ORIGINAL PAPER

Upper Total Domination in Claw‑Free Cubic Graphs

Ammar Babikir1 · Michael A. Henning1

Received: 12 March 2022 / Revised: 11 September 2022 / Accepted: 5 October 2022 / Published online: 12 October 2022 © Springer Japan KK, part of Springer Nature 2022

Abstract

A set *S* of vertices in a graph *G* is a total dominating set if every vertex of *G* is adjacent to some other vertex in *S*. A total dominating set *S* is minimal if no proper subset of *S* is a total dominating set of *G*. The upper total domination number, $\Gamma_{t}(G)$, of *G* is the maximum cardinality of a minimal total dominating set of *G*. A clawfree graph is a graph that does not contain a claw $K_{1,3}$ as an induced subgraph. It is known, or can be readily deduced, that if $G \neq K_4$ is a connected claw-free cubic graph of order *n*, then $\frac{1}{3}n \le \alpha(G) \le \frac{2}{5}n$, and $\frac{1}{3}n \le \Gamma(G) \le \frac{1}{2}n$, and these bounds are tight, where $\alpha(G)$ and $\Gamma(G)$ denote the independence number and upper domination number, respectively, of *G*. In this paper, we prove that if *G* is a connected claw-free cubic graph of order *n*, then $\frac{4}{9}n \le \Gamma_t(G) \le \frac{3}{5}n$.

Keywords Total domination · Upper total domination · Claw-free cubic graph

Mathematics Subject Classifcation 05C69

1 Introduction

An *isolate*-*free* graph is a graph that contains no isolated vertex, that is, every vertex has degree at least 1 in the graph. Let *G* be an isolate-free graph. A set *S* of vertices in *G* is a *total dominating set*, abbreviated TD-set, of *G* if every vertex in *G* is adjacent to some other vertex in *S*. A *minimal TD-set* in *G* is a TD-set that contains no TD-set of *G* as a proper subset. The *total domination number*, $\gamma_t(G)$, of *G* is the

Research supported in part by the University of Johannesburg.

 \boxtimes Michael A. Henning mahenning@uj.ac.za

Ammar Babikir babikirammar@gmail.com

¹ Department of Mathematics and Applied Mathematics, University of Johannesburg, Auckland Park 2006, South Africa

minimum cardinality of a TD-set of *G*, while the *upper total domination number*, Γ*t*(*G*), of *G* is the maximum cardinality of a minimal TD-set in *G*. By defnition, we have $\gamma_t(G) \leq \Gamma_t(G)$. A TD-set of cardinality $\gamma_t(G)$ is called a γ_t -set of *G*, while a minimal TD-set of cardinality $\Gamma_t(G)$ is called a Γ_t -set of G. For recent books on domination and total domination in graphs, we refer the reader to $[10-12, 16]$ $[10-12, 16]$ $[10-12, 16]$ $[10-12, 16]$.

A graph is *F*-*free* if it does not contain *F* as an induced subgraph. In particular, if $F = K_{1,3}$, then the graph is *claw-free*, while if $F = K_4 - e$, then the graph is *diamond-free*. An excellent survey of claw-free graphs has been written by Flandrin et al. [\[7](#page-13-1)]. Chudnovsky and Seymour recently attracted considerable interest in claw-free graphs due to their excellent series of papers in *Journal of Combinatorial Theory* on this topic (see, for example, their paper [[3\]](#page-13-2)). A *cubic graph* (also called a 3-*regular graph*) is a graph in which every vertex has degree 3. Domination and total domination in claw-free cubic graphs has been extensively studied in the literature (see, for example, [\[5](#page-13-3), [6,](#page-13-4) [8](#page-13-5), [9](#page-13-6), [13–](#page-14-2)[15,](#page-14-3) [18](#page-14-4), [19,](#page-14-5) [21](#page-14-6), [22\]](#page-14-7) and elsewhere). In this paper, we continue the study of total domination in claw-free cubic graphs. Let *G* be a connected, claw-free, cubic graph of order *n*. Since $\gamma_t(G) \ge n/\Delta(G)$ for every isolate-free graph, we observe that $\gamma_t(G) \geq \frac{1}{3}n$, and this bound is sharp. Recently, the authors [\[1](#page-13-7), [2\]](#page-13-8) proved that if we exclude four graphs, then $\gamma_t(G) \leq \frac{3}{7}n$. In this paper we prove that $\frac{4}{9}n \leq \Gamma_t(G) \leq \frac{3}{5}n$.

1.1 Graph Theory Notation and Terminology

For notation and graph theory terminology, we in general follow [\[16](#page-14-1)]. Specifcally, let *G* be a graph with vertex set $V(G)$ and edge set $E(G)$, and of order $n(G) = |V(G)|$ and size $m(G) = |E(G)|$. A *neighbor* of a vertex *v* in *G* is a vertex *u* that is adjacent to *v*, that is, $uv \in E(G)$. The *open neighborhood* $N_G(v)$ of a vertex *v* in G is the set of neighbors of *v*, while the *closed neighborhood* of *v* is the set $N_G[v] = \{v\} \cup N_G(v)$. We denote the *degree* of *v* in *G* by $d_G(v) = |N_G(v)|$. As mentioned earlier, a graph is *isolate*-*free* if it does not contain an isolated vertex; that is, a vertex of degree 0. For disjoint subsets *X* and *Y* of vertices in *G*, we denote the set of edges between *X* and *Y* by [*X*, *Y*].

