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Abstract
A rainbow matching in an edge-colored graph is a matching in which no two edges
have the same color. The color degree of a vertex v is the number of distinct colors on
edges incident to v. Kritschgau [Electron. J. Combin. 27(3), 2020] studied the
existence of rainbow matchings in edge-colored graph G with average color degree at
least 2k, and proved some sufficient conditions for a rainbow marching of size k in G.
The sufficient conditions include that jV ðGÞj � 12k2 þ 4k, or G is a properly edge-
colored graph with jV ðGÞj � 8k. In this paper, we show that every edge-colored
graph G with jV ðGÞj� 4k � 4 and average color degree at least 2k � 1 contains a
rainbow matching of size k. In addition, we also prove that every strongly edge-
colored graph G with average degree at least 2k � 1 contains a rainbow matching of
size at least k. The bound is sharp for complete graphs.

Keywords Rainbow matching · Edge-colored graphs · Strongly edge-colored
graphs

Mathematics Subject Classification Primary 05C15 · Secondary 05C70

1 Introduction

We use [4] for terminology and notation not defined here and only consider simple
undirected graphs. An edge-colored graph is a graph in which each edge is assigned a
color. Given an edge-colored graph G, we call it a properly edge-colored graph if its
any two adjacent edges have different colors. Thus, in a properly edge-colored graph,
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the edges with same color form a matching. If for each color a, the set of edges with
color a forms an induced matching in G, then we say that G is strongly edge-colored.
Therefore, a strongly edge-colored graph is always properly edge-colored, and every
path of length 3 in strongly edge-colored graphs has 3 colors. Furthermore, a
matching M is rainbow if the edges in M have distinct colors.

Given an edge-colored graph G ¼ ðV ;EÞ, we use dðGÞ and d(G) to denote the
minimum degree and the average degree of G respectively. For a vertex v 2 V , the

color degree, d̂GðvÞ of v is the number of distinct colors on edges incident to v. When

it is clear from the context what G is, we would omit the subscript. We use d̂ðGÞ,
D̂ðGÞ and d̂ðGÞ to denote the minimum color degree, the maximum color degree and

the average color degree of G respectively, i.e., d̂ðGÞ ¼ minfd̂ðvÞ : v 2 Vg, D̂ðGÞ ¼
maxfd̂ðvÞ : v 2 Vg and d̂ðGÞ ¼ P

v2V d̂ðvÞ=n. Clearly, for an edge-colored graph G,

we have dðvÞ� d̂ðvÞ for each v 2 V .
Rainbow matchings in edge-colored graphs were originally studied in connection

to the famous conjecture of Ryser [13], which equivalently states that every properly
edge-colored complete bipartite graph Kn;n with n colors contains a rainbow
matching of size n, where n is odd. Unlike uncolored matchings for which the
maximum matching problem is solvable in polynomial time, the maximum rainbow
matching problem is NP-Complete, even for bipartite graphs, mentioned in Garey
and Johnson [5] as the multiple choice matching problem. Therefore, the existence of
rainbow matchings has also been studied in its own right.

During the last decades, many researchers have studied the sufficient conditions to
ensure that a properly edge-colored graph G has a rainbow matching of size dðGÞ. In
[14], Wang asked does there exist a function f ðdðGÞÞ, such that every properly edge-
colored graph G with jV ðGÞj � f ðdðGÞÞ contains a rainbow matching of size dðGÞ.
Diemunsch et al. [3] proved that such function does exist and f ðdðGÞÞ� 98

23 dðGÞ.
Gyárfás and Sárközy [6] improved the result to f ðdðGÞÞ� 4dðGÞ � 3. Later, this

problem was generalized to find the function f ðd̂ðGÞÞ for any edge-colored graph G.

Lo and Tan [12] showed that f ðd̂ðGÞÞ� 4d̂ðGÞ � 4 is sufficient for d̂ðGÞ� 4. As far

as we know, the best result so far is f ðd̂ðGÞÞ� 7
2 d̂ðGÞ þ 2 in [11]. In addition, the

lower bound for the size r(G) of the maximum rainbow matchings in edge-colored
graph G has also been studied independently, in terms of the minimum color degree

of G. In [15], Li and Wang showed that rðGÞ� d5d̂ðGÞ�13
12 e for every edge-colored

graph G, and they conjectured that rðGÞ� dd̂ðGÞ=2e for d̂ðGÞ� 4. Consider a
properly edge-colored K4, whose edges of the same color form a matching of size 2.

