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Abstract

A rainbow matching in an edge-colored graph is a matching in which no two edges
have the same color. The color degree of a vertex v is the number of distinct colors on
edges incident to v. Kritschgau [Electron. J. Combin. 27(3), 2020] studied the
existence of rainbow matchings in edge-colored graph G with average color degree at
least 2k, and proved some sufficient conditions for a rainbow marching of size £ in G.
The sufficient conditions include that |V (G)| > 12k? + 4k, or G is a properly edge-
colored graph with |V (G)| > 8k. In this paper, we show that every edge-colored
graph G with |V (G)| >4k — 4 and average color degree at least 2k — 1 contains a
rainbow matching of size k. In addition, we also prove that every strongly edge-
colored graph G with average degree at least 2k — 1 contains a rainbow matching of
size at least k. The bound is sharp for complete graphs.

Keywords Rainbow matching - Edge-colored graphs - Strongly edge-colored
graphs

Mathematics Subject Classification Primary 05C15 - Secondary 05C70

1 Introduction

We use [4] for terminology and notation not defined here and only consider simple
undirected graphs. An edge-colored graph is a graph in which each edge is assigned a
color. Given an edge-colored graph G, we call it a properly edge-colored graph if its
any two adjacent edges have different colors. Thus, in a properly edge-colored graph,
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the edges with same color form a matching. If for each color o, the set of edges with
color o forms an induced matching in G, then we say that G is strongly edge-colored.
Therefore, a strongly edge-colored graph is always properly edge-colored, and every
path of length 3 in strongly edge-colored graphs has 3 colors. Furthermore, a
matching M is rainbow if the edges in M have distinct colors.

Given an edge-colored graph G = (V,E), we use 6(G) and d(G) to denote the
minimum degree and the average degree of G respectively. For a vertex v € V, the
color degree, dg (v) of v is the number of distinct colors on edges incident to v. When
it is clear from the context what G is, we would omit the subscript. We use S(G),
A(G) and d(G) to denote the minimum color degree, the maximum color degree and
the average color degree of G respectively, i.e., 6(G) = min{d(v) : v € V'}, A(G) =
max{é’ (v):veV}and d (G)=>er d (v)/n. Clearly, for an edge-colored graph G,
we have d(v) >d(v) for each v € V.

Rainbow matchings in edge-colored graphs were originally studied in connection
to the famous conjecture of Ryser [13], which equivalently states that every properly
edge-colored complete bipartite graph K,, with n colors contains a rainbow
matching of size n, where n is odd. Unlike uncolored matchings for which the
maximum matching problem is solvable in polynomial time, the maximum rainbow
matching problem is NP-Complete, even for bipartite graphs, mentioned in Garey
and Johnson [5] as the multiple choice matching problem. Therefore, the existence of
rainbow matchings has also been studied in its own right.

During the last decades, many researchers have studied the sufficient conditions to
ensure that a properly edge-colored graph G has a rainbow matching of size 6(G). In
[14], Wang asked does there exist a function f'(d(G)), such that every properly edge-
colored graph G with |V (G)| > f(5(G)) contains a rainbow matching of size 6(G).
Diemunsch et al. [3] proved that such function does exist and f(3(G)) < 2£6(G).
Gyarfas and Sark6zy [6] improved the result to f(J(G)) <40(G) — 3. Later, this
problem was generalized to find the function f(6(G)) for any edge-colored graph G.
Lo and Tan [12] showed thatf(é(G)) < 45(G) — 4 is sufficient for 5(G) >4. As far
as we know, the best result so far is /(5(G)) < %5(G) + 2 in [11]. In addition, the
lower bound for the size #(G) of the maximum rainbow matchings in edge-colored
graph G has also been studied independently, in terms of the minimum color degree

of G. In [15], Li and Wang showed that (G) > [W} for every edge-colored

graph G, and they conjectured that r(G)>[6(G)/2] for §(G)>4. Consider a
properly edge-colored K4, whose edges of the same color form a matching of size 2.
For convenience, it is denoted as E. It is easy to verify that IA(Z has no a rainbow
matching of size 2, which motivates the restriction S(G) > 4. In particular, the bound
of this conjecture is sharp for properly edge-colored complete graphs. This conjecture
was partially confirmed in [10] and fully confirmed in [8]. In particular, Kostochka
and Yancey [8] proved that if G is not Ky, then (G) > [5(G)/2].

