Γt(G

�) ≥
4

9
n� =

4

9
(n − 3) . Every Γt-set of G′ can 

be extended to a minimal TD-set of G by adding to it the vertices x and y, implying 
that Γt(G) ≥ Γt(G

�) + 2 ≥
4

9
(n − 3) + 2 >

4

9
n . 	�  ◻

By Claim 3, we may assume that every triangle-unit of G contains at most one 
vertex of degree 2 in G.

Claim 4  If G contains a vertex of degree 2, then Γt(G) ≥
4

9
n.

Proof  Suppose that G contains a vertex z1 of degree 2 in G. Let T1 be the trian-
gle-unit in G that contains z1 , and let V(T1) = {x1, y1, z1} . By assumption, both 
x1 and y1 have degree 3 in G. Let x2 be a neighbor of x1 not in T1 . Let T2 be the 
triangle-unit in G that contains x2 , and let V(T2) = {x2, y2, z2} . By assumption, 
at least one of y2 and z2 have degree 3 in G. Renaming vertices if necessary, we 
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may assume that y2 has degree 3 in G. Let y3 be a neighbor of y2 not in T2 . Let 
T3 be the triangle-unit in G that contains y3 , and let V(T3) = {x3, y3, z3} . Since G 
contains no double-bonded triangle-units, the units T1 , T2 and T3 are distinct. Let 
G� = G − (V(T1) ∪ V(T2) ∪ V(T3)) , and let G′ have order n′ , and so n� = n − 9 . We 
note that G′ contains at most four components, and each component of G′ is a spe-
cial subcubic graph. Applying the inductive hypothesis to the components of G′ , 
we have by linearity that Γt(G

�) ≥
4

9
n� =

4

9
(n − 9) =

4

9
n − 4 . Every Γt-set of G′ can 

be extended to a minimal TD-set of G by adding to it the vertices x1, y2, y3 and z1 , 
implying that Γt(G) ≥ Γt(G

�) + 4 ≥
4

9
n . 	�  ◻

By Claim 4, we may assume that G is a cubic graph. By our earlier observa-
tions, every unit in G is a triangle-unit, and two triangle-units are joined by at 
most edge. We now construct a graph F from G as follows. For each triangle-unit 
in G, we associate a vertex of F. If two triangle-units in G are joined by an edge, 
then add an edge between the corresponding vertices in F. The graph F is called 
the contraction graph of G. We note that F is a cubic graph of order nt , where 
recall that nt denotes the number of triangle-units in G.

Claim 5  If F is a bipartite graph, then Γt(G) ≥
1

2
n.

Proof  Suppose that F is a bipartite (cubic) graph. Thus, F has two partite sets X and 
Y, and these two sets have the same cardinality. Let S be the set of all vertices in G 
that belong to a triangle-unit associated with the set X, and let S = V(G) ⧵ S . We 
note that |S| = |S| = 1

2
n , and S is the set of all vertices in G that belong to a trian-

gle-unit associated with the set Y. Reconstructing the graph G from the contraction 
graph F, the set S is a dominating set of G. Moreover, every vertex in S is adjacent to 
a unique vertex in S , and every vertex in S is adjacent to a unique vertex in S; that is, 
the set of edges [S, S] between S and S induce a perfect matching in G. In particular, 
|epn(v, S)| = 1 for every vertex v ∈ S . Since G[S] consists of disjoint copies of K3 , 
the graph G[S] is a 2-regular graph and is therefore isolate-free. Thus, S is a TD-
set of G. As observed earlier, |epn(v, S)| = 1 for every vertex v ∈ S . Therefore by 
Lemma 1, the set S is a minimal TD-set of G. Hence, Γt(G) ≥ |S| = 1

2
n . 	�  ◻

By Claim 5, we may assume that F is not a bipartite graph, that is, F contains 
an odd cycle. Let godd denote the odd girth of F, that is, godd is the length of a 
shortest odd cycle in F. We note that godd is an odd integer at least 3. Let C be a 
shortest odd cycle in F (of length godd ), and let C be the cycle

By the odd girth condition, the cycle C is an induced cycle in F. Let Ti be the 
triangle-unit in G corresponding to the vertex vi in F for i ∈ [godd] . Further, let 
V(Ti) = {xi, yi, zi} where xiyi+1 is an edge in G for all i ∈ [godd] , where addition is 
taken modulo godd , and so xgoddy1 is an edge in G. Let

C ∶ v1v2 … vgoddv1.
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and so |R| = 3godd . We consider three cases.
Case 1. godd ≡ 3 (mod 6) . In this case, we let G� = G − R . Let G′ have order 

n′ , and so n� = n − |R| = n − 3godd . We note that G′ contains at most godd com-
ponents, and each component of G′ is a special subcubic graph. Applying 
the inductive hypothesis to the components of G′ , we have by linearity that 
Γt(G

�) ≥
4

9
n� =

4

9
(n − 3godd) =

4

9
n −

4

3
godd . Let

We note that |S| = 4

3
godd . In the special case when godd = 9 , the triangle-units that 

belong to the set R are illustrated in Fig. 8, and the vertices in the set S are given by 
the shaded vertices. Every Γt-set of G′ can be extended to a minimal TD-set of G by 
adding to it the vertices in the set S, implying that