For convenience, it is denoted as fK4 . It is easy to verify that fK4 has no a rainbow

matching of size 2, which motivates the restriction d̂ðGÞ� 4. In particular, the bound
of this conjecture is sharp for properly edge-colored complete graphs. This conjecture
was partially confirmed in [10] and fully confirmed in [8]. In particular, Kostochka

and Yancey [8] proved that if G is not fK4 , then rðGÞ� ddðGÞ=2e.
Since the maximum rainbow matchings problem in edge-colored graphs in terms

of the minimum color degree is well studied, it is natural to study this problem under
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the average color degree condition. Michael Ferrara raised [9] the following related
question during the Rocky Mountain and Great Plains Graduate Research Workshop
in Combinatorics in 2017.

Question 1 If G is an edge-colored graph with d̂ðGÞ� 2k, does G contain a rainbow
matching of size k?

Since the average color degree condition is weaker than the minimum color
degree, it is more difficult to study the maximum rainbow matchings problem under
the average color degree condition. Therefore, there are few known results under the
average color degree condition. Recently, Kritschgau [9] studied Question 1, and
proved some sufficient conditions to bound from below r(G) in G with a prescribed
average color degree. We denote by Ct the cycle with t vertices.

Theorem 1 (Kritschgau [9]) Each condition below guarantees that rðGÞ� k for

each edge-colored graph G with d̂ðGÞ� 2k.

ðiÞ jV ðGÞj � 12k2 þ 4k.
ðiiÞ G is properly edge-colored and jV ðGÞj � 8k.
ðiiiÞ G is C4-free.
ðivÞ G is C3-free.

Moreover, if G is C3-free, then we only need to assume d̂ðGÞ[ 2ðk � 1Þ to get
rðGÞ� k.

Though Kritschgau [9] did not resolve Question 1 for all graphs, he believe the
answer is affirmative. Recall that Kostochka and Yancey showed that rðGÞ� k for all

edge-colored graph G with d̂ðGÞ� 2k � 1 and G 6¼ fK4 . Inspired by the result for C3-
free edge-colored graphs in [9], we want to study the consistency of the maximum
rainbow matching between the minimum color degree condition and the average
color degree condition. It would be interesting to ask the following question.

Question 2 If G is not fK4 and d̂ðGÞ� 2k � 1, does G contain a rainbow matching
of size k?

If the answer of Question 2 is affirmative, then it would be best possible, since the

properly edge-colored complete graph Ktþ1 satisfies d̂ðKtþ1Þ� t for each t 2 N, but
rðKtþ1Þ� dt=2e. In this paper, we partially resolve Question 2 and obtain the
following result.

Theorem 2 For all positive integers k, let G is an edge-colored graph with

d̂ðGÞ� 2k � 1 and G 6¼ fK4 . If jV ðGÞj � 4k � 4, then rðGÞ� k.

Remark 1 Theorem 2 implies that, for any k, only finitely many edge-colored graphs
with average color degree at least 2k � 1 can fail to have a rainbow matching of size
k. Furthermore, it is easy to verify that these graphs G that may fail satisfy

jEðGÞj � jV ðGÞj2=4þ 3jV ðGÞj=4. By the Tuŕan number of C3 and C4, these graphs
all contain C3 and C4. Therefore, Theorem 2 can deduce Theorem 1.
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In addition, the topic of rainbow matchings in strongly edge-colored graphs in
terms of the minimum color degree has been also well studied. Note that for strongly

edge-colored graph G, we have dðvÞ ¼ d̂ðvÞ for each v 2 V ðGÞ. In 2015 Babu-
Chandran-Vaidyanathan [1] showed that rðGÞ� b3dðGÞ=4c for any strongly edge-
colored graph G with jV ðGÞj � 2b3dðGÞ=4c. They also proposed an interesting
question: Is there a constant c greater than 3/4 such that every strongly edge-colored
graph G has rðGÞ� bcdðGÞc if jV ðGÞj � 2bcdðGÞc? Clearly, c� 1. The best result so
far on this question is from Cheng-Tan-Wang [2], and they proved the following
result.