Since the maximum rainbow matchings problem in edge-colored graphs in terms
of the minimum color degree is well studied, it is natural to study this problem under
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the average color degree condition. Michael Ferrara raised [9] the following related
question during the Rocky Mountain and Great Plains Graduate Research Workshop
in Combinatorics in 2017.

Question 1 If G is an edge-colored graph with c;’(G) > 2k, does G contain a rainbow
matching of size k?

Since the average color degree condition is weaker than the minimum color
degree, it is more difficult to study the maximum rainbow matchings problem under
the average color degree condition. Therefore, there are few known results under the
average color degree condition. Recently, Kritschgau [9] studied Question 1, and
proved some sufficient conditions to bound from below r(G) in G with a prescribed
average color degree. We denote by C; the cycle with ¢ vertices.

Theorem 1 (Kritschgau [9]) Each condition below guarantees that r(G) >k for
each edge-colored graph G with d(G) > 2k.

(i) |V(G)|>12k? + 4k.

(ii) G is properly edge-colored and |V (G)| > 8k.
(i) G is Cy-free.

(iv) G is Cs-free.

Moreover, if G is Cs-free, then we only need to assume d(G) > 2(k — 1) to get
r(G)>k.

Though Kritschgau [9] did not resolve Question 1 for all graphs, he believe the
answer is affirmative. Recall that Kostochka and Yancey showed that (G) > k for all
edge-colored graph G with (G) > 2k — 1 and G # Kj. Inspired by the result for Cs-
free edge-colored graphs in [9], we want to study the consistency of the maximum

rainbow matching between the minimum color degree condition and the average
color degree condition. It would be interesting to ask the following question.

Question 2 If G is not E and d (G) >2k — 1, does G contain a rainbow matching
of size k?

If the answer of Question 2 is affirmative, then it would be best possible, since the

properly edge-colored complete graph K, satisfies d (K1) >t for each ¢ € N, but
r(Ki41) <Tt/2]. In this paper, we partially resolve Question 2 and obtain the
following result.

Theorem 2 For all positive integers k, let G is an edge-colored graph with
d(G)>2k — 1 and G # Ky. If |V (G)| > 4k — 4, then r(G) > k.

Remark 1 Theorem 2 implies that, for any £, only finitely many edge-colored graphs
with average color degree at least 2k — 1 can fail to have a rainbow matching of size
k. Furthermore, it is easy to verify that these graphs G that may fail satisfy
|E(G)| > |V (G)|* /4 + 3|V (G)| /4. By the Tufan number of C; and Cj, these graphs
all contain C; and Cy. Therefore, Theorem 2 can deduce Theorem 1.
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In addition, the topic of rainbow matchings in strongly edge-colored graphs in
terms of the minimum color degree has been also well studied. Note that for strongly

edge-colored graph G, we have d(v) =d(v) for each v € V(G). In 2015 Babu-
Chandran-Vaidyanathan [1] showed that #(G) > |36(G)/4| for any strongly edge-
colored graph G with |V(G)|>2|36(G)/4]. They also proposed an interesting
question: Is there a constant ¢ greater than 3/4 such that every strongly edge-colored
graph G has r(G) > |¢d(G) | if |[V(G)| >2|cd(G)|? Clearly, ¢ < 1. The best result so
far on this question is from Cheng-Tan-Wang [2], and they proved the following
result.

Theorem 3 (Cheng-Tan-Wang [2]) If G is a strongly edge-colored graph with
[V (G)| >206(G) + 1, then r(G) > 6(G).

Rather than considering host graphs with a prescribed minimum color degree, we
consider host graphs with a prescribed average color degree, and obtain the following
a sharp result.

