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Abstract
In this paper we consider block-transitive automorphism groups of a 3-design with

small block size. Let G be a block-transitive automorphism group of a nontrivial 3-

ðv; k; kÞ design D with k� 6. Then one of the following occurs:

(i) if G is point-primitive then G is of affine or almost simple type;

(ii) if G is point-imprimitive then G has rank 3 or 4, and D is a 3-ð16; 6; kÞ
design with

k 2 f4; 8; 12; 16; 24; 28; 32; 48; 56; 64; 80; 84; 96; 112; 128; 140; 160g:

Keywords Block-transitive · Automorphism group · 3-design · Point-primitive ·

Point-imprimitive

Mathematics Subject Classification 05B25 · 20B25

1 Introduction

Definition 1 For positive integers t\k\v� 1 and k, a nontrivial t-ðv; k; kÞ design
D is an incidence structure ðP;BÞ satisfying the following properties:
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(i) P is a set of v elements, called points,
(ii) B is a set of b k-subsets of P, called blocks,
(iii) Every t-subset of P is contained in exactly k blocks.

Since all the blocks have the same size k, it follows that each point belongs to the

same number of blocks and we denote that number by r. If no two blocks are

identical, then we speak of a simple t-design. All of the t-designs in this paper will

be simple and nontrivial. A flag of D is a point-block pair ða;BÞ, that is, a 2 P and

B 2 B such that a 2 B.
An automorphism of D is a permutation of P which leaves B invariant. The full

automorphism group of D consists of all automorphisms of D and is denoted by

AutðDÞ. In the following, we will call a group G�AutðDÞ block-transitive
(respectively flag-transitive, point-primitive, point-imprimitive) if G acts transitively

on the blocks (respectively transitively on the flags, primitively on the points,

imprimitively on the points) of D. For short, D is said to be, e.g., block-transitive if

D admits a block-transitive group of automorphisms. A set of blocks of D is called a

set of base blocks with respect to an automorphism group G of D if it contains

exactly one block from each G-orbit on the block set. In particular, if G is a block-

transitive automorphism group of D, then any block B is a base block of D.

Block-transitivity is just one of many conditions that can be imposed on the

automorphism group G of a t-design D. It is well known that if G is a block-

transitive automorphism group of a t-design D with t� 2, then G is also transitive

on points by Block’s Lemma [3]. For a 2-(v, k, 1) design D, by a result of Camina

and Gagen [8], if G acts transitively on the blocks of D and if k j v, then G is point-

primitive. For 2-ðv; k; kÞ designs, it is elementary that if D satisfies v[ ð1
2
kðk �

1Þ � 1Þ2 then the block-transitivity of G implies its point-primitivity [11]. Note also

that, this implication remains true if D is flag-transitive and k[ ðr; kÞ½ðr; kÞ � 1�
(see [12, (2.3.7)]). For t-ðv; k; kÞ designs with t� 4, the block-transitivity of

G�AutðDÞ has an even stronger implication due to the following assertion by

Cameron and Praeger [7, Theorem 2.1]:

Proposition 1 Let D ¼ ðP;BÞ be a t-ðv; k; kÞ design with t� 2. If G�AutðDÞ acts
block-transitively on D, then G also acts bt=2c-homogeneously on P.

The first step to classify the point-primitive designs is to give a reduction of

primitive automorphism groups. The O’Nan-Scott Theorem partitions the finite

primitive permutation groups into a number of types, and here we use the 5-type

subvision introduced in [16], that is

(i) Affine type.

(ii) Almost simple type.

(iii) Product type.

(iv) Simple diagonal type.

(v) Twisted wreath product type.
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In a beautiful classical work, Camina and Gagen [8] showed that if G acts as a

block-transitive group of automorphisms of a 2-(v, k, 1) design and k divides v, then
G/S(G) (where S(G) denotes the maximal soluble normal subgroup of a group G)
has a simple socle. Inspired by the proof of [8, Theorem 2], several others

[5, 10, 19] generalised the result in [8] to prove that groups acting flag-transitively

on 2-(v, k, 1) designs are affine or almost simple. It is worth nothing that both

Davies [10] and Zieschang [19] generalised the result to the situation of 2-designs

with ðr; kÞ ¼ 1. According to Proposition 1, if G acts block-transitively on a t-
ðv; k; kÞ design D with t� 4 then G is either point-primitive of affine or almost

simple type as G is 2-homogeneous on the points of D. Therefore, it is necessary to

study the block-transitive t-ðv; k; kÞ designs with t� 3.

The main aim of this paper is to study 3-ðv; k; kÞ designs admitting a block-

transitive automorphism group G. Firstly, we analyse the case in which the

automorphism group G is point-primitive, and we prove a reduction theorem for

small values of k.

Theorem 1 Let G be a block-transitive automorphism group of a nontrivial 3-
ðv; k; kÞ design with k� 6. If G is point-primitive, then G is of affine type, or almost
simple type.