Theorem 3 (Cheng-Tan-Wang [2]) If G is a strongly edge-colored graph with
jV ðGÞj � 2dðGÞ þ 1, then rðGÞ� dðGÞ.

Rather than considering host graphs with a prescribed minimum color degree, we
consider host graphs with a prescribed average color degree, and obtain the following
a sharp result.

Theorem 4 For all positive integers k, if G is a strongly edge-colored graph with
dðGÞ� 2k � 1, then rðGÞ� k.

Next, we will prove Theorems 2 and 4 in Sects. 2 and 3 respectively. Finally, we
close the paper with some remarks and conjectures in Sect. 4.

2 Proof of Theorem 2

In this section, we will prove Theorem 2 by induction on k. For k ¼ 1, Theorem 2
clearly holds. In the following, we assume Theorem 2 holds for all k0\k. To the
contrary, suppose that G with edge coloring u is a counterexample to Theorem 2 with
the fewest edges. That is, for each edge-colored graph G0 with jEðG0Þj\jEðGÞj, if G0

satisfies the conditions of Theorem 2, then rðG0Þ � k.
In the following, set V :¼ V ðGÞ and jV j ¼ n. For v 2 V , we use N(v) to denote the

neighborhood of v, i.e., NðvÞ ¼ fu 2 V : uv 2 EðGÞg. For U � V , let G[U] denote
the induced subgraph of G on vertex set U. The color used on G[U] will be denoted
uðG½U �Þ, i.e., uðG½U �Þ ¼ fuðeÞ : e 2 EðG½U �Þg. If U ¼ V , then we write that uðGÞ
simply.

2.1 Preliminary Results

By induction hypothesis, we have rðGÞ ¼ k � 1. Choose a rainbow matching M of
size k � 1 in G, which maximizes juðG½V n V ðMÞ�Þj. Set H :¼ G½V n V ðMÞ�.
Clearly, 0� juðHÞj � k � 1. We say that a color appearing in G is free if it does not
appear on an edge of M, otherwise it is unfree. Therefore, we can divide uðGÞ into
two disjoint subset uf and uuf , where uuf ¼ fuðeÞ : e 2 EðMÞg and
uf ¼ uðGÞ n uuf . In addition, a free edge in G is an edge colored with a free

color. For every vertex v 2 V , let d̂
f ðvÞ and d̂

uf ðvÞ denote the free color degree and
the unfree color degree of v in G respectively. Clearly, we have
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d̂ðvÞ ¼ d̂
f ðvÞ þ d̂

uf ðvÞ. Without loss of generality, let EðMÞ ¼ fuivi : 1� i� k � 1g
and uðuiviÞ ¼ i for every edge uivi 2 EðMÞ.
Claim 1 D̂ðGÞ� juðHÞj þ 2ðk � 1Þ.
Proof Suppose that there is a vertex v 2 V such that d̂ðvÞ� juðHÞj þ 2k � 1. Let
G� ¼ G� v, which is obtained from G by deleting the vertex v and all edges incident

with v. Since d̂ðvÞ� n� 1 and d̂ðGÞ� 2k � 1, we have

d̂ðG�Þ� ð2k � 1Þn� 2ðn� 1Þ
n� 1

[ 2ðk � 1Þ � 1:

By induction hypothesis, G� contains a rainbow matching M � of size k � 1. Let

H� ¼ G½V n V ðM �Þ�. Then we have juðH�Þj � juðHÞj. Since d̂ðvÞ� juðHÞjþ
2k � 1[ juðH�Þj þ 2ðk � 1Þ, there is at least one vertex u 2 NðvÞ such that u 62
V ðM �Þ and uðuvÞ 62 uðM �Þ. Let M 0 ¼ M� [ fuvg, which yields a rainbow matching
of size k in G. h

Furthermore, recalling the result of Kostochka and Yancey, it follows that

d̂ðGÞ\2k � 1, otherwise G contains a rainbow matching of size k. Therefore, we

have 2k � 1� d̂ðGÞ\D̂ðGÞ� juðHÞj þ 2ðk � 1Þ, i.e., juðHÞj � 2. In addition, since
juðHÞj� k � 1, we have k� 3 in the the following proofs.

