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Abstract
A long-standing conjecture asserts that there is a positive constant c such that every
n-vertex graph without isolated vertices contains an induced subgraph with all
degrees odd on at least cn vertices. Recently, Ferber and Krivelevich confirmed the
conjecture with c� 10�4. However, this is far from optimal for special family of

graphs. Scott proved that c�ð2vÞ�1 for graphs with chromatic number v� 2 and
conjectured that c� v�1. Partial tight bounds of c are also established by various
authors for graphs such as trees, graphs with maximum degree 3 or K4-minor-free
graphs. In this paper, we further prove that c� 2=5 for planar graphs with girth at
least 7, and the bound is tight. We also show that c� 1=3 for general planar graphs
and c� 1=3 for planar graphs with girth at least 6.
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1 Introduction

All graphs considered here are finite, simple and undirected, unless otherwise
specified. Gallai proved that every graph has a vertex partition into two sets, each of
which induces a subgraph with all degrees even (see [12], Exercise 5.19). This
implies that every graph contains an induced subgraph with all degrees even on at
least half of its number of vertices. However, the situation is less clear for induced
subgraph with all degrees odd. Call a graph with all degrees odd an odd graph. The
following long-standing conjecture was cited by Caro [4] as “part of the graph theory
folklore“.

Conjecture 1.1 (Caro [4]) There exists a positive constant c such that every n-vertex
graph without isolated vertices contains an odd induced subgraph with at least cn
vertices.

Caro [4] pointed out that if this conjecture were true, then c would be at most 2/7,
which could be seen by considering the graph with vertex set Z7 and edges between i
and i� 1, i� 2 ðmod 7Þ for i 2 f0; . . .; 6g. Clearly, it is natural to restrict our
attention to graphs without isolated vertices as no odd graph can have an isolated
vertex. Caro [4] initially proved that every n-vertex graph without isolated vertices
contains an odd induced subgraph with at least Xð ffiffiffi

n
p Þ vertices, answering a question

of Alon. This was further improved to Xðn= log nÞ by Scott [15]. Very recently,
Ferber and Krivelevich [6] confirmed Conjecture 1.1 with c ¼ 10�4.

For special family of graphs, some tight bounds of Conjecture 1.1 were
established by various authors. The best possible bound 2bðnþ 1Þ=3c for n-vertex
trees has been proved by Radcliffe and Scott [14], while Berman et al. [3] proved an
optimal bound 2n/5 for n-vertex graphs with maximum degree 3 and without isolated
vertices. Recently, Hou et al. [8] obtained the tight bound 2n/5 for K4-minor-free
graphs with n vertices and without isolated vertices.

There is another conjecture related to odd induced subgraphs. In 1991, Scott [15]
proved that every n-vertex graph with chromatic number v and without isolated
vertices contains an odd induced subgraph with at least n=ð2vÞ vertices. This implies
Conjecture 1.1 for graphs with bounded chromatic number. Moreover, Scott
suggested the following conjecture.

Conjecture 1.2 (Scott [15]) Every n-vertex graph with chromatic number v and
without isolated vertices contains an odd induced subgraph with at least n=v
vertices.

It was shown in [15] that it would be enough to prove Conjecture 1.2 for bipartite
graphs. If holds, then the bound n=v is best possible for v ¼ 2; 3 as stated by Scott
[15]. For more results and problems related to special graphs, we refer the reader to
[1, 2, 5, 9 – 11, 13, 16].

In this paper, we consider odd induced subgraphs in planar graphs with large girth.
A planar graph is a graph that can be embedded into the plane so that its edges meet
only at their ends. A plane graph is a particular planar embedding of a planar graph.
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The girth of a graph is the length of its shortest cycle. The following is the main
result of the paper.

Theorem 1.3 For g 2 f6; 7g, every n-vertex planar graph with girth at least g and
without isolated vertices has an odd induced subgraph with at least cgn vertices,
where c6 ¼ 1=3 and c7 ¼ 2=5.

Note that every planar graph with girth at least 6 has chromatic number at most 3
by Grötzsch’s Theorem [7]. This means that the result c6 ¼ 1=3 in Theorem 1.3
confirms a special case of Conjecture 1.2 for v ¼ 3. For general planar graphs, we
also claim that c� 1=3 by considering several classes of graphs (see Proposition 1.4).
Since an odd graph must have even number of vertices, we further assert that every
n-vertex planar graph with girth at least g 2 f6; 7g and without isolated vertices has
an odd induced subgraph with at least 2dcgn=2e vertices by Theorem 1.3. This is
actually tight as implied by the following proposition.