For a set $S \subseteq V(G)$, its *open neighborhood* is the set $N_G(S) = \bigcup_{v \in S} N_G(v)$, and its *closed neighborhood* is the set $N_G[S] = N_G(S) \cup S$. Thus, a set $S \subseteq V(G)$ is a TD-set of *G* if $N_G(S) = V(G)$. The *open S-private neighborhood* of *v* is defined by $\text{pn}_G(v, S) = \{w \in V(G) : N_G(w) \cap S = \{v\}\}\$. The *open S-external private neighborhood* of *v* is the set $epn_G(v, S) = pn_G(v, S) \setminus S$, while the *open S*-*internal private neighborhood* of *v* is defined by $ipn_G(v, S) = pn_G(v, S) \cap S$. We note that $pn_G(v, S) = ipn_G(v, S) ∪ epn_G(v, S)$. If the graph *G* is clear from the context, we omit writing it in the above expressions. For example, we simply write $epn(v, S)$ and ipn(*v*, *S*) rather than epn_{*G*}(*v*, *S*) and ipn_{*G*}(*v*, *S*), respectively.

A fundamental property of minimal TD-sets was established by Cockayneet al. [[4\]](#page-13-9).

Lemma 1 ([[4\]](#page-13-9)) *A TD*-*set S in a graph G is a minimal TD*-*set in G if and only if for every vertex v* ∈ *S*, $|epn(v, S)| \ge 1$ *or* $|ipn(v, S)| \ge 1$.

For a set of vertices $S \subseteq V(G)$, the subgraph induced by *S* is denoted by *G*[*S*]. We denote the subgraph obtained from *G* be deleting a set *S* of vertices and all edges incident with vertices in *S* by $G - S$. In particular, if $S = \{v\}$, then we simply denote *G* − *S* by *G* − *v* (rather than *G* − {*v*}). We denote the *path*, *cycle*, and *complete graph* on *n* vertices by P_n , C_n , and K_n , respectively, and we denote the *complete bipartite graph* with partite sets of cardinality *n* and *m* by $K_{n,m}$. A *triangle* in *G* is a subgraph isomorphic to K_3 , whereas a *diamond* in G is an induced subgraph of G isomorphic to K_4 with one edge missing, denoted by $K_4 - e$. For $k ≥ 1$ an integer, we use the standard notation $[k] = \{1, \ldots, k\}.$

1.2 A Triangle‑Diamond Necklace

We defne in this section what we have coined a *triangle*-*diamond*-*necklace*. A *triangle*-*necklace* was defned by the authors in [[2\]](#page-13-8) as follows.

Definition 1 ([[2\]](#page-13-8)) For $k \ge 1$ an integer, let F_{2k} be the connected cubic graph constructed as follows. Take 2*k* disjoint copies T_1, T_2, \ldots, T_{2k} of a triangle, where *V*(*T_i*) = {*x_i*, *y_i*, *z_i*} for *i* ∈ [2*k*]. Let

$$
E_a = \{x_{2i-1}x_{2i} : i \in [k]\}
$$

\n
$$
E_b = \{y_{2i-1}y_{2i} : i \in [k]\}
$$

\n
$$
E_c = \{z_{2i}z_{2i+1} : i \in [k]\},
$$

where addition is taken modulo 2*k* (and so, $z_1 = z_{2k+1}$). Let F_{2k} be obtained from the disjoint union of these 2*k* triangle by adding the edges $E_a \cup E_b \cup E_c$. We call the resulting graph F_{2k} a **triangle-necklace with** 2*k* **triangles**. Let $\mathcal{T}_{\text{cubic}} = \{F_{2k} : k \ge 1\}.$ The triangle-necklaces F_2 and F_4 are shown in Fig. [1a](#page-2-0), b, respectively.

Definition 2 For $k \ge 1$ an integer, let D_1, \ldots, D_k be *k* disjoint copies of a diamond, where $V(D_i) = \{a_i, b_i, c_i, d_i\}$ where $a_i b_i$ is the missing edge in D_i for $i \in [k]$. Adopting the notation in Definition [1,](#page-2-1) let G_{2k} be obtained from a triangle-necklace F_{2k} with 2*k* triangles by deleting the *k* edges $z_{2i}z_{2i+1}$ from F_{2k} for all $i \in [k]$, adding the *k* diamonds D_1, \ldots, D_k , and adding the edges $a_i z_{2i}$ and $b_i z_{2i+1}$ for all *i* ∈ [*k*] (where addition is taken modulo 2*k*). We call the resulting graph G_{2k} a

Fig. 1 The triangle-necklaces F_2 and F_4

Fig. 2 The triangle-diamond-necklaces G_2 and G_4

triangle-diamond-necklace with *k* **diamonds**. Let $\mathcal{G}_{cubic} = \{G_{2k} : k \geq 1\}$. The triangle-diamond-necklace G_2 and G_4 are shown in Fig. [2](#page-3-0)a, b, respectively.

2 Known Results

r

Li and Virlouvet [\[17](#page-14-8)] established the following upper bound on the independence number of a claw-free graph with minimum degree at least δ .

Theorem 1 ([\[17](#page-14-8)]) If G is a claw-free graph of order n, then $\alpha(G) \leq \frac{2n}{\delta(G)+2}$.