In fact, there exist many 3-designs admitting a block-transitive, point-primitive

automorphism group of affine or almost simple type. Here are some examples (see

[14]):

Example 1

(i) Let D ¼ ðP;BÞ, where P and B are the points and planes of the affine space

AG(d, 2) with d� 3. Then D is isomorphic to the 3-ð2d; 4; 1Þ design

admitting G ¼ AGLðd; 2Þ as a flag-transitive (block-transitive), point-

primitive automorphism group of affine type.

(ii) Let D be the Mathieu-Witt 3-(22, 6, 1) design, andM22/G�M22 : 2. Then G
is a flag-transitive (block-transitive), point-primitive automorphism group of

D with almost simple action.

From Proposition 1, we know that the block-transitivity does not necessarily

imply point-primitivity when t ¼ 2; 3. For example, let D be a 2-design consisting

of the points and hyperplanes of any Desarguesian projective space PG(n, q) where
n� 2 and ðqnþ1 � 1Þ=ðq� 1Þ is not a prime, and take G as the group generated by a

Singer cycle (see [11]).

For the point-imprimitive case, Delandtsheer and Doyen have shown in [11] that

if D is a t-ðv; k; kÞ design admitting a block-transitive, point-imprimitive automor-

phism group G then v�ð k
2

� �
� 1Þ2. Assume that G has a system of l classes of

imprimitivity each of size c. In [6, Corollaries 3.2 and 3.4], it was shown that for a

block-transitive, point-imprimitive 3-ðv; k; kÞ design with l ¼ 2 or c ¼ 2 then

v� k
2

� �
þ 1. Moreover, Mann and Tuan [17] gave a stronger result that any block-
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transitive, point-imprimitive 3-design satisfies v� k
2

� �
þ 1. Thus for a fixed block

size k, there are only finitely many t-ðv; k; kÞ designs with a block-transitive

automorphism group which is point-imprimitive.

Secondly, the other purpose of this paper is to study 3-ðv; k; kÞ designs admitting

a block-transitive, point-imprimitive automorphism group and prove the following

theorem:

Theorem 2 Let G be a block-transitive automorphism group of a nontrivial 3-
ðv; k; kÞ design D with k� 6. If G is point-imprimitive then G has rank 3 or 4, and D
is a 3-ð16; 6; kÞ design, where k is one of the following:

f46; 82; 1217; 168; 245; 281; 324; 487; 561; 642; 801; 841; 964; 1121; 1281; 1401; 1601g:

Remark 1 The notation k ¼ an means that k ¼ a and there are exactly n pairwise

non-isomorphic such 3-ð16; 6; kÞ designs. The base block and a corresponding

automorphism group of each design are given in Table 5.

The paper is organized as follows. In Sect. 2, we introduce some preliminary

results that are important for the remainder of the paper. In Sects. 3 and 4, we shall

give the proofs of the Theorems 1 and 2 respectively.

2 Preliminaries

The notation and terminology used is standard and can be found in [9, 12] for design

theory and in [13, 15, 18] for group theory. In particular, if G is a permutation group

on point set P, and a 2 B � P, then Ga denotes the stabilizer of a point a in G, and
GB denotes the setwise stabilizer of B in G, and GaB denotes the stabilizer of a flag

ða;BÞ in G.

Lemma 1 [9, 1.2, 1.9] The parameters v; b; r; k; k of a 3-design satisfy the following
conditions:

(i) vr ¼ bk.
(ii) kvðv� 1Þðv� 2Þ ¼ bkðk � 1Þðk � 2Þ.

From above elementary counting arguments, we derive furthermore arithmetic

condition:

r ¼ kðv� 1Þðv� 2Þ
ðk � 1Þðk � 2Þ : ð1Þ

The following useful lemma will be used throughout this paper.
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Lemma 2 Let D ¼ ðP;BÞ be a nontrivial 3-ðv; k; kÞ design. Let G�AutðDÞ be a
block-transitive group, and let d be a nontrivial subdegree of G. Then the following
statements hold:

(i) r divides kjGaj;
(ii) r divides kk

d
2

� �
;

(iii) ðv� 1Þðv� 2Þ divides kðk � 1Þðk � 2Þ d
2

� �
.

Proof Let B be a block of D containing the point a. The point-transitivity and

block-transitivity of G imply

jG : GaBj ¼ jG : GajjGa : GaBj ¼ vjGa : GaBj;
and

jG : GaBj ¼ jG : GBjjGB : GaBj ¼ bjGB : GaBj:
By Lemma 1(i) we have

jGa : GaBj ¼ rjGB : GaBj
k

ð2Þ

and so part (i) holds.