By the minimality of G, it is easy to prove the following property.

Lemma 1 ([8]) The edges of each color class of u form a forest of stars.

Now, let us consider the relationship between the rainbow matching M and the
induced subgraph H. Given a color a 2 uðHÞ, let Ha denote the subgraph of H with
the edges in color class a, and sHðaÞ denote the number of stars in Ha. Since
uðHÞ � uuf , we partition M into X1;X2;X3 as following:

ð1Þ For every e 2 X1, sH ðuðeÞÞ� 2;
ð2Þ For every e 2 X2, sH ðuðeÞÞ ¼ 1;
ð3Þ For every e 2 X3, sH ðuðeÞÞ ¼ 0.

For v 2 V ðMÞ, let Ef
H ðvÞ ¼ fuv 2 EðGÞ : uðuvÞ 2 uf g. In order to get a more

detailed estimate, we partition X3 into Y1;Y2; Y3 as following:

ðiÞ For every e 2 Y1, every endpoint v of edge e with juðEf
H ðvÞÞj � 1;

ðiiÞ For every e 2 Y2, there is only one endpoint v of edge e with juðEf
H ðvÞÞj � 1;

ðiiiÞ For every e 2 Y3, every endpoint v of edge e with juðEf
H ðvÞÞj ¼ 0.

For convenience, let xj ¼ jXjj and yj ¼ jYjj for 1� j� 3. Next, we will analyze the
partitions above. In Fig. 1, we list three configurations (1.1), (1.2) and (1.3), which
can not appear in G, otherwise, they would yield a rainbow matching of size k in G.
In particular, by Configuration (1.1), we can directly obtain the following claim.

Claim 2 For every edge uivi 2 X1, we have jEf
HðuiÞj þ jEf

HðviÞj ¼ 0.
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Proof Suppose that there is an edge e 2 Ef
H ðuiÞ [ Ef

H ðviÞ such that uðeÞ 2 uf . Since

sH ðuðuiviÞÞ� 2, we can choose an edge e0 2 EðHiÞ such that e0 \ e ¼ ;. Therefore,
we can take e and e0 instead of uivi to yield a rainbow matching of size k. h

Claim 3 For every edge uivi 2 X2, if jEðHiÞj ¼ 1, then we have

jEf
H ðuiÞj þ jEf

H ðviÞj � 4; if jEðHiÞj � 2, then we have jEf
H ðuiÞj þ jEf

H ðviÞj � 2.

We omit the proof of Claim 3 as the proof is similar to that of Claim 2. In Fig. 2
we list the extremal configurations for jEðHiÞj ¼ 1 (see Configuration (2.1)), and
jEðHiÞj � 2 (see Configuration (2.2)). In addition, for Configuration (2.1), we have
the following claim. For simplify, let G3 :¼ G½V n V ðX3Þ�.
Claim 4 For every edge uivi 2 X2, if jEf

H ðuiÞj þ jEf
H ðviÞj ¼ 4, then

d̂
f

G3
ðuiÞ þ d̂

f

G3
ðviÞ ¼ 4.

Proof Fix uivi 2 X2. Since jEf
H ðuiÞj þ jEf

HðviÞj ¼ 4, Configurations (2.1) appears in

G. Let uðEf
H ðuiÞÞ ¼ uðEf

HðviÞÞ ¼ fa; bg. If X1 [ X2 ¼ fuivig, then

d̂
f

G3
ðuiÞ þ d̂

f

G3
ðviÞ ¼ dfHðuiÞ þ d̂

f

H ðviÞ ¼ 4. Next, we consider each edge ujvj 2 X1 [
X2 with ujvj 6¼ uivi. Since EðHiÞ 6¼ ; and EðHjÞ 6¼ ;, there is e1 2 EðHiÞ and e2 2
EðHjÞ such that e1 and e2 either adjacent or disjoint. If e1 \ e2 ¼ ;, then
uðEf