Southey and Henning [[20\]](#page-14-9) established upper bounds on the upper domination number $\Gamma(G)$ and the upper total domination number $\Gamma(G)$ of a *r*-regular graph for all $r \geq 1$.

Theorem 2 ([\[20](#page-14-9)]) *For r* ≥ 1 *if G is an r-regular graph of order n, then* $\Gamma(G) \leq \frac{1}{2}n$ $and \Gamma_{t}(G) \leq \frac{n}{2-\frac{1}{2}}.$

Both bounds in Theorem [2](#page-3-1) are sharp, and the infnite families of graphs that achieve equality in these bounds are characterized in [[20\]](#page-14-9).

2.1 The Independence Number and Upper Domination Number

A lower bound on the independence number $\alpha(G)$ of a connected claw-free cubic graph follows from a more general result. For $k \geq 3$, let $G \neq K_{k+1}$ be a connected *k*-regular graph of order *n*. By Brooks Coloring Theorem, the chromatic number $\chi(G)$ of *G* is at most the maximum degree, namely *k*. Since the independence number $\alpha(G) \geq n / \chi(G)$ for all graphs *G*, this yields $\alpha(G) \geq n / k$. In the special case when $k = 3$, we have that if $G \neq K_4$ is a connected cubic graph of order *n*, then $\alpha(G) \ge n/3$. In particular, this yields the following trivial lower bound on the independence number of a claw-free cubic graph, which is certainly known, but we were unable to fnd a reference.

Observation 1 If $G \neq K_4$ is a connected claw-free graph of order *n*, then $\alpha(G) \geq \frac{1}{3}n$.

The bound of Observation [1](#page-3-2) is tight, as may be seen, for example, by taking a connected claw-free graph that is diamond-free.

As a special case of Theorem [1](#page-3-3), we have the following upper bound on the independence number of a connected claw-free cubic graph.

Theorem 3 ([[17\]](#page-14-8)) *If G is a connected claw*-*free cubic graph of order n*, *then* $\alpha(G) \leq \frac{2}{5}n$.

We remark that the bound of Theorem [3](#page-4-0) is tight. For example, suppose that $G \in \mathcal{G}_{\text{cubic}}$ is a triangle-diamond-necklace of order *n*. Thus, $G = G_{2k}$ for some $k \ge 1$, and so *G* has order $n = 10k$ and $\alpha(G) = 4k = \frac{2}{5}n$. The shaded vertices in Fig. [3](#page-4-1)a, b are examples of an α -set in the graphs G_2 and G_4 , respectively.

Since $\Gamma(G) \ge \alpha(G)$ for all graphs *G*, the following lower bound on the upper domination number of a claw-free cubic graph follows from Observation [1](#page-3-2).

Observation 2 If $G \neq K_4$ is a connected claw-free graph of order *n*, then $\Gamma(G) \geq \frac{1}{3}n$.

As a consequence of the characterizations given in [[20\]](#page-14-9), we can readily deduce the extremal family of connected claw-free graphs with largest possible upper domination number. For $k \ge 1$, let $H_1 = kK_3$ and $H_2 = kK_3$ consist of *k* disjoint copies of K_3 . Let *H* be the graph obtained from the disjoint union $H_1 \cup H_2$ by adding a perfect matching between $V(H_1)$ and $V(H_2)$ in such a way that the resulting graph H is connected. We note that H is a claw-free cubic graph of order $n = 6k$. Moreover, the set $V(H_1)$ is a minimal dominating set of *H*, implying that $\Gamma(H) \ge |V(H_1)| = \frac{1}{2}n$ $\Gamma(H) \ge |V(H_1)| = \frac{1}{2}n$ $\Gamma(H) \ge |V(H_1)| = \frac{1}{2}n$. By Theorem 2, $\Gamma(H) \le \frac{1}{2}n$. Consequently, $\Gamma(H) = \frac{1}{2}n$. Let $\mathcal{H}_{\text{cubic}}$ be the family of all such graphs *H* so constructed.

Theorem 4 ([[20\]](#page-14-9)) *If G is a connected claw*-*free cubic graph of order n*, *then* $\Gamma(G) \leq \frac{1}{2}n$, with equality if and only if $G \in \mathcal{H}_{\text{cubic}}$.

Combining the above lower and upper bounds on the independence number and upper total domination number yields the following known result.

Theorem 5 If $G \neq K_4$ is a connected claw-free cubic graph of order n, then the fol*lowing properties hold*.

Fig. 3 Claw-free cubic graphs *G* of order *n* with $\alpha(G) = \frac{2}{5}n$

(a) $\frac{1}{3}n \le \alpha(G) \le \frac{2}{5}n$, and (b) $\frac{1}{3}n \leq \Gamma(G) \leq \frac{1}{2}n$.

3 Main Result

Our aim in this paper is to provide lower and upper bounds on the upper total domination number of a claw-free connected cubic graph. We shall prove the following theorem.