Suppose that Ga has q orbits O1;O2; . . .;Oq on pencil PðaÞ (i.e. blocks con-

taining a given point a). From Eq. (2) we have r j kjOij where i 2 f1; 2; . . .; qg. Let
C 6¼ fag be a nontrivial Ga-orbit with jCj ¼ d. Since Ga is transitive on Oi, each

block of Oi and C intersect in a constant number of points, say li. That is, li ¼
jC \ Bij where Bi 2 Oi. Counting the size of set fðfb; cg;BÞ j fb; cg 2 B \ C and

B 2 PðaÞg in two ways, we get

Xq
i¼1

jOij
li
2

� �
¼ k

d

2

� �
:

Combining this with r j kjOij, we obtain that r j kPq
i¼1 jOij li

2

� �
. Thus r divides

kk
d
2

� �
.

Part (iii) follows from part (ii) and Eq. (1). h

In the study of point-imprimitive case, the basis of our method is the following

elementary result.

Lemma 3 [6, Proposition 1.1] Let D ¼ ðP;BÞ be a t-ðv; k; kÞ design, admitting a
block-transitive automorphism group G. Let H be a permutation group with
G�H� Sv, and B

� ¼ BH the set of images of blocks in B under H. Then ðP;B�Þ is a
t-ðv; k; k�Þ design, for some k�, admitting the block-transitive automorphism group
H.
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Lemma 4 [15, Theorem 1.6.2] Let G be a transitive permutation group on P. Let R
be a nontrivial G-invariant partition of P. Then G� SymðDÞ o SymðRÞ, where

D 2 R, and the normal subgroup G \ SymðDÞjRj of G fixes every block in R.

3 Primitivity

The principal tool used in the proof is the O’Nan-Scott Theorem for finite primitive

groups proved by Liebeck, Praeger and Saxl in [16]. We will prove Theorem 1 by

dealing with the cases of product action, simple diagonal action and twisted wreath

product action separately. In this section, suppose that we have a pair ðD;GÞ
satisfying the following hypothesis:

HYPOTHESIS: Let D be a nontrivial 3-ðv; k; kÞ design with k� 6. Assume that G is a

block-transitive, point-primitive automorphism group of D.

3.1 Product Action

Here, we suppose that G has a product action on P. Then G�Km
oSm ¼ K o Sm

with m� 2, where K is a primitive group (of almost simple or diagonal type) on X of

size v0 � 5, and P ¼ Xm.

Proposition 2 Let ðD;GÞ satisfy HYPOTHESIS. Then G is not of product action type.

Proof Assume the contrary, suppose that H ffi K o Sm with Sm acting on the set

M ¼ f1; 2; . . .;mg. Let a ¼ ðc; c; . . .; cÞ and b ¼ ðd; c; . . .; cÞ (where d is in the

shortest orbit of Kc) be two distinct points of P, then d ¼ jbGa j is a subdegree of G.
Since G is a subgroup of H, it follows that

d ¼ jGa : Gabj � jHa : Habj\m
v0 � 1

s� 1
:

where s is the rank of K on X, and hence d�m v0�1
s�1

. From Lemma 2(iii) we have

2ðv� 1Þðv� 2Þ� kðk � 1Þðk � 2Þ 	 mv0 � 1

s� 1
	 ðmv0 � 1

s� 1
� 1Þ:

Note that v ¼ vm0 and k� 6, and so

ðvm0 � 1Þðvm0 � 2Þ� 60m2v20:

Thus m ¼ 2 and 5� v0 � 15. A simple calculation, we get all possible ðv0;m; sÞ as in
Table 1.

First, assume that ðm; sÞ ¼ ð2; 2Þ. Here H ¼ K o S2 and K acts 2-transitively on X.

Table 1 All possible values of

v0;m; s with k� 6
k ¼ 4 k ¼ 5 k ¼ 6

ðm; sÞ ¼ ð2; 2Þ v0 2 f5g v0 2 f5; 6; . . .; 9g v0 2 f5; 6; . . .; 14g
ðm; sÞ ¼ ð2; 3Þ ; ; v0 2 f5; 6g
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Let a ¼ ðc; cÞ be a point of P ¼ X
 X. Then Ha ¼ Kc o S2 has two nontrivial

suborbits on the point set P as follows:

(1) C1 ¼ fðd1; cÞ j d1 2 X n fcgg [ fðc; d2Þ j d2 2 X n fcgg;
(2) C2 ¼ fðd1; d2Þ j d1; d2 2 X n fcgg:

Thus, Ha has rank 3 with subdegrees 1, 2ðv0 � 1Þ, ðv0 � 1Þ2 on P. Note that G�H,

so each subdegree of H is the sum of some subdegrees of G. From Lemma 2(iii), we

conclude that ðv20 � 1Þðv20 � 2Þ divides kðk � 1Þðk � 2Þðv0 � 1Þð2v0 � 3Þ, it is

impossible for all pairs ðv0; kÞ listed in Table 1.