Theorem 4 For all positive integers k, if G is a strongly edge-colored graph with
d(G)>2k — 1, then r(G) > k.

Next, we will prove Theorems 2 and 4 in Sects. 2 and 3 respectively. Finally, we
close the paper with some remarks and conjectures in Sect. 4.

2 Proof of Theorem 2

In this section, we will prove Theorem 2 by induction on k. For £ = 1, Theorem 2
clearly holds. In the following, we assume Theorem 2 holds for all ¥’ <k. To the
contrary, suppose that G with edge coloring ¢ is a counterexample to Theorem 2 with
the fewest edges. That is, for each edge-colored graph G’ with |E(G')| <|E(G)|, if G’
satisfies the conditions of Theorem 2, then »(G') > k.

In the following, set ¥ := V' (G) and | V| = n. For v € V, we use N(v) to denote the
neighborhood of v, i.e., N(v) ={u € V : uv € E(G)}. For U C V, let G[U] denote
the induced subgraph of G on vertex set U. The color used on G[U] will be denoted
o(G[U]), i.e., (G[U]) = {o(e) : e € E(G|U))}. If U = V, then we write that ¢(G)
simply.

2.1 Preliminary Results

By induction hypothesis, we have (G) = k — 1. Choose a rainbow matching M of
size k—1 in G, which maximizes |p(G[V \ V(M)])|. Set H := G[V' \ V(M)].
Clearly, 0 <|p(H)| <k — 1. We say that a color appearing in G is free if it does not
appear on an edge of M, otherwise it is unfiee. Therefore, we can divide ¢(G) into
two disjoint subset ¢, and ¢,, where ¢, ={¢(e):ecEM)} and
¢r = @(G) \ @,r. In addition, a fiee edge in G is an edge colored with a free

color. For every vertex v € V, let d (v) and 3141’(‘}) denote the free color degree and
the unfree color degree of v 1in G respectively. Clearly, we have
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d(v) = c?f(v) + c;’uf(v). Without loss of generality, let E(M) = {uv; : 1 <i<k—1}
and @(u;v;) =i for every edge u;v; € E(M).

Claim 1 A(G) <|p(H)| +2(k —1).

Proof Suppose that there is a vertex v € ¥ such that d(v) > |p(H)| + 2k — 1. Let
G* = G — v, which is obtained from G by deleting the vertex v and all edges incident

with v. Since d(v) <n — 1 and d(G) >2k — 1, we have

iG> 2k—1n—=2(n-1)

>2(k—1)—1.

n—1
By induction hypothesis, G* contains a rainbow matching M* of size k — 1. Let
H* = G[V \ V(M*)]. Then we have |p(H*)|<|@(H)|. Since d(v)>|p(H)|+
2k — 1> |p(H*)| +2(k — 1), there is at least one vertex u € N(v) such that u ¢
V(M*) and @(uv) € (M*). Let M’ = M™* U {uv}, which yields a rainbow matching
of size k in G. U

Furthermore, recalling the result of Kostochka and Yancey, it follows that
5(G) <2k — 1, otherwise G contains a rainbow matching of size k. Therefore, we
have 2k — 1 <d(G) <A(G) < |@(H)| + 2(k — 1), i.e., |@(H)| > 2. In addition, since
|p(H)| <k — 1, we have k >3 in the the following proofs.

By the minimality of G, it is easy to prove the following property.

Lemma 1 ([8]) The edges of each color class of @ form a forest of stars.

Now, let us consider the relationship between the rainbow matching M and the
induced subgraph H. Given a color o« € ¢(H), let H* denote the subgraph of A with
the edges in color class o, and sy(o) denote the number of stars in H*. Since
o(H) C ¢,> We partition M into X1, X3, X3 as following:

) For every e € X, su(p(e)) >2;

(1
(2) Forevery e € Xa, sy(p(e)) = 1;
(3) Forevery e € X3, sy(p(e)) =0.