Theorem 6 *If G is a connected claw*-*free cubic graph of order n*, *then* 4 $\frac{4}{9}n \leq \Gamma_t(G) \leq \frac{3}{5}n.$

The upper bound in Theorem [6](#page-5-0) follows from the more general result given in Theorem [2](#page-3-1) that if *G* is a cubic graph of order *n*, then $\Gamma_t(G) \leq \frac{3}{5}n$. We remark that this bound is tight, even for claw-free cubic graphs. For example, consider a triangle-diamond-necklace $G \in \mathcal{G}_{\text{cubic}}$ of order *n*. Thus, $G = G_{2k}$ for some $k \ge 1$, and so $n = 10k$. Adopting the notation in Definition [2,](#page-2-2) let *C* = { c_1 , …, c_k }, *D* = { d_1 , …, d_k }, *X* = { x_{2i-1} ∶ *i* ∈ [k]}, *Y* = { y_{2i} ∶ *i* ∈ [k]}, and *Z* = { $z_1, z_2, ..., z_{2k}$ }. The set *C* ∪ *D* ∪ *X* ∪ *Y* ∪ *Z* is a minimal TD-set of G_{2k} , and so $\Gamma_t(G_{2k}) \ge 6k = \frac{3}{5}n$. By Theorem [2,](#page-3-1) $\Gamma_t(G_{2k}) \le \frac{3}{5}n$. Consequently, $\Gamma_t(G_{2k}) = \frac{3}{5}n$. For example, the shaded vertices in Fig. [4](#page-5-1)a, b form a Γ_t -set of G_2 and G_3 , respectively. We state this formally as follows.

Observation 3 If $G \in \mathcal{G}_{\text{cubic}}$ has order *n*, then $\Gamma_t(G) = \frac{3}{5}n$.

4 Proof of Theorem [6](#page-5-0)

As remarked earlier, the tight upper bound in Theorem [6](#page-5-0) follows from Theorem [2.](#page-3-1) In this section, we establish the lower bound in Theorem [6](#page-5-0). In order to prove this

Fig. 4 Claw-free cubic graphs *G* of order *n* with $\Gamma_t(G) = \frac{3}{5}n$

lower bound, we need to prove a stronger result. For this purpose, we introduce the concept of a special subcubic graph.

Defnition 3 We call a graph *G* a *special subcubic graph* if the following three properties hold: (i) *G* is connected, (ii) $\Delta(G) \leq 3$, and (iii) every vertex belongs to a triangle in *G*.

Every special subcubic graph has minimum degree at least 2, noting that every vertex belongs to a triangle. We note that possibly there are no vertices of degree 2, in which case the special subcubic graph is a claw-free connected cubic graph. Hence, the family of claw-free connected cubic graphs is a subfamily of the family of special subcubic graphs. An identical proof to that presented in [[14\]](#page-14-10) yields the following structural property of special subcubic graph.

Lemma 2 *If* $G \neq K_4$ *is a special subcubic graph, then the vertex set* $V(G)$ *can be uniquely partitioned into sets each of which induces a triangle or a diamond in G*.

Adopting the notation in [[14\]](#page-14-10) used for claw-free cubic graphs, we refer to the unique partition given in Lemma [2](#page-6-0) as a *triangle*-*diamond partition* of *G*, abbreviated Δ-D-partition. Further we call every triangle and diamond induced by a set in our Δ -D-partition a *unit* of the partition. A unit that is a triangle is called a *triangle-unit* and a unit that is a diamond is called a *diamond-unit*. (We note that a triangle-unit is a triangle that does not belong to a diamond.) We say that two units in the Δ-D-partition are *adjacent* if there is an edge joining a vertex in one unit to a vertex in the other unit. If two triangle-units are joined by two edges, then we call these triangleunits *double-bonded*. The special subcubic graph *G*9, for example, shown in Fig. [5](#page-6-1) has two-triangle units that are double-bonded.

If $G \neq K_4$ is a special subcubic graph of order *n* with n_t triangle-units and n_d diamond-units, then since triangle-unit contributes 3 to the order and every diamondunit contributes 4 to the order we note that $n = 3n_t + 4n_d$. We are now in a position to present our key result.

Theorem 7 If G is a special subcubic graph of order n, then $\Gamma_t(G) \geq \frac{4}{9}n$.

Proof We proceed by induction on the order $n \geq 3$ of the special subcubic graph. If $n = 3$, then $G = K_3$ and $\Gamma_t(G) = 2 = \frac{2}{3}n > \frac{4}{9}n$. If $n = 4$, then either $G = K_4$ or $G = K_4 - e$. In both cases, $\Gamma_t(G) = 2 = \frac{1}{2}n > \frac{4}{9}n$. Since there is no special subcubic

Fig. 5 The graph G_9

Fig. 6 The three special subcubic graphs of order 6

Fig. 7 The four special subcubic graphs of order 7 and 8

graph on five vertices, $n \neq 5$. Suppose that $n = 6$. In this case, G is one of the three graphs $G_{6,1}$, $G_{6,2}$ and $G_{6,3}$ shown in Fig. [6](#page-7-0)a–c, respectively, where the shaded vertices are examples of a Γ_t -set in the respective graphs. If $G = G_{6,1}$, then $\Gamma_t(G) = 3$, and if *G* = *G*_{6.2} or if *G* = *G*_{6.3}, then Γ_t (*G*) = 4. In all cases, Γ_t (*G*) ≥ 3 = $\frac{1}{2}n > \frac{4}{9}n$.

If $n = 7$ $n = 7$, then *G* is one of the two graphs $G_{7,1}$ and $G_{7,2}$ shown in Fig. 7a, b, respectively, where the shaded vertices are examples of a Γ_t -set in the respective graphs. In both cases, $\Gamma_t(G) = 4 = \frac{4}{7}n > \frac{4}{9}n$.