ujvj
ðuiÞÞ ¼ uðEf

ujvj
ðviÞÞ ¼ ;, since Configurations (1.2) in Fig. 1 can not appear

in G. If e1 \ e2 6¼ ;, then uðEf
ujvj

ðuiÞÞ;uðEf
ujvj

ðviÞÞ � fa; bg, since Configurations

(1.3) in Fig. 1 can not appear in G. Therefore, ui and vi can only connect a color

edges or b color edges in G3, i.e., d̂
f

G3
ðuiÞ þ d̂

f

G3
ðviÞ ¼ 4. h

ui
vi

i

α

M H
(1.1)

ui
vi

uj
vj

α
i

j

M H
(1.2)

ui
vi

uj
vj

α
i

j

β

M H
(1.3)

Fig. 1 Some configurations that can not appear in G, where fa; bg � uf

ui

vi
i

α

α

β β

M H
(2.1)

ui

vi

i

i

α

β

M H
(2.2)

Fig. 2 Two extremal
configurations of Claim 3, where
fa; bg � uf
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Claim 5 For every edge uivi 2 Y1, we have d̂ðuiÞ þ d̂ðviÞ þ jEf
H ðuiÞjþ

jEf
H ðviÞj � 2juðHÞj þ nþ 2k � 2.

Proof For every edge uivi 2 Y1, we have juðEf
H ðuiÞÞj � 1 and juðEf

H ðviÞÞj � 1. First,

we claim that juðEf
H ðuiÞÞj � 2 and juðEf

H ðviÞÞj � 2. Otherwise, without loss of
generality, suppose that there are three distinct vertices w1;w2;w3 2 NðuiÞ \ V ðHÞ
such that uðuiw1Þ 6¼ uðuiw2Þ 6¼ uðuiw3Þ and fuðuiw1Þ;uðuiw2Þ;uðuiw3Þg � uf .

Since juðEf
H ðviÞÞj � 1, there is one vertex w4 2 NðviÞ \ V ðHÞ such that

uðviw4Þ 2 uf . Note that w4 may belong to fw1;w2;w3g. In this case, we can
always find two vertex disjoint free edges viw4 and uiwt with t 2 f1; 2; 3g to replace
uivi to yield a rainbow matching of size k in G.

Next, we will discuss all the possible cases. Set f ðiÞ :¼ d̂ðuiÞ þ d̂ðviÞþ
jEf

H ðuiÞj þ jEf
H ðviÞj.

Case 1: juðEf
H ðuiÞÞj ¼ juðEf

HðviÞÞj ¼ 2. In this case, Ef
HðuiÞ [ Ef

H ðviÞ can only
form a properly edge-colored C4. Otherwise, we can always find two vertex disjoint
free edges uiw and viw0 with w;w0 2 V ðHÞ to replace uivi to yield a rainbow

matching of size k in G. Thus, jEf
H ðuiÞj þ jEf

H ðviÞj ¼ 4. By Claim 1, we have

f ðiÞ� 2D̂ðGÞ þ 4� 2juðHÞj þ 4k.

Case 2: juðEf
H ðuiÞÞj ¼ 2 and juðEf

H ðviÞÞ ¼ 1. Under the circumstances, there are
two distinct vertices w1;w2 2 NðuiÞ \ V ðHÞ such that uðuiw1Þ 6¼ uðuiw2Þ and
fuðuiw1Þ;uðuiw2Þg � uf . Similarly, there is also one vertex w3 2 NðviÞ \ V ðHÞ
such that uðviw3Þ 2 uf . In order to avoid a rainbow matching of size k in G, either
w3 ¼ w1 and uðviw3Þ ¼ uðuiw2Þ or w3 ¼ w2 and uðviw3Þ ¼ uðuiw1Þ, which implies

that jEf
HðviÞj ¼ 1. For w 2 V ðHÞnfw1;w2g, if there exists uiw 2 EðGÞ, then either

uðuiwÞ ¼ uðuiw3Þ or uðuiwÞ 2 uuf . Hence, jEf
HðuiÞj þ jEf

HðviÞj � jV ðHÞj�
jEuf

H ðuiÞj þ 1. Note that d̂ðuiÞ ¼ d̂M ðuiÞ þ d̂
f

HðuiÞ þ d̂
uf

H ðuiÞ, d̂
f

H ðuiÞ ¼ 2 and

d̂
uf

H ðuiÞ� jEuf
H ðuiÞj. Therefore, we have

f ðiÞ� 2k � 3þ 2þ d̂
uf

H ðuiÞ þ d̂ðviÞ þ jV ðHÞj � jEuf
H ðuiÞj þ 1

� 2k � 1þ d̂ðviÞ þ n� 2ðk � 1Þ þ 1� nþ 2k þ juðHÞj:

Case 3: juðEf
H ðuiÞÞj ¼ 1 and juðEf

H ðviÞÞ ¼ 2. The case is symmetric to the Case 2.

Case 4: uðEf
HðuiÞÞ ¼ fa1g, uðEf

H ðviÞÞ ¼ fa2g and a1 6¼ a2. It is easy to check

jEf
H ðuiÞj ¼ jEf

HðviÞj ¼ 1, otherwise, we can obtain a rainbow matching of size k in G.

Therefore, f ðiÞ� 2D̂ðGÞ þ 2� 2juðHÞj þ 4k � 2.

Case 5: uðEf
H ðuiÞÞ ¼ uðEf

HðviÞÞ ¼ fag. In this case, we have

f ðiÞ� 2D̂ðGÞ þ jV ðHÞj � 2juðHÞj þ nþ 2k � 2.
In conclusion, since juðHÞj� 2 and n� 4k � 4, we have

f ðiÞ� 2juðHÞj þ nþ 2k � 2. h

Finally, by the definition of Y2, it is easy to get the following claim.
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Claim 6 For every edge uivi 2 Y2, we have jEf
H ðuiÞj þ jEf

H ðviÞj � jV ðHÞj
¼ n� 2k þ 2.

2.2 Estimating the Total Color Degree of G

In this section, using above claims, we will estimate the total color degree of G. For

convenience, let f ðiÞ :¼ d̂ðuiÞ þ d̂ðviÞ þ jEf
H ðuiÞj þ jEf

H ðviÞj for every uivi 2 EðMÞ.
Then we have

X
v2V

d̂ðvÞ ¼
X

v2V ðMÞ
d̂ðvÞ þ

X
w2V ðHÞ

d̂ðwÞ

�
X

uivi2EðMÞ
d̂ðuiÞ þ d̂ðviÞ

� �
þ

X
w2V ðHÞ

d̂
f ðwÞ þ

X
w2V ðHÞ

d̂
uf ðwÞ

�
X

uivi2EðMÞ
f ðiÞ þ jV ðHÞjðk � 1Þ;

ð1Þ

since d̂
uf ðvÞ� juuf j ¼ k � 1 for all v 2 V . Next, we break the proof step into two

cases.
Case 1: juðHÞj ¼ k � 1.

Note that juðHÞj ¼ k � 1, which means that M ¼ X1 [ X2 and D̂ðGÞ� 3ðk � 1Þ.
Recalling Claim 2, we have f ðiÞ� 2D̂ðGÞ� 6ðk � 1Þ for any uivi 2 X1. By Claim 3
and 4, we have

f ðiÞ� maxfd̂uf ðuiÞ þ d̂
uf ðviÞ þ 4þ 4; 2D̂ðGÞ þ 3g� 6ðk � 1Þ þ 3

for any uivi 2 X2, where the last inequality follows from k� 3. Therefore, for any
uivi 2 EðMÞ,

f ðiÞ� 6ðk � 1Þ þ 3:

According to Inequality (1), d̂ðGÞ� 2k � 1 and n� 4k � 4, we have

ð2k � 1Þn�
X
v2V

d̂ðvÞ� ðk � 1Þð6ðk � 1Þ þ 3Þ þ ðn� 2k þ 2Þðk � 1Þ

¼nðk � 1Þ þ 4ðk � 1Þðk � 1Þ þ 3ðk � 1Þ\ð2k � 1Þn;
which is contradictory.
Case 2: juðHÞj\k � 1.