For v e V(M), let E,;(v) = {uv € E(G) : p(uv) € @s}. In order to get a more
detailed estimate, we partition X3 into Y7, Y>, Y3 as following:

(i) For every e € Y1, every endpoint v of edge e with |p(E};(v))| > 1;
(ii)  For every e € Y», there is only one endpoint v of edge e with | (£}, (v))] > 1;
(iii)  For every e € Y3, every endpoint v of edge e with | (E},(v))| = 0.

For convenience, let x; = |Xj| and y; = |Y;| for 1 <; <3. Next, we will analyze the
partitions above. In Fig. 1, we list three configurations (1.1), (1.2) and (1.3), which

can not appear in G, otherwise, they would yield a rainbow matching of size k in G.
In particular, by Configuration (1.1), we can directly obtain the following claim.

Claim 2 For every edge uv; € Xy, we have |EL,(u;)| + |E},(v;)| = 0.
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_______

Fig. 1 Some configurations that can not appear in G, where {2, f} C ¢

Proof Suppose that there is an edge e € E,, (u;) U El, (v;) such that ¢(e) € ;- Since

su(o(uv;)) > 2, we can choose an edge € € E(H') such that € N e = (). Therefore,
we can take e and ¢’ instead of u;v; to yield a rainbow matching of size k. O

Claim 3 For every edge uyv,€X, if |E(H')|=1, then we have
\EL (u:)| + |EL, (vi)| < 4; if |[E(H')| > 2, then we have |EL,(u)| + |E},(vi)| <2.

We omit the proof of Claim 3 as the proof is similar to that of Claim 2. In Fig. 2
we list the extremal configurations for |E(H')| = 1 (see Configuration (2.1)), and
|E(H")| >2 (see Configuration (2.2)). In addition, for Configuration (2.1), we have
the following claim. For simplify, let G5 := G[V' \ V(X3)].

Claim 4 For every edge uyv,€X, if |Eg(ui)|+|Ef;{(vl-)|:4, then

d,(w) + dg, (v) = 4.

Proof Fix u;v; € X,. Since |E}, (u;)| + |EL, (vi)] = 4, Configurations (2.1) appears in
G.  Let @B, w))=oE,w)={0p. If X UX={uv}, then
c}sz (u;) + 6?;3 (vi) = dg,(u,-) + c?{,,(v,-) = 4. Next, we consider each edge u;v; € X; U
X, with u;v; # u;v;. Since E(H') # () and E(H') # (, there is e; € E(H') and e, €
E(H’) such that e; and e, either adjacent or disjoint. If e; Ne, =0, then
(p(E/;/V/(ui)) (p(E{;v/( v;)) = 0, since Configurations (1.2) in Fig. 1 can not appear
in G. If e1 Ney # 0, then (], (w)), p(E,, (vi)) < {2, B}, since Configurations
(1.3) in Fig. 1 can not appear in G. Therefore, u; and v; can only connect « color

edges or f§ color edges in Gj, i.e., df )+ d/ (vi) = 4. O
Fig. 2 Two extremal rm- - == TN rm——===h TN
configurations of Claim 3, where : Ui el - \ : Uig I )
o, B} C o, I I ! I !
{8} o | RS AT ' |
o I 4 Do ! L)
2 \ / 7 \ /
L N R AN

M M

(2.1) (2.2)
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Claim 5 For every edge wuyv;€Y,, we have c?(u,) + aA'(vi) + |E/1;(u,)\+
|EL (vi)| < 2| (H)| +n + 2k — 2.

Proof For every edge u,v; € Y;, we have |qo(E/;{(u,))| > 1 and |(p(EJ;1(vl))| > 1. First,
we claim that |<p(E’;{(u,))| <2 and |(p(E§;(v,))| <2. Otherwise, without loss of
generality, suppose that there are three distinct vertices wy, wy, w3 € N(u;) NV (H)
such that @(uwi) # @(uwz) # @(uws) and {@(uwi), p(uwz), p(uws)} C ;.
Since |@(E),(v;))]>1, there is one vertex wy € N(v;)NV(H) such that
o(viwg) € ¢,. Note that wy may belong to {wi,ws,ws}. In this case, we can
always find two vertex disjoint free edges viw4 and u,w; with ¢ € {1,2,3} to replace
u;v; to yield a rainbow matching of size k£ in G.