If $n = 8$, then *G* is one of the two graphs $G_{8,1}$ and $G_{8,2}$ shown in Fig. [7](#page-7-1)c, d, respectively, where the shaded vertices are examples of a Γ_t -set in the respective graphs. In both cases, $\Gamma_t(G) = 4 = \frac{1}{2}n > \frac{4}{9}n$.

If $n = 9$, then *G* consists of three triangle-units, with at least two additional edges between the triangle-units. Either $G = G_9$, in which case $\Gamma_t(G) = 4 = \frac{4}{9}n$, or *G* is obtained from G_9 by removing one or two edges, in which case $\Gamma_t(G) = 6 > \frac{4}{9}n$. This establishes the base cases when $3 \le n \le 9$. Let $n \ge 10$ and assume that if *G'* is a special subcubic graph of order *n'* where $n' < n$, then $\Gamma_t(G') \geq \frac{4}{9}n'$. We proceed further with a series of claims.

Claim 1 *If G contains a diamond-unit, then* $\Gamma_t(G) > \frac{4}{9}n$.

Proof Suppose that *G* contains a diamond-unit *D*. Let $V(D) = \{u_1, u_2, u_3, u_4\}$ where $u_1 u_2$ is the missing edge in *D*. Since $n \ge 10$, at least one of u_1 and u_2 has degree 3 in *G*. Let $G' = G - V(D)$, and let G' have order n' , and so $n' = n - 4$. We note that either G' is connected, in which case G' is a special subcubic graph, or G' has exactly two components, each of which is a special subcubic graph. Applying the inductive hypothesis to G' if G' is connected, or to the two components of G' if G'

By Claim [1,](#page-7-2) we may assume that *G* contains no diamond-unit, that is, every unit in *G* is a triangle-unit.

Claim 2 *If G contains double-bonded triangle-units, then* $\Gamma_t(G) \geq \frac{4}{9}n$.

Proof Suppose that *G* contains two triangle-units T_1 and T_2 , where $V(T_i) = \{x_i, y_i, z_i\}$ for $i \in [2]$ and where x_1x_2 and y_1y_2 are edges in *G*. Thus, T_1 and T_2 form double-bonded triangle-units. Since $n \ge 10$, at least one of z_1 and z_2 has degree 3 in *G*. We may assume that $d_G(z_2) = 3$. Let z_3 be the neighbor of z_2 not in T_2 . Let T_3 be the triangle-unit that contains z_3 , and let $V(T_3) = \{x_3, y_3, z_3\}$. Let *G*^{$'$} = *G* − (*V*(*T*₁) ∪ *V*(*T*₂) ∪ *V*(*T*₃)), and let *G*^{$'$} have order *n*^{$'$}, and so *n*^{$'$} = *n* − 9. We note that G' contains at most three components, and each component of G' is a special subcubic graph. Applying the inductive hypothesis to the components of *G*′ , we have by linearity that $\Gamma_t(G') \ge \frac{4}{9}n' = \frac{4}{9}(n-9) = \frac{4}{9}n-4$. Every Γ_t -set of *G*' can be extended to a minimal TD-set of *G* by adding to it the vertices x_1, y_1, z_2 and z_3 , implying that $\Gamma_t(G) \ge \Gamma_t(G') + 4 \ge \frac{4}{9}$ n .

By Claim [2](#page-8-0), we may assume that *G* contains no double-bonded triangle-units. Thus, by our earlier assumptions, every unit in *G* is a triangle-unit and every two triangle-units are joined by at most one edge.

Claim 3 *If a triangle*-*unit of G contains two vertices of degree* 2 *in G*, *then* $\Gamma_t(G) > \frac{4}{9}n.$

Proof Suppose that *G* contains a triangle-unit *T* that contains two vertices of degree 2 in *G*. Let $V(T) = \{x, y, z\}$, where *x* and *y* have degree 2 in *G*. Let $G' = G - V(T)$, and let *G*^{\prime} have order *n*^{\prime}, and so *n*^{\prime} = *n* − 3. Applying the inductive hypothesis to the special subcubic graph *G'*, we have $\Gamma_t(G') \ge \frac{4}{9}n' = \frac{4}{9}(n-3)$. Every Γ_t -set of *G'* can be extended to a minimal TD-set of *G* by adding to it the vertices *x* and *y*, implying that $\Gamma_t(G) \ge \Gamma_t(G') + 2 \ge \frac{4}{9}(n-3) + 2 > \frac{4}{9}$ $n.$

By Claim [3](#page-8-1), we may assume that every triangle-unit of *G* contains at most one vertex of degree 2 in *G*.

Claim 4 *If G contains a vertex of degree* 2, *then* $\Gamma_t(G) \geq \frac{4}{9}n$.

Proof Suppose that *G* contains a vertex z_1 of degree 2 in *G*. Let T_1 be the triangle-unit in *G* that contains z_1 , and let $V(T_1) = \{x_1, y_1, z_1\}$. By assumption, both x_1 and y_1 have degree 3 in *G*. Let x_2 be a neighbor of x_1 not in T_1 . Let T_2 be the triangle-unit in *G* that contains x_2 , and let $V(T_2) = \{x_2, y_2, z_2\}$. By assumption, at least one of y_2 and z_2 have degree 3 in *G*. Renaming vertices if necessary, we