Proposition 1.4 ðiÞ For any n � 0 ðmod 6Þ, there exist n-vertex planar graphs
without isolated vertices containing an odd induced subgraph with at most n/3
vertices.

ðiiÞ For some values of n, there exist n-vertex planar graphs with girth at least
g 2 f6; 7g and without isolated vertices containing an odd induced subgraph with at
most 2dcgn=2e vertices.

This paper is organized as follows. In the remainder of this section, we describe
notation and terminology used in our proof. In Sect. 2, we give some reducible
configurations of the minimal counterexample. Using the discharging method, we
prove Theorem 1.3 in Sect. 3. The final section contains some conclusion remarks.
Let G be a graph. For any v 2 V ðGÞ, denote NGðvÞ the set of neighbors of v in G and
dGðvÞ the degree of v in G. A k-vertex, kþ-vertex, or k�-vertex is a vertex with degree
equal to k, at least k, or at most k, respectively. For any S � V ðGÞ, let G[S] denote the
induced subgraph of G on S and G� S ¼ G½V ðGÞ n S�. For a set H of graphs, a
graph is H-free if it contains no member of H as a subgraph. If H ¼ fHg, we
simply write H-free instead of H-free. Usually, we denote Ck a cycle of length k and
write ½k� :¼ f1; . . .; kg.

2 Reducible Configurations

In this section, we outline the main ideas in our proof of Theorem 1.3, and give some
useful properties of minimal counterexamples.

We prove Theorem 1.3 by contradiction. Let G be a counterexample of
Theorem 1.3 such that |V(G)| is minimal. For any S � V ðGÞ, we call S c-good if G[S]
is an odd induced subgraph in G such that jSj � c jV ðGÞj for some constant c[ 0.
The main ideas of our proof are as follows. We first pick some set V0 � V ðGÞ such
that G0 ¼ G� V0 has no isolated vertices. It follows that G0 has a cg-good set S0 by
the minimality of G. We aim to find a subset S0 � V0 with jS0j � cgjV0j such that
S0 [ S0 induces an odd induced subgraph of G, which means that S0 [ S0 is a cg-good
set of G by noting that
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jS0 [ S0j ¼ jS0j þ jS0j � cgðjV ðGÞj � jV0jÞ þ cgjV0j ¼ cgjV ðGÞj:
This leads to a contradiction.

Suppose that G is a minimal n-vertex planar graph with girth at least 6 and without
isolated vertices such that every odd induced subgraph in G has less than cn vertices
for c 2 f2=5; 1=3g. Clearly, G is connected by the minimality of |V(G)|. Recall that
every tree with n vertices contains an odd induced subgraph with at least 2bðnþ
1Þ=3c vertices, implying that G is not a tree as 2bðnþ 1Þ=3c� 2n=5 for n� 2. To
simplify the presentation, let V1 ¼ fv : v 2 V ðGÞ and dGðvÞ ¼ 1g and G1 ¼ G� V1.
Write V2 ¼ [v2V1NGðvÞ. For each v 2 V ðGÞ, let N1

GðvÞ ¼ NGðvÞ \ V1 and
N1
G½v� ¼ N 1

GðvÞ [ fvg. In view of N 1
GðvÞ, we define two subsets pðvÞ and L(v) by

letting

pðvÞ ¼ fv0g; if there exists some v0 2 N1
GðvÞ;

fvg; if N 1
GðvÞ ¼ ;;

(

and

LðvÞ ¼ L; if there exists some 2-subset L of N1
GðvÞ;

N1
G½v�; if jN1

GðvÞj � 1:

(

Note that a 2-subset L of N1
GðvÞ is a vertex subset of N 1

GðvÞ with jLj ¼ 2. Clearly,
jLðvÞj � 2. For each i 2 f0; 1g, denote Ti

v the maximum subset of N1
G½v� such that

v 2 Ti
v and jTi

v n fvgj � i ðmod 2Þ, implying that

jTi
vj ¼

jN1
GðvÞj þ i; if jN 1

GðvÞjis odd;
jN1

GðvÞj þ 1� i; if jN 1
GðvÞjis even.

(
ð1Þ

In what follows, we present series of lemmas with respect to G1 by finding good
subsets in the minimal counterexample G.

2.1 Finding 2/5-Good Subsets in G

We may assume that G is a minimal n-vertex planar graph with girth at least 6 such
that every odd induced subgraph in G has less than 2n/5 vertices, and call a subset
S � V ðGÞ good instead of 2/5-good for short throughout this subsection.