Next, we will discuss all the possible cases. Set f(i):=d(u;)+d(vi)+
Bl ()| + | Efy ().

Case 1: |go(EZ(u,))\ = |q)(E1fL,(v,))| = 2. In this case, EfH(u,) UEZ(V,—) can only
form a properly edge-colored C4. Otherwise, we can always find two vertex disjoint
free edges ww and v;w with w,w' € V(H) to replace u;v; to yield a rainbow
matching of size k in G. Thus, |E};(u)| + |E};(v))| = 4. By Claim 1, we have
S(0) <2A(G) +4 <2|(H)| +4k.

Case 2: |@(E}, (u;))| = 2 and |@(E},(v;)) = 1. Under the circumstances, there are
two distinct vertices wy,w, € N(u;) N V(H) such that ¢(uwi) # @(uw,) and
{o(uw1), @(uwa)} C ;. Similarly, there is also one vertex ws € N(v;) NV (H)
such that @(viws) € ¢;. In order to avoid a rainbow matching of size k in G, either
w3 = wy and @(v;w3) = @(uwy) or w3 = wy and @(v;w3) = @(u;wy), which implies
that |E§,(v,)| = 1. For w € V(H)\{w,ws}, if there exists u;w € E(G), then either
o(uw) = puws) or  @(uw) € . Hence, |E}(u)| + |E};(vi)| < |V (H)|—
IEY (u)| + 1. Note that d(u;) = dys(u;) + dig(us) + doy (i), diy(u;) =2 and
du/( i) <|EY (u;)|. Therefore, we have

F() <2k —3+2+dy (w) +d(vi) + [V(H)| — |EY (u)] + 1
<2k —1+dv)+n—2(k—=1)+1<n+2k+ |p(H)|.

Case 3: |@(E],(u;))| = 1 and |@(E},(v;)) = 2. The case is symmetric to the Case 2.

Case 4: o(E,,(u;)) = {a1}, @(El,(vi)) = {on} and o # ay. It is easy to check
|Ef ()| = |E{,(v,)| = 1, otherwise, we can obtain a rainbow matching of size k in G.
Therefore, /(i) <2A ( )+ 2<2|p(H)| + 4k — 2.

Case 5: o(E, () = (p(E{,(v,')) ={o}. In this case, we have
S(0) S2A(G) + |V(H)| < 2] (H)| +n + 2% = 2.

In  conclusion, since |@p(H)|>2 and n>4k—4, we have
f) <2|eH)|+n+2k-2. O

Finally, by the definition of Y5, it is easy to get the following claim.
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Claim 6 For every edge uyv; €Yy, we have |E§;(u,)| + |Ej];(v,)| <|V(H)|
=n—2k+2.

2.2 Estimating the Total Color Degree of G

In this section, using above claims, we will estimate the total color degree of G. For
convenience, let £ (i) := d(u;) + d(vi) + |Ey, (u;)| + |EL, (v;)] for every uv; € E(M).
Then we have

dodv)y= > dv)+ Y dw)

velr veV (M) weV (H)
< Y (dwy+de)+ Y dw+ Y & g
u;vi€E(M) weV (H) weV (H)
< Y fOFEIKk -1,
u;vi€E(M)

since d” (v) <|g,| =k —1 for all v € V. Next, we break the proof step into two
cases.
Case 1: |p(H)| =k — 1.