For the case ðm; sÞ ¼ ð2; 3Þ, K is a primitive group with rank 3 on X. From [9,

9.62 Table], there is no such group K with a primitive action (of almost simple or

diagonal type) and rank 3 on a set X of size v0 2 f5; 6g. h

3.2 Simple Diagonal Action

Suppose that G is a primitive group of simple diagonal type. Then M ¼ SocðGÞ ¼
T1 
 	 	 	 
 Tm ffi Tm and Ma ffi T is a diagonal subgroup of M, where Ti ffi T is a

non-abelian finite simple group, for i ¼ 1; . . .;m and m� 2. Here Ga is isomorphic

to a subgroup of AutðTÞ 
 Sm and has an orbit C in P � fag with jCj �mjT j (see
[16]). We state the following lemma that we will use in the proof of our

Proposition 3.

Lemma 5 There does not exist a non-abelian finite simple group T satisfying

ðjTj � 1ÞðjT j � 2Þ� 480jOutðTÞj: ð3Þ

Proof If T ¼ A5, then jT j ¼ 60 and jOutðTÞj ¼ 2, it does not satisfy (3). Similarly,

the group T ¼ A6 does not satisfy (3) as jT j ¼ 360 and jOutðTÞj ¼ 4. If there is a

non-abelian finite simple group satisfying ðjT j � 1ÞðjT j � 2Þ� 480jOutðTÞj, then
jTj[ 60 (in fact jT j � 168) and jOutðTÞj � 1 and so

60jT j\ðjT j � 1ÞðjTj � 2Þ� 480jOutðTÞj;

which implies that jT j\8jOutðTÞj � 8jOutðTÞj3. This is contrary to [1, Lemma

2.3]. h

Proposition 3 Let ðD;GÞ satisfy HYPOTHESIS. Then G is not of simple diagonal type.

Proof If G is of simple diagonal type, then jPj ¼ jT jm�1
and G has a subdegree d

less than m|T|. From Lemma 2(iii), we have

ðjT jm�1 � 1ÞðjT jm�1 � 2Þ� kðk � 1Þðk � 2Þ mjT j
2

� �
:

It is easy to get m ¼ 2 as k� 6 and jT j � 60.

Also by Lemma 2(i), we have that r divides kjGaj, and so k 	 jAutðTÞj 	 jS2j is
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divisible by r. Since OutðTÞ ffi AutðTÞ=InnðTÞ and InnðTÞ ffi T=ZðTÞ, it yields that r
divides 2k 	 jT j 	 jOutðTÞj as T is a non-abelian simple group. Combining this with

Lemma 1(ii), we get that ðjTj � 1ÞðjT j � 2Þ divides

2kðk � 1Þðk � 2Þ 	 jTj 	 jOutðTÞj. Then ðjTj; jTj � 1Þ ¼ 1 and ðjTj; jTj � 2Þ ¼ 2

imply

ðjT j � 1ÞðjTj � 2Þ� 4kðk � 1Þðk � 2Þ 	 jOutðTÞj � 480jOutðTÞj:
This violates Lemma 5. h

3.3 Twisted Wreath Product Action

Next, we suppose that G is a primitive group of twisted wreath product type on P.
Let a 2 P. Then G ffiQ BoP, where P ¼ Ga is a transitive permutation group on

f1; . . .;mg with m� 6 (see [13, 4.8(ii)]), and QB ¼ SocðGÞ ¼ T1 
 	 	 	 
 Tm ffi Tm

is regular for some nonabelian simple group T. Thus, v ¼ jPj ¼ jTjm. Moreover, Ga

has an orbit C with jCj �mjTj (cf. [16]).
Proposition 4 Let ðD;GÞ satisfy HYPOTHESIS. Then G is not of twisted wreath product
type.

Proof If G is of twisted wreath product type, then the argument here is similar to

the proof of Proposition 3. By Lemma 2, we easily observe that

ðjT jm � 1ÞðjT jm � 2Þ� kðk � 1Þðk � 2Þ mjTj
2

� �
:

Then the inequalities k� 6 and jTj � 60 imply m ¼ 1, this contradicts the fact that

m� 6. h

Proof of Theorem 1 It follows from Propositions 2–4.

4 Imprimitivity

Suppose that G is an imprimitive group on the point set P. Then P can be

partitioned into l nontrivial classes of imprimitivity Dj, j ¼ 1; . . .; l, each of size c, so
G� Sc o Sl by Lemma 4 and v ¼ jPj ¼ cl with c[ 1; l[ 1. Let B be a k-set of P,
and let B� ¼ BG�

where G� ¼ Sc o Sl. Then the sizes of the intersections of each

element of B� with the imprimitivity classes determine a partition of k, say x ¼
ðx1; x2; . . .; xlÞ with x1 � x2 � 	 	 	 � xl and

Pl
i¼1 xi ¼ k. Set bt ¼

Pl
i¼1 xiðxi � 1Þ

	 	 	 ðxi � t þ 1Þ. Note that b1 ¼ k. By [6, Proposition 2.2], the following lemma

holds.