may assume that y_2 has degree 3 in *G*. Let y_3 be a neighbor of y_2 not in T_2 . Let *T*₃ be the triangle-unit in *G* that contains *y*₃, and let $V(T_3) = \{x_3, y_3, z_3\}$. Since *G* contains no double-bonded triangle-units, the units T_1 , T_2 and T_3 are distinct. Let *G*^{$′$} = *G* − (*V*(*T*₁) ∪ *V*(*T*₂) ∪ *V*(*T*₃)), and let *G*^{$′$} have order *n*^{$′$}, and so *n*^{$′$} = *n* − 9. We note that *G*' contains at most four components, and each component of *G*' is a special subcubic graph. Applying the inductive hypothesis to the components of *G*′ , we have by linearity that $\Gamma_t(G') \geq \frac{4}{9}n' = \frac{4}{9}(n-9) = \frac{4}{9}n-4$. Every Γ_t -set of *G'* can be extended to a minimal TD-set of *G* by adding to it the vertices x_1, y_2, y_3 and z_1 , implying that $\Gamma_t(G) \ge \Gamma_t(G') + 4 \ge \frac{4}{9}$ n .

By Claim [4](#page-8-2), we may assume that *G* is a cubic graph. By our earlier observations, every unit in *G* is a triangle-unit, and two triangle-units are joined by at most edge. We now construct a graph *F* from *G* as follows. For each triangle-unit in *G*, we associate a vertex of *F*. If two triangle-units in *G* are joined by an edge, then add an edge between the corresponding vertices in *F*. The graph *F* is called the *contraction graph* of *G*. We note that F is a cubic graph of order n_t , where recall that n_t denotes the number of triangle-units in G .

Claim 5 *If F* is a bipartite graph, then $\Gamma_t(G) \geq \frac{1}{2}n$.

Proof Suppose that *F* is a bipartite (cubic) graph. Thus, *F* has two partite sets *X* and *Y*, and these two sets have the same cardinality. Let *S* be the set of all vertices in *G* that belong to a triangle-unit associated with the set *X*, and let $\overline{S} = V(G) \setminus S$. We note that $|S| = |\overline{S}| = \frac{1}{2}n$, and \overline{S} is the set of all vertices in *G* that belong to a triangle-unit associated with the set *Y*. Reconstructing the graph *G* from the contraction graph *F*, the set *S* is a dominating set of *G*. Moreover, every vertex in *S* is adjacent to a unique vertex in *S*, and every vertex in *S* is adjacent to a unique vertex in *S*; that is, the set of edges $[S, S]$ between *S* and \overline{S} induce a perfect matching in *G*. In particular, $|epn(v, S)| = 1$ for every vertex $v \in S$. Since *G*[*S*] consists of disjoint copies of K_3 , the graph *G*[*S*] is a 2-regular graph and is therefore isolate-free. Thus, *S* is a TDset of *G*. As observed earlier, $|epn(v, S)| = 1$ for every vertex $v \in S$. Therefore by Lemma 1, the set *S* is a minimal TD-set of *G*. Hence, $\Gamma_v(G) \ge |S| = \frac{1}{2}n$. Lemma [1](#page-1-0), the set *S* is a minimal TD-set of *G*. Hence, $\Gamma_t(G) \ge |S| = \frac{1}{2}n$.

By Claim [5,](#page-9-0) we may assume that *F* is not a bipartite graph, that is, *F* contains an odd cycle. Let g_{odd} denote the odd girth of *F*, that is, g_{odd} is the length of a shortest odd cycle in F . We note that g_{odd} is an odd integer at least 3. Let C be a shortest odd cycle in F (of length g_{odd}), and let C be the cycle

$$
C: v_1v_2\ldots v_{g_{odd}}v_1.
$$

By the odd girth condition, the cycle C is an induced cycle in F . Let T_i be the triangle-unit in *G* corresponding to the vertex v_i in *F* for $i \in [g_{odd}]$. Further, let $V(T_i) = \{x_i, y_i, z_i\}$ where $x_i y_{i+1}$ is an edge in *G* for all $i \in [g_{odd}]$, where addition is taken modulo g_{odd} , and so $x_{g_{odd}}$, y_1 is an edge in *G*. Let

$$
R = \bigcup_{i=1}^{g_{\text{odd}}} V(T_i),
$$

and so $|R| = 3g_{\text{odd}}$. We consider three cases.

Case 1. $g_{odd} \equiv 3 \pmod{6}$. In this case, we let $G' = G - R$. Let *G*['] have order *n'*, and so $n' = n - |R| = n - 3g_{odd}$. We note that *G'* contains at most g_{odd} components, and each component of *G*′ is a special subcubic graph. Applying the inductive hypothesis to the components of *G*′ , we have by linearity that $\Gamma_t(G') \geq \frac{4}{9}n' = \frac{4}{9}(n-3g_{\text{odd}}) = \frac{4}{9}n - \frac{4}{3}g_{\text{odd}}$. Let

$$
S = \bigcup_{i=1}^{\frac{1}{3}g_{\text{odd}}} \{x_{3i-2}, x_{3i}, y_{3i-1}, y_{3i}\}.
$$

We note that $|S| = \frac{4}{3} g_{\text{odd}}$. In the special case when $g_{\text{odd}} = 9$, the triangle-units that belong to the set *R* are illustrated in Fig. [8,](#page-10-0) and the vertices in the set *S* are given by the shaded vertices. Every Γ_{*t*}-set of *G'* can be extended to a minimal TD-set of *G* by adding to it the vertices in the set *S*, implying that

$$
\Gamma_t(G) \ge \Gamma_t(G') + |S| \ge \left(\frac{4}{9}n - \frac{4}{3}g_{\text{odd}}\right) + \frac{4}{3}g_{\text{odd}} = \frac{4}{9}n.
$$