Case 2. godd ≡ 5 (mod 6) . Let v′
1
 be the neighbor of v1 in F that does not belong to 

the cycle C. Let T ′
1
 be the triangle-unit in G corresponding to the vertex v′

1
 in F, and 

let V(T �
1
) = {x�

1
, y�

1
, z�

1
} where z1z′1 is an edge in G. In this case, let R� = R ∪ V(T �

1
) 

and let G� = G − R� . Let G′ have order n′ , and so n� = n − |R�| = n − 3(godd + 1) . 
We note that G′ contains at most godd + 1 components, and each component of G′ 
is a special subcubic graph. Applying the inductive hypothesis to the components 
of G′ , we have by linearity that Γt(G

�) ≥
4

9
n� =

4

9
n −

4

3
(godd + 1) . Let

R =

godd⋃

i=1

V(Ti),

S =

1

3
godd⋃

i=1

{x3i−2, x3i, y3i−1, y3i}.

Γt(G) ≥ Γt(G
�) + |S| ≥

(
4

9
n −

4

3
godd

)
+

4

3
godd =

4

9
n.

Fig. 8   Case 1 when godd = 9
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We note that |S| = 4

3
(godd − 2) + 4 . In the special case when godd = 5 , the triangle-

units that belong to the set R′ are illustrated in Fig. 9, and the vertices in the set S are 
given by the shaded vertices. Every Γt-set of G′ can be extended to a minimal TD-set 
of G by adding to it the vertices in the set S, implying that

Case 3. godd ≡ 1 (mod 6) . By the odd girth condition, there must exists two verti-
ces at distance 2 apart on the cycle C that have no common neighbor in V(F) ⧵ V(C) . 
Renaming the vertices of C, if necessary, we may assume that v2 and vgodd are two 
such vertices on the cycle. Let v′

2
 and v�

godd
 be the neighbors of v2 and vgodd , respec-

tively, in F that do not belong to the cycle C. By assumption, v�
2
≠ v�

godd
 . Let T ′

2
 and 

T �
godd

 be the triangle-units in G corresponding to the vertices v′
2
 and v�

godd
 in F, and let 

V(T �
i
) = {x�

i
, y�

i
, z�

i
} where ziz′i is an edge in G for i ∈ {2, godd} . In this case, let 

S = {z1, z
�

1
, xgodd , ygodd} ∪

1

3
(godd−2)⋃

i=1

{x3i−1, x3i, y3i−1, y3i+1}.

Γt(G) ≥ Γt(G
�) + |S| ≥

(
4

9
n −

4

3
(godd + 1)

)
+

(
4

3
(godd − 2) + 4

)
=

4

9
n.

Fig. 9   Case 2 when godd = 5
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Fig. 10   Case 3 when godd = 7
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R� = R ∪ V(T �
2
) ∪ V(T �

godd
) and let G� = G − R� . Let G′ have order n′ , and so 

n� = n − |R�| = n − 3(godd + 2) . We note that G′ contains at most godd + 2 compo-
nents, and each component of G′ is a special subcubic graph. Applying the inductive 
hypothesis to the components of G′ , we have by linearity that 
Γt(G

�) ≥
4

9
n� =

4

9
n −

4

3
(godd + 2) . Let

We note that |S| = 4

3
(godd − 4) + 8 . In the special case when godd = 7 , the triangle-

units that belong to the set R′ are illustrated in Fig. 10, and the vertices in the set S 
are given by the shaded vertices. Every Γt-set of G′ can be extended to a minimal 
TD-set of G by adding to it the vertices in the set S, implying that

In all three cases, we have Γt(G) ≥
4

9
n , which proves the desired lower bound. 	

� ◻

We remark that the lower bound in Theorem  7 is achieved, for example, by 
the special subcubic graph G = G9 shown in Fig.  5b, noting that in this case 
Γt(G) = 4 =

4

9
n.

Recall the statement of the lower bound in Theorem 6: If G is a claw-free con-
nected cubic graph of order n, then Γt(G) ≥

4

9
n . As observed earlier, every claw-free 

connected cubic graph is a special subcubic graph. Hence, the lower bound in Theo-
rem 6 is an immediate consequence of Theorem 7.

S = {x1, x3, y1, y3, z2, z
�

2
, zgodd , z

�

godd
} ∪

1

3
(godd−4)⋃

i=1

{x3i+1, x3i+3, y3i+2, y3i+3}.

Γt(G) ≥ Γt(G
�) + |S| ≥

(
4

9
n −

4

3
(godd + 2)

)
+

(
4

3
(godd − 4) + 8

)
=

4

9
n.

Fig. 11   A claw-free cubic 
graph G90 of order n = 90 with 
Γt(G) = 44 =

22

45
n
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5 � Concluding Remarks

We close with the following problem that we have yet to settle. Let Fcubic denote the 
family of all connected claw-free cubic graphs.

Problem  1  Determine or estimate the best possible constant ctdom such that 
Γt(G) ≥ ctdom ⋅ n(G) for all G ∈ Fcubic.

By Theorem 7, ctdom ≥
4

9
 . One can prove (or use a computer) that the claw-free 

cubic graph G = G90 of order n = 90 shown in Fig. 11 satisfies Γt(G) = 44 =
22

45
n , 

where the shaded vertices are an example of a Γt-set of G. This yields the following 
lower and upper bounds on the constant ctdom . It would be interesting to determine 
the exact value of ctdom.

Theorem 8  4

9
≤ ctdom ≤

22

45
.
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