Lemma 6 Let D� ¼ ðP;B�Þ. Then
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(i) D� is a 2-design if and only if

b2 ¼
Xl

i¼1

xiðxi � 1Þ ¼ kðk � 1Þðc� 1Þ
ðv� 1Þ :

(ii) D� is a 3-design if and only if it is a 2-design and

b3 ¼
Xl

i¼1

xiðxi � 1Þðxi � 2Þ ¼ kðk � 1Þðk � 2Þðc� 1Þðc� 2Þ
ðv� 1Þðv� 2Þ :

We note here that if D� ¼ ðP;B�Þ is a 2-design (or a 3-design) then D� is called a
Cameron–Praeger design Dðc; l; xÞ.
Proposition 5 Let D� ¼ ðP;B�Þ be a nontrivial 3-ðv; k; k�Þ design with k� 6

admitting a block-transitive, point-imprimitive automorphism group G�. Then D� is
one of the following:

(i) a Cameron–Praeger design Dð8; 2; ð4; 2ÞÞ;
(ii) a Cameron–Praeger design Dð2; 8; ð2; 1; 1; 1; 1; 0; 0; 0ÞÞ.

Proof If x ¼ ðx1; x2; . . .; xlÞ is a partition of k, then x1 � 2 and x2 � 1 as D� is a 2-

design and c� 2; l� 2.

Obvioulsy, x1 � c. Moreover, if c� 3, every triple inside a class is contained in a

block, thus every block contains such a triple and x1 � 3. Thus the contraposite: if

x1 ¼ 2 then c ¼ 2. A similar argument using triples of points in 3 different classes

leads to: if x3 ¼ 0 then l ¼ 2. By using the equation of Lemma 6(i) and a simple

calculation, we obtain all possible x and corresponding pairs (c, l) which are listed in
Table 2.

All cases in Table 2 can be ruled out by the equation of Lemma 6(ii) and the

nontriviality of D� except the following two cases:

(1) x ¼ ð4; 2Þ and ðc; lÞ ¼ ð8; 2Þ;
(2) x ¼ ð2; 1; 1; 1; 1; 0; 0; 0Þ and ðc; lÞ ¼ ð2; 8Þ.

Thus, we have v ¼ cl ¼ 16 and k ¼ 6.

If x ¼ ð4; 2Þ and ðc; lÞ ¼ ð8; 2Þ then we have that D� is a Cameron–Praeger

design Dð8; 2; ð4; 2ÞÞ by Lemma 6(ii). Let D1;D2 be two classes of imprimitivity.

Since every block of D� is a 6-set of P with 4 points in one class of imprimitivity

Table 2 All possible x and

corresponding pairs (c, l)
x (c, l) x (c, l)

(3, 1, 1) (7, 3) (3, 3) (3, 2)

(3, 2) (3, 2) (3, 1, 1, 1) (4, 4)

(2, 2, 1) (2, 3) (2, 2, 2) (2, 3)

(4, 2) (8, 2) (2, 1, 1, 1, 1, 0, 0, 0) (2, 8)
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and 2 points in the other class, also G� ¼ S8 o S2 acts transitively on fD1;D2g and 8-

transitively on Di ði ¼ 1; 2Þ. Let
B1 ¼fB � P j jB \ D1j ¼ 4 and jB \ D2j ¼ 2g;
B2 ¼fB � P j jB \ D2j ¼ 4 and jB \ D1j ¼ 2g:

Then B� ¼ B1 [ B2 and so

jB�j ¼ 2

1

� �
8

4

� �
8

2

� �
¼ 3920:

We further obtain k� ¼ 140.

If x ¼ ð2; 1; 1; 1; 1; 0; 0; 0Þ and ðc; lÞ ¼ ð2; 8Þ then D� is a Cameron–Praeger

design Dð2; 8; ð2; 1; 1; 1; 1; 0; 0; 0ÞÞ by Lemma 6(ii). Let D1;D2; . . .;D8 be eight

classes of imprimitivity with size 2. Since G� ¼ S2 o S8 acts transitively on

fD1;D2; . . .;D8g and also acts transitively on Di ði ¼ 1; 2; . . .; 8Þ. Then
B� ¼fB � P j jB \ Di1 j ¼ 2; jB \ Di2 j ¼ 1; jB \ Di3 j ¼ 1; jB \ Di4 j ¼ 1;

jB \ Di5 j ¼ 1g;
where i1; i2; i3; i4; i5 are distinct numbers of f1; 2; . . .; 8g. So

jB�j ¼ 8

5

� �
5

1

� �
2

1

� �4

¼ 4480;

and so k� ¼ 160 by Lemma 1(ii). h

As a consequence, we have the following results:

Corollary 1 Let D be a block-transitive, point-imprimitive nontrivial 3-ðv; k; kÞ
design. Then v ¼ 16 and k ¼ 6.

Proof It can be immediately obtained by Lemma 3.