Case 2. $g_{\text{odd}} \equiv 5 \pmod{6}$. Let v'_1 be the neighbor of v_1 in *F* that does not belong to the cycle *C*. Let T'_1 be the triangle-unit in *G* corresponding to the vertex v'_1 in *F*, and let $V(T'_1) = \{x'_1, y'_1, z'_1\}$ where $z_1 z'_1$ is an edge in *G*. In this case, let $R' = R \cup V(T'_1)$ and let $G' = G - R'$. Let G' have order n' , and so $n' = n - |R'| = n - 3(g_{\text{odd}} + 1)$. We note that G' contains at most $g_{odd} + 1$ components, and each component of G' is a special subcubic graph. Applying the inductive hypothesis to the components of *G'*, we have by linearity that $\Gamma_t(G') \geq \frac{4}{9}n' = \frac{4}{9}n - \frac{4}{3}(g_{\text{odd}} + 1)$. Let

Fig. 8 Case 1 when $g_{odd} = 9$

Fig. 9 Case 2 when $g_{odd} = 5$

$$
S = \{z_1, z'_1, x_{g_{\text{odd}}}, y_{g_{\text{odd}}}\} \cup \bigcup_{i=1}^{\frac{1}{3}(g_{\text{odd}}-2)} \{x_{3i-1}, x_{3i}, y_{3i-1}, y_{3i+1}\}.
$$

We note that $|S| = \frac{4}{3}(g_{\text{odd}} - 2) + 4$. In the special case when $g_{\text{odd}} = 5$, the triangleunits that belong to the set R' are illustrated in Fig. [9,](#page-11-0) and the vertices in the set S are given by the shaded vertices. Every Γ_t -set of *G*' can be extended to a minimal TD-set of *G* by adding to it the vertices in the set *S*, implying that

$$
\Gamma_t(G) \ge \Gamma_t(G') + |S| \ge \left(\frac{4}{9}n - \frac{4}{3}(g_{\text{odd}} + 1)\right) + \left(\frac{4}{3}(g_{\text{odd}} - 2) + 4\right) = \frac{4}{9}n.
$$

Case 3. $g_{odd} \equiv 1 \pmod{6}$. By the odd girth condition, there must exists two vertices at distance 2 apart on the cycle *C* that have no common neighbor in $V(F) \setminus V(C)$. Renaming the vertices of *C*, if necessary, we may assume that v_2 and $v_{g_{\text{odd}}}$ are two such vertices on the cycle. Let v'_2 and $v'_{g_{\text{odd}}}$ be the neighbors of v_2 and $v_{g_{\text{odd}}}^{\text{out}}$, respectively, in *F* that do not belong to the cycle *C*. By assumption, $v'_2 \neq v'_{g_{\text{odd}}}$. Let T'_2 and $T'_{g_{\text{odd}}}$ be the triangle-units in *G* corresponding to the vertices v'_2 and $v'_{g_{\text{odd}}}$ in *F*, and let $V(T_i') = \{x_i', y_i', z_i'\}$ where $z_i z_i'$ is an edge in *G* for $i \in \{2, g_{odd}\}$. In this case, let

Fig. 10 Case 3 when $g_{odd} = 7$

◻

 $R' = R \cup V(T'_2) \cup V(T'_{g_{\text{odd}}})$ and let $G' = G - R'$. Let *G*' have order *n'*, and so $n' = n - |R'| = n - 3(g_{\text{odd}} + 2)$. We note that *G*′ contains at most $g_{\text{odd}} + 2$ components, and each component of *G*′ is a special subcubic graph. Applying the inductive hypothesis to the components of G' , we have by linearity that $\Gamma_t(G') \geq \frac{4}{9}n' = \frac{4}{9}n - \frac{4}{3}(g_{odd} + 2)$. Let

$$
S = \{x_1, x_3, y_1, y_3, z_2, z'_2, z_{\text{Sodd}}, z'_{\text{Sodd}}\} \cup \bigcup_{i=1}^{\frac{1}{3}(g_{\text{odd}}-4)} \{x_{3i+1}, x_{3i+3}, y_{3i+2}, y_{3i+3}\}.
$$

We note that $|S| = \frac{4}{3}(g_{\text{odd}} - 4) + 8$. In the special case when $g_{\text{odd}} = 7$, the triangleunits that belong to the set R' are illustrated in Fig. [10,](#page-11-1) and the vertices in the set *S* are given by the shaded vertices. Every Γ_t -set of *G'* can be extended to a minimal TD-set of *G* by adding to it the vertices in the set *S*, implying that

$$
\Gamma_t(G) \ge \Gamma_t(G') + |S| \ge \left(\frac{4}{9}n - \frac{4}{3}(g_{\text{odd}} + 2)\right) + \left(\frac{4}{3}(g_{\text{odd}} - 4) + 8\right) = \frac{4}{9}n.
$$

In all three cases, we have $\Gamma_t(G) \geq \frac{4}{9}n$, which proves the desired lower bound.