Lemma 2.1 For each u 2 V2, we have dG1ðuÞ� 3.

Proof Suppose that there exists a vertex u 2 V2 such that dG1ðuÞ� 2. Clearly, we
have jN 1

GðuÞj � 1. This together with (1) implies that

jTi
uj þ 1� i

jN1
GðuÞj þ 2

[
jTi

uj þ 1� i

jN1
GðuÞj þ 3

� 2

5
ð2Þ

for each i 2 f0; 1g, where the equality holds if and only if i ¼ 1 and jN 1
GðuÞj ¼ 2.

Since G is connected but not a tree, we know that dG1ðuÞ[ 0. This means that
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dG1ðuÞ 2 ½2�.
Suppose that dG1ðuÞ ¼ 1, say NG1ðuÞ ¼ fu1g. Let G0 ¼ G� ðN1

G½u� [ pðu1ÞÞ.
Clearly, dG1ðu1Þ� 2 as G is not a tree, then G0 contains no isolated vertices. This
implies that G0 has a good set S0 by the minimality of G. It follows from (2) that
S0 [ T0

u [ pðu1Þ is good in G if u1 2 S0 (implying that N1
Gðu1Þ 6¼ ;), and S0 [ T 1

u is
good in G if u1 62 S0, a contradiction.

Suppose that dG1ðuÞ ¼ 2, say NG1ðuÞ ¼ fu1; u2g. Clearly, if N1
GðuiÞ 6¼ ; for some

i 2 ½2�, then dG1ðuiÞ� 2 by the argument above. It follows that G0 ¼ G� ðN 1
G½u� [

pðu1Þ [ pðu2ÞÞ contains no isolated vertices as G is fC3;C4g-free, implying a good
set S0 in G0. If u1; u2 62 S0, then S0 [ T1

u is good in G by (2). If ui 2 S0 for some i 2 ½2�,
then it follows from (2) that either S0 [ T1

u [ pðu1Þ [ pðu2Þ (if u3�i 2 S0) or S0 [
T0
u [ pðuiÞ (if u3�i 62 S0) is good in G, a contradiction. This completes the proof of

Lemma 2.1. h

By Lemma 2.1, we have dG1ðvÞ� 2 for each v 2 V ðG1Þ. Moreover, every 2-vertex
in G1 is also a 2-vertex in G.

Lemma 2.2 There is no adjacent 2-vertices in G1.

Proof Suppose that G1 has two adjacent 2-vertices u and v. Let NG1ðvÞ ¼ fu; v1g
and NG1ðuÞ ¼ fv; u1g. Clearly, dG1ðu1Þ� 2 and dG1ðv1Þ� 2. Moreover, if N 1

GðxÞ 6¼ ;
for some x 2 fu1; v1g, then dG1ðxÞ� 3 by Lemma 2.1. It follows that G0 ¼
G� ðfu; vg [ pðu1Þ [ pðv1ÞÞ contains no isolated vertices as G is fC4;C5g-free.
Thus, G0 has a good set S0. If u1; v1 62 S0, then S0 [ fu; vg is good in G. Otherwise,
either S0 [ pðu1Þ [ fug (if u1 2 S0) or S0 [ pðv1Þ [ fvg (if v1 2 S0) is good in G. This
leads to a contradiction and completes the proof of Lemma 2.2. h

Lemma 2.3 There is no 2-vertex adjacent to a 3-vertex in G1.

Proof Suppose that there is a 2-vertex v adjacent to a 3-vertex u in G1. Let
NG1ðvÞ n fug ¼ fv1g and NG1ðuÞ n fvg ¼ fu1; u2g. Note that u1, u2 and v1 are
distinct vertices as G is triangle-free. By Lemmas 2.1 and 2.2 , we know that
N1
GðvÞ ¼ ; and dGðv1Þ� dG1ðv1Þ� 3. It is easy to check that for each i 2 f0; 1g

jTi
uj þ 1� i

jN 1
GðuÞj þ 4

� 2

5
ð3Þ

providing jN1
GðuÞj 62 f0; 2g, where the equality holds if and only if jN 1

GðuÞj ¼ 1.
First, suppose that jN1

GðuÞj 62 f0; 2g. Let
G0 ¼ G� ðN1

G½u� [ pðu1Þ [ pðu2Þ [ fvgÞ:
Note that dG1ðuiÞ� 3 if N1

GðuiÞ 6¼ ; for any i 2 ½2� by Lemma 2.1. This implies that
G0 contains no isolated vertices as dGðv1Þ� 3 and G is fC3;C4g-free. It follows that
G0 has a good set S0 by the minimality of G. If u1; u2 62 S0, then S0 [ T1

u is good in G
by (3). If ui 2 S0 for some i 2 ½2�, then it follows from (3) that either S0 [ T1

u [
pðu1Þ [ pðu2Þ (if u3�i 2 S0) or S0 [ T0

u [ pðuiÞ (if u3�i 62 S0) is good in G, a con-
tradiction.
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Next, it suffices to check the cases for jN1
GðuÞj 2 f0; 2g. Suppose that

jN1
GðuÞj ¼ 0. Let

G0 ¼ G� ðfu; vg [ pðu1Þ [ pðu2Þ [ pðv1ÞÞ:
It is easy to check that G0 contains no isolated vertices as G is fC3;C4;C5g-free,
implying that G0 has a good set S0. Clearly, S ¼ S0 [ pðv1Þ [ fvg is good in G if
v1 2 S0 and S ¼ S0 [ fu; vg is good in G if v1; u1; u2 62 S0. Now, we further consider
the case for v1 62 S0 and ui 2 S0 for some i 2 ½2�, then either S0 [ pðuiÞ [ fug (if
u3�i 62 S0) or S0 [ pðu1Þ [ pðu2Þ [ fu; vg (if u3�i 2 S0) is good in G, a contradiction.

Suppose that jN 1
GðuÞj ¼ 2. Let

V0 ¼ N1
G½u� [ pðu1Þ [ pðu2Þ [ Lðv1Þ [ fvg and G0 ¼ G� V0:

Note that jT1
u j ¼ 2, jLðv1Þj � 2 and jV0j � 8. Clearly, G0 contains no isolated vertices

as G is fC4;C5g-free and dG1ðv1Þ� 3, yielding that G0 has a good set S0. If ui 2 S0 for
some i 2 ½2�, then either S0 [ T1

u [ pðu1Þ [ pðu2Þ (if u3�i 2 S0) or S0 [ N 1
G½u� [ pðuiÞ

(if u3�i 62 S0) is good in G. Suppose that u1; u2 62 S0. If v1 62 S0, then S0 [ N 1
G½u� [ fvg

is good in G. If v1 2 S0 (implying that jN1
Gðv1Þj � 2), then S0 [ Lðv1Þ [ T1

u is good in
G as jLðv1Þj ¼ jT 1

u j ¼ 2. This completes the proof of Lemma 2.3. h

We mention that these three lemmas are enough to prove Theorem 1.3 for planar
graphs with girth at least 7.

2.2 Finding 1/3-Good Subsets in G

We may assume that G is a minimal n-vertex planar graph with girth at least 6 such
that every odd induced subgraph in G has less than n/3 vertices, and call a subset
S � V ðGÞ good instead of 1/3-good for short throughout this subsection. Note that a
set S is 2/5-good implies that S is also 1/3-good. It follows that Lemmas 2.1, 2.2 and
2.3 are still valid for G considered in this subsection. To prove Theorem 1.3 for
g ¼ 6, we need more auxiliary lemmas.

Lemma 2.4 There is no 2-vertex adjacent to a 4-vertex in G1.

Proof Suppose that there is a 4-vertex u in G1 with NG1ðuÞ ¼ fv; u1; u2; u3g and
NG1ðvÞ ¼ fu; v1g. Note that v1 and ui are distinct vertices as G is triangle-free for
i 2 ½3�. Clearly, dGðvÞ ¼ dG1ðvÞ ¼ 2 and dGðv1Þ� dG1ðv1Þ� 4 by Lemmas 2.1 and
2.3 . It is easy to check that for each i 2 f0; 1g

jTi
uj þ 1� i

jN 1
GðuÞj þ 5

� 1

3
ð4Þ

providing jN1
GðuÞj 62 f0; 2g, where the equality holds if and only if jN 1

GðuÞj ¼ 1.
First, suppose that jN1

GðuÞj 62 f0; 2g. Let
G0 ¼ G� ðN 1

G½u� [ pðu1Þ [ pðu2Þ [ pðu3Þ [ fvgÞ:
Note that dG1ðuiÞ� 3 if N1

GðuiÞ 6¼ ; for any i 2 ½3� by Lemma 2.1. This implies that
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G0 contains no isolated vertices as G is fC3;C4g-free and dG1ðv1Þ� 4. It follows that
G0 has a good set S0. Let I ¼ fi 2