In the following study, we make use of the software package MAGMA [4]. By

using command N:=TransitiveGroups(16) we know that there are 1954

transitive groups on 16 points, exactly 22 of which are primitive. Here we only

consider the remaining 1932 imprimitive groups. The command G :¼ N½i� returns
the i-th transitive group in the list of the MAGMA-library of transitive groups with

degree 16. By this command, we get the transitive permutation representations of G
acting on the set P ¼ f1; 2; 3; . . .; 16g.
Corollary 2 Let D ¼ ðP;BÞ be a 3-ð16; 6; kÞ design admitting a block-transitive,
point-imprimitive automorphism group G. Then one of the following holds:

(i) rankðGÞ ¼ 3 with subdegrees f1; 7; 8g, and
k 2 f4; 12; 16; 24; 28; 48; 56; 64; 84; 96; 112; 140g:

(ii) rankðGÞ ¼ 3 with subdegrees f1; 1; 14g, and
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k 2 f4; 8; 12; 16; 24; 32; 64; 96; 128; 160g:

(iii) rankðGÞ ¼ 4 with subdegrees f1; 1; 7; 7g, and k 2 f4; 8; 12; 16; 24; 48; 80g:

Proof Let D be a class of imprimitivity of G, and let a 2 D. Clearly, DGa ¼ D, so
jDj is sum of some subdegrees d of G. If d is a nontrivial subdegree of G, it follows

from Lemma 2(ii) that 7 divides
d
2

� �
and then we easily observe that d ¼ 7; 8 or

14. Thus the subdegrees of G is one of f1; 7; 8g, f1; 1; 7; 7g, f1; 1; 1; 1; 1; 1; 1; 1; 8g
and f1; 1; 14g. By using MAGMA we obtain all imprimitive subgroups with these

subdegrees listed in Table 3.

Obviously, D1 ¼ f1; 2; 3; 4; 5; 6; 7; 8g, D2 ¼ f9; 10; 11; 12; 13; 14; 15; 16g are

imprimitive parts of S8 o S2 ¼ N½1952�, and D1 ¼ f1; 2g, D2 ¼ f3; 4g,
D3 ¼ f5; 6g, D4 ¼ f7; 8g, D5 ¼ f9; 10g, D6 ¼ f11; 12g, D7 ¼ f13; 14g, D8 ¼
f15; 16g are imprimitive parts of S2 o S8 ¼ N½1948�. From Proposition 5 we can

easily get that B1 ¼ f1; 2; 3; 4; 9; 10g is a base block of the 3-(16, 6, 140) design,

and B2 ¼ f1; 2; 3; 5; 7; 9g is a base block of the 3-(16, 6, 160) design.

Let B be a base block of D then B 2 BS8oS2
1 [ BS2oS8

2 , also G is a group listed in

Table 3. A simple calculation by using MAGMA-command Design\3,16|
B̂G[shows that the result holds. Moreover, for a given 3-ð16; 6; kÞ design D, we

list all block-transitive point-imprimitive automorphism groups G ¼ N½i� in

Table 4. h

Proof of Theorem 2 It follows from Proposition 5 and Corollaries 1 and 2.

By using command IsIsomorphic(D1,D2), we give the following result:

Corollary 3 Up to isomorphism, there are 63 different 3-ð16; 6; kÞ designs D
admitting a block-transitive automorphism group which is not primitive on points.
The base block of D and a corresponding automorphism group G ¼ N½i� are listed in
Table5.

Remark 2 There are some descriptions of 3-ð16; 6; kÞ designs listed in Table 5.

Table 3 All subgroups N[i] with different subdegrees

Degrees i

f1; 7; 8g 1075, 1078, 1501, 1502, 1505, 1693, 1798, 1799, 1801, 1802,

1860, 1861, 1882, 1883, 1903, 1940, 1949, 1950, 1951, 1952

f1; 1; 14g 1036, 1076, 1077, 1503, 1506, 1507, 1694, 1768, 1800, 1803,

1804, 1805, 1841, 1842, 1843, 1844, 1878, 1902, 1916, 1938,

1944, 1945, 1946, 1948

f1; 1; 7; 7g 196, 712, 713, 714, 715, 1035, 1504, 1838, 1839, 1873

f1; 1; 1; 1; 1; 1; 1; 1; 8g 211, 289, 325, 370, 388
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(i) The number n listed in column Nr means that there are n pairwise non-

isomorphic 3-ð16; 6; kÞ designs admitting a block-transitive point-imprim-

itive automorphism group G ¼ N½i�.
(ii) The 3-(16, 6, 4) design with base block f2; 6; 7; 8; 9; 10g and automorphism

group G ¼ N½1505� has the full group 24:A7 (which is 3-transitive). Its

blocks are the minimal weight words from the Nordstrom-Robinson code

(see [2, Proposition 3]). Another orbit of the same group on 6-sets gives one

of designs with k ¼ 12 (this design also has the full group 24:A7 ). Now if

we take the union of these two orbits we get one of our designs with

k ¼ 4þ 12 ¼ 16. Although 24:A7 is not block-transitive for this design, the

full automorphism group 24:PSLð4; 2Þ is.
(iii) Note the other two orbits of 24:A7 on 6-sets yield a block-transitive

3-(16, 6, 30) design and a block-transitive 3-(16, 6, 240) design

respectively, which are examples for the primitive affine case (but these

do not admit a block-transitive imprimitive subgroup).

Table 4 All automorphism groups G ¼ N½i� of a given 3-ð16; 6; kÞ design
k i

4 196, 712, 713, 714, 715, 1075, 1078, 1501, 1502, 1505, 1507, 1802

8 1035, 1036

12 712, 713, 714, 715, 1036, 1501, 1502, 1505, 1507, 1801

16 1075, 1076, 1077, 1078, 1501, 1502, 1503, 1504, 1505, 1506, 1507, 1801, 1804

24 1035, 1036, 1802

28 1693, 1798, 1799, 1860, 1861, 1940

32 1076, 1077, 1503, 1506, 1507, 1694, 1768, 1800, 1803, 1805, 1841, 1844, 1902, 1916

48 1501, 1502, 1504, 1505, 1802

56 1882, 1883, 1903

64 1802, 1842, 1843, 1878

80 1838, 1839, 1873

84 1861, 1882, 1883, 1903

96 1503, 1506, 1507, 1800, 1801, 1803, 1841, 1842, 1843, 1844, 1878

112 1693, 1798, 1799, 1860, 1940

128 1804, 1805, 1902, 1916

140 1949, 1950, 1951, 1952

160 1938, 1944, 1945, 1946, 1948
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(iv) Let P be two disjoint copies of the affine space AG(3, 2) and B1 be all the

6-sets containing a pair of points from one copy and 4 points on a plane

from the other copy. Then ðP;B1Þ is isomorphic to the unique 3-(16, 6, 28)

design. Let B2 be all the 6-sets containing a pair of points from one copy

and 4 points not on a plane from the other copy. Then ðP;B2Þ is isomorphic

to the unique 3-(16, 6, 112) design. Their full group is AGLð3; 2Þ o S2.

Table 5 Base block B and automorphism group G of 3-ð16; 6; kÞ designs
k Nr Base block B G k Nr Base block B G

4 6 f2; 10; 11; 14; 15; 16g N[714] 24 5 f2; 3; 6; 7; 11; 15g N[1802]

f1; 6; 9; 11; 12; 14g N[1075] f4; 5; 7; 11; 12; 16g N[1035]

f3; 8; 11; 12; 15; 16g N[1075] f2; 4; 5; 6; 8; 10g N[1035]

f1; 4; 5; 8; 12; 15g N[1075] f1; 4; 8; 9; 13; 14g N[1035]

f2; 4; 9; 11; 12; 14g N[1078] f3; 7; 8; 9; 11; 15g N[1036]

f2; 6; 7; 8; 9; 10g N[1505] 28 1 f2; 4; 9; 11; 12; 14g N[1693]

8 2 f1; 7; 9; 10; 11; 16g N[1035] 32 4 f1; 3; 6; 9; 13; 14g N[1076]

f1; 4; 5; 6; 11; 14g N[1036] f1; 2; 4; 6; 11; 15g N[1076]

12 17 f2; 3; 6; 7; 11; 15g N[1501] f2; 6; 7; 8; 9; 11g N[1506]

f1; 2; 4; 7; 11; 15g N[1501] f4; 7; 8; 11; 13; 16g N[1507]

f2; 3; 6; 7; 11; 15g N[1502] 48 7 f3; 6; 7; 8; 10; 12g N[1501]

f3; 8; 11; 12; 15; 16g N[1502] f1; 8; 10; 13; 14; 15g N[1501]

f1; 5; 6; 8; 9; 14g N[1505] f3; 6; 7; 8; 10; 12g N[1502]

f3; 8; 10; 11; 13; 14g N[712] f3; 8; 10; 11; 13; 14g N[1502]

f2; 6; 7; 8; 9; 11g N[712] f1; 2; 4; 6; 11; 15g N[1504]

f2; 8; 9; 10; 13; 15g N[712] f3; 8; 10; 11; 13; 14g N[1505]

f2; 3; 4; 8; 14; 16g N[712] f3; 6; 7; 8; 10; 12g N[1505]

f2; 6; 8; 11; 12; 14g N[713] 56 1 f2; 4; 5; 7; 10; 11g N[1882]

f5; 7; 10; 12; 15; 16g N[713] 64 2 f2; 4; 5; 7; 10; 11g N[1802]

f1; 5; 6; 8; 14; 15g N[713] f4; 5; 7; 11; 12; 16g N[1842]

f2; 6; 8; 11; 12; 14g N[714] 80 1 f4; 5; 7; 11; 12; 16g N[1838]

f5; 7; 10; 12; 15; 16g N[714] 84 1 f3; 6; 7; 8; 10; 12g N[1861]

f2; 8; 9; 10; 13; 15g N[714] 96 4 f3; 6; 7; 8; 10; 12g N[1801]

f1; 5; 6; 8; 14; 15g N[715] f1; 3; 6; 9; 13; 14g N[1503]

f8; 9; 11; 13; 14; 16g N[715] f1; 3; 6; 9; 13; 14g N[1506]

16 8 f3; 6; 7; 8; 10; 12g N[1075] f3; 6; 7; 8; 10; 12g N[1507]

f4; 5; 10; 11; 12; 14g N[1075] 112 1 f3; 6; 7; 8; 10; 12g N[1693]

f5; 6; 9; 10; 14; 15g N[1075] 128 1 f1; 3; 6; 9; 13; 14g N[1804]

f3; 6; 7; 8; 10; 12g N[1078] 140 1 f1; 2; 3; 4; 13; 14g N[1952]

f1; 2; 5; 6; 11; 15g N[1505] 160 1 f1; 2; 3; 5; 7; 9g N[1948]

f2; 7; 9; 10; 11; 14g N[1076]

f4; 7; 9; 10; 11; 16g N[1076]

f4; 7; 9; 10; 11; 16g N[1077]

123

Graphs and Combinatorics (2022) 38:145 Page 13 of 14 145



Acknowledgements The author would like to express deepest gratitude to the anonymous referees for
their careful reading and valuable comments.

Funding This work was supported by the National Natural Science Foundation of China (nos. 11801174
and 11961026).

Declarations

Conflict of interest There is no conflict of interest.

References

1. Alavi, S.H., Daneshkhah, A., Okhovat, N.: On flag-transitive automorphism groups of symmetric

designs. Ars Math. Contemp. 17(2), 617–626 (2019)

2. Bierbrauer, J.: Nordstrom-Robinson code and A7-geometry. Finite Fields Appl. 13(1), 158–170
(2007)

3. Block, R.E.: On the orbits of collineation groups. Math. Z. 96, 33–49 (1967)

4. Bosma, W., Cannon, J., Playoust, C.: The magma algebra system I: the user language. J. Symb.

Comput. 24, 235–265 (1997)

5. Buekenhout, F., Delandtsheer, A., Doyen, J.: Finite linear spaces with flag-transitive group.

J. Combin. Theory Ser. A 49(2), 268–293 (1988)

6. Cameron, P.J., Praeger, C.E.: Block-transitive t-designs I: point-imprimitive designs. Discrete Math.

118(1–3), 33–43 (1993)

7. Cameron, P.J., Praeger, C.E.: Block-transitive t-designs, II: large t. In: De Clerck, F., et al. (eds.)

Finite Geometry and Combinatorics (Deinze 1992). Lecture Note Series 191. London Math. Soc.,

pp. 103–119. Cambridge Univ. Press, Cambridge (1993)

8. Camina, A.R., Gagen, T.M.: Block-transitive automorphism groups of designs. J. Algebra 86(2),
549–554 (1984)

9. Colbourn, C.J., Dinitz, J.H.: Handbook of Combinatorial Designs, 2nd edn (Discrete Mathematics

and Its Applications). Chapman & Hall/CRC (2007)

10. Davies, H.: Automorphisms of Designs. PhD Thesis, University of East Anglia (1987)

11. Delandtsheer, A., Doyen, J.: Most block-transitive t-designs are point-primitive. Geom. Dedicata 29
(3), 307–310 (1989)

12. Dembowski, P.: Finite Geometries. Springer-Verlag, New York (1968)

13. Dixon, J.D., Mortimer, B.: Permutation Groups. Springer-Verlag, New York (1996)

14. Huber, M.: The classification of flag-transitive Steiner 3-designs. Adv. Geom. 5, 195–221 (2005)

15. Li, C.H.: Permutations Groups and Symmetrical Graphs. The University of Western Australia, WA

(2010)

16. Liebeck, M.W., Praeger, C.E., Saxl, J.: On the O’Nan-Scott theorem for finite primitive permutation

groups. J. Aust. Math. Ser. A 44(3), 389–396 (1988)

17. Mann, A., Tuan, N.D.: Block-transitive point-imprimitive t-designs. Geo. Dedicata 88(1), 81–90
(2001)

18. Wielandt, H.: Finite Permutation Groups. Academic Press, New York (1964)

19. Zieschang, P.H.: Flag-transitive automorphism groups of 2-designs with ðr; kÞ ¼ 1. J. Algebra 118
(2), 369–375 (1988)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under

a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted

manuscript version of this article is solely governed by the terms of such publishing agreement and

applicable law.

123

145 Page 14 of 14 Graphs and Combinatorics (2022) 38:145


	Block-Transitive 3-Designs with Block Size At Most 6
	Abstract
	Introduction
	Preliminaries
	Primitivity
	Product Action
	Simple Diagonal Action
	Twisted Wreath Product Action

	Imprimitivity
	Funding
	References