We remark that the lower bound in Theorem [7](#page-6-2) is achieved, for example, by the special subcubic graph $G = G_9$ shown in Fig. [5b](#page-6-1), noting that in this case $\Gamma_t(G) = 4 = \frac{4}{9}n.$

Recall the statement of the lower bound in Theorem [6:](#page-5-0) If *G* is a claw-free connected cubic graph of order *n*, then $\Gamma_t(G) \geq \frac{4}{9}n$. As observed earlier, every claw-free connected cubic graph is a special subcubic graph. Hence, the lower bound in Theorem [6](#page-5-0) is an immediate consequence of Theorem [7](#page-6-2).

5 Concluding Remarks

We close with the following problem that we have yet to settle. Let $\mathcal{F}_{\text{cubic}}$ denote the family of all connected claw-free cubic graphs.

Problem 1 Determine or estimate the best possible constant c_{tdom} such that $\Gamma_t(G) \geq c_{\text{tdom}} \cdot n(G)$ for all $G \in \mathcal{F}_{\text{cubic}}$.

By Theorem [7,](#page-6-2) $c_{\text{tdom}} \geq \frac{4}{9}$. One can prove (or use a computer) that the claw-free cubic graph $G = G_{90}$ of order $n = 90$ shown in Fig. [11](#page-12-0) satisfies $\Gamma_t(G) = 44 = \frac{22}{45}n$, where the shaded vertices are an example of a Γ_t -set of *G*. This yields the following lower and upper bounds on the constant c_{tdom} . It would be interesting to determine the exact value of c_{tdom} .

Theorem 8 $\frac{4}{9} \leq c_{\text{tdom}} \leq \frac{22}{45}$.

Funding The authors have no relevant financial or non-financial interests to disclose.

Data Availability Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Confict of interest We declare that there is no confict of interests with our submission.

References

- 1. Babikir, A., Henning, M.A.: Domination versus total domination in claw-free cubic graphs. Discrete Math. **345**(4), Paper No. 112784 (2022)
- 2. Babikir, A., Henning, M.A.: Triangles and (total) domination in subcubic graphs. Graphs Comb. **38**(2), Paper 28 (2022)
- 3. Chudnovsky, M., Seymour, P.: Claw-free graphs. V. Global structure. J. Comb. Theory Ser. B **98**(6), 1373–1410 (2008)
- 4. Cockayne, E.J., Dawes, R.M., Hedetniemi, S.T.: Total domination in graphs. Networks **10**(3), 211– 219 (1980)
- 5. Cyman, J., Dettlaff, M., Henning, M.A., Lemańska, M., Raczek, J.: Total domination versus domination in cubic graphs. Graphs Comb. **34**, 261–276 (2018)
- 6. Desormeaux, W.J., Haynes, T.W., Henning, M.A.: Partitioning the vertices of a cubic graph into two total dominating sets. Discrete Appl. Math. **223**, 52–63 (2017)
- 7. Faudree, R., Flandrin, E., Ryjáček, Z.: Claw-free graphs—a survey. Discrete Math. **164**, 87–147 (1997)
- 8. Favaron, O., Henning, M.A.: Paired-domination in claw-free cubic graphs. Graphs Comb. **20**, 447– 456 (2004)
- 9. Favaron, O., Henning, M.A.: Bounds on total domination in claw-free cubic graphs. Discrete Math. **308**, 3491–3507 (2008)
- 10. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Topics in Domination in Graphs. Developments in Mathematics, vol. 64. Springer, Cham (2020). <https://doi.org/10.1007/978-3-030-51117-3>
- 11. Haynes, T.W., Hedetniemi, S.T., Henning, M.A. (eds.): Structures of Domination in Graphs. Developments in Mathematics, vol. 66. Springer, Cham (2021). [https://doi.org/10.1007/](https://doi.org/10.1007/978-3-030-58892-2) [978-3-030-58892-2](https://doi.org/10.1007/978-3-030-58892-2)
- 12. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Domination in Graphs: Core Concepts Springer Monographs in Mathematics. Springer, Cham (2022).. (**DOI 9783031094958**)
- 13. Henning, M.A., Kaemawichanurat, P.: Semipaired domination in claw-free cubic graphs. Graphs Comb. **34**, 819–844 (2018)
- 14. Henning, M.A., Löwenstein, C.: Locating-total domination in claw-free cubic graphs. Discrete Math. **312**, 3107–3116 (2012)
- 15. Henning, M.A., Marcon, A.J.: Semitotal domination in claw-free cubic graphs. Ann. Comb. **20**(4), 799–813 (2016)
- 16. Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer Monographs in Mathematics, p. xiv+178. Springer, New York (2013).. (**ISBN: 978-1-4614-6524-9**)
- 17. Li, H., Virlouvet, C.: Neighborhood conditions for claw-free Hamiltonian graphs. Ars Comb. **29**(A), 109–116 (1990)
- 18. Lichiardopol, N.: On a conjecture on total domination in claw-free cubic graphs: proof and new upper bound. Australas. J. Comb. **51**, 7–28 (2011)
- 19. Southey, J., Henning, M.A.: On a conjecture on total domination in claw-free cubic graphs. Discrete Math. **310**, 2984–2999 (2010)
- 20. Southey, J., Henning, M.A.: Edge weighting functions on dominating sets. J. Graph Theory **72**, 346–360 (2013)
- 21. Yang, W., An, X., Wu, B.: Paired-domination number of claw-free odd-regular graphs. J. Comb. Optim. **33**, 1266–1275 (2017)
- 22. Zhu, E., Shao, Z., Xu, J.: Semitotal domination in claw-free cubic graphs. Graphs Comb. **33**(5), 1119–1130 (2017)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.