According to Inequality (1), Claim 1–6, juðHÞj ¼ x1 þ x2, and n� 4k � 4, we
have
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X
v2V

d̂ðvÞ�
X

uivi2EðMÞnY1
f ðiÞ þ

X
uivi2Y1

f ðiÞ þ jV ðHÞjðk � 1Þ

� 2D̂ðGÞ � ðk � 1� y1Þ þ
X

uivi2EðMÞnY1
jEf

H ðuiÞj þ jEf
H ðviÞj

� �

þ
X

uivi2Y1
f ðiÞ þ jV ðHÞjðk � 1Þ

� 2D̂ðGÞ � ðk � 1� y1Þ þ 0 � ðx1 þ y3Þ þ 4x2 þ y2ðn� 2k þ 2Þ
þy1 � max

uivi2Y1
f ðiÞ þ jV ðHÞjðk � 1Þ

� 2D̂ðGÞ � ðk � 1� y1Þ þ 4x2 þ y2ðn� 2k þ 2Þ
þy1ð2juðHÞj þ nþ 2k � 2Þ þ ðn� 2k þ 2Þðk � 1Þ
� 2ðjuðHÞj þ 2k � 2Þðk � 1Þ þ 4x2 þ ðy1 þ y2Þðn� 2k þ 2Þ
þðn� 2k þ 2Þðk � 1Þ
¼2ðk � 1Þnþ 4x2 � ðn� 4k þ 4ÞjuðHÞj � ðn� 2k þ 2Þy3
\ð2k � 1Þn;

which is also contradictory.

3 Proof of Theorem 4

In this section, we will prove Theorem 4 by induction on k. The base case k ¼ 1 is
trivial. Suppose k� 2, and let G with strongly edge coloring u be a counterexample
to Theorem 4 with the fewest edges. Let n :¼ jV ðGÞj. By the result of Kostochka and
Yancey [8] and Theorem 3, we may assume that n� 2k þ 1 and dðGÞ� k � 1.

For the sake of contradiction, we still consider the total degree of G in the
following proofs. Since dðGÞ� k � 1, there is a vertex v 2 V ðGÞ such that
dðvÞ� k � 1. By the minimality of G, we have dðvÞ� 1. Let u 2 NðvÞ,
uðuvÞ ¼ a, and Ga denote the subgraph of G with the edges in color class a. Since
G is strongly edge-colored, Ga is an induced matching in G. Hence,
dðuÞ� n� 2jEðGaÞj þ 1. Let G� be obtained from G by deleting the vertex v, u
and all edges in Ga, then rðG�Þ\k � 1. By induction hypothesis, dðG�Þ\2k � 3.
Therefore, we have

ð2k � 1Þn�
X
v2V

dðvÞ ¼ 2 dðuÞ þ dðvÞð Þ þ 2ðjEðGaÞj � 1Þ þ ðn� 2ÞdðG�Þ

\2ðk � 1þ n� 2jEðGaÞj þ 1Þ þ 2ðjEðGaÞj � 1Þ þ ðn� 2Þð2k � 3Þ
¼ð2k � 1Þnþ 4� 2ðjEðGaÞj þ kÞ
\ð2k � 1Þn;

which is contradictory.
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4 Concluding Remarks

Though we were not able to resolve Question 2 for all graphs, we believe the answer
is affirmative:

Conjecture 1 All but fK4 edge-colored graphs G with d̂ðGÞ� 2k � 1 contain a
rainbow matching of size at least k.

We remark that using the ideas introduced in the proof of Theorem 2, for properly
edge-colored graph G, it is conceivable that the lower bound for |V(G)| in Theorem 2
may be further improved. However, it would be very interesting (and seems to be
difficult) to prove conjecture 1 for all properly edge-colored graphs. If conjecture 1
for all properly edge-colored graphs is true, then it would yield a good upper bound
on the rainbow Turán number of matchings. Given a graph H, the rainbow Turán
number of H is defined as the maximum number of edges in a properly edge-colored
graph on n vertices with no rainbow copy of H. The systematic study of rainbow
Turán number was initiated in 2007 by Keevash-Mubayi-Sudakov-Verstraëte [7].
They asymptotically determined the rainbow Turán number for any non-bipartite
graph, but for the rainbow Turán number of matchings, there are still no good results
so far.
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