Note that |p(H)| = k — 1, which means that M = X; UX; and A(G) <3(k — 1).
Recalling Claim 2, we have f(i) <2A(G) < 6(k — 1) for any u;v; € X;. By Claim 3
and 4, we have

1) < max{d” (u) +d” (v)) + 4 + 4,2A(G) + 3} <6(k —1) + 3

for any u;v; € X, where the last inequality follows from k > 3. Therefore, for any
u;v; € E(M),

i) <6(k—1)+3.
According to Inequality (1), d(G) >2k — 1 and n >4k — 4, we have

2k —1)n< > dv) < (k= 1)(6(k — 1) +3) + (n — 2k +2)(k — 1)

velV
=nk—1)+4k—-1)(k—-1)+3(k—-1)<(2k - 1)n,
which is contradictory.
Case 2: |p(H)| <k — 1.

According to Inequality (1), Claim 1-6, |@(H)| = x| +x,, and n >4k — 4, we
have
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Y AW Y SO+ Y SO+ )k -1)

vev uv;€E(M)\Y, u;vi€Y)
<2AG) - (k=1-y)+ > (1)l + B4 ()
uv;€E(M)\Y,
+ > SO+ )k - 1)
u;v;eY)

<2A(G) - (k=1 =y1) +0- (x1 +y3) + 4x2 +y2(n — 2k +2)
1 - max f(0) + [V (H)|(k 1)

<2A(G) - (k=1 = 1) + %2 + ya(n = 2k +2)
i QleH)| +n+2k—=2)+(n—-2k+2)(k—1)
<2(|p(H)| + 2k = 2)(k — 1) + 4x, + (y1 +2)(n — 2k +2)
(= 2k+2)(k—1)

=2(k—1)n+4x; — (n — 4k +4)|p(H)| — (n — 2k + 2)y3
<(2k — 1)n,

which is also contradictory.

3 Proof of Theorem 4

In this section, we will prove Theorem 4 by induction on k. The base case k = 1 is
trivial. Suppose £ > 2, and let G with strongly edge coloring ¢ be a counterexample
to Theorem 4 with the fewest edges. Let n := |V'(G)|. By the result of Kostochka and
Yancey [8] and Theorem 3, we may assume that n >2k + 1 and 6(G) <k — 1.

For the sake of contradiction, we still consider the total degree of G in the
following proofs. Since 6(G) <k —1, there is a vertex v € V(G) such that
d(v)<k—1. By the minimality of G, we have d(v)>1. Let u € N(v),
¢@(uv) = a, and G* denote the subgraph of G with the edges in color class . Since
G is strongly edge-colored, G* is an induced matching in G. Hence,
d(u)<n—2|E(G*)| + 1. Let G* be obtained from G by deleting the vertex v, u
and all edges in G*, then r(G*) <k — 1. By induction hypothesis, d(G*) <2k — 3.
Therefore, we have

(2k = Dn< Yy d(v) =2(d(u) +d(v) + 2(|E(G*)| = 1) + (n = 2)d(G")

<2k—=14+n-=2|E(G*)|+1)+2(|E(G*)| = 1) + (n — 2)(2k = 3)
=2k —1)n+4-2(E(G*)|+ k)
<(2k — 1)n,

which is contradictory.
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4 Concluding Remarks

Though we were not able to resolve Question 2 for all graphs, we believe the answer
is affirmative:

Conjecture 1 All but K, edge-colored graphs G with d(G)>2k — 1 contain a
rainbow matching of size at least k.

We remark that using the ideas introduced in the proof of Theorem 2, for properly
edge-colored graph G, it is conceivable that the lower bound for |V(G)| in Theorem 2
may be further improved. However, it would be very interesting (and seems to be
difficult) to prove conjecture 1 for all properly edge-colored graphs. If conjecture 1
for all properly edge-colored graphs is true, then it would yield a good upper bound
on the rainbow Turan number of matchings. Given a graph H, the rainbow Turdn
number of H is defined as the maximum number of edges in a properly edge-colored
graph on n vertices with no rainbow copy of H. The systematic study of rainbow
Turdn number was initiated in 2007 by Keevash-Mubayi-Sudakov-Verstraéte [7].
They asymptotically determined the rainbow Turdn number for any non-bipartite
graph, but for the rainbow Turdn number of matchings, there are still no good results
so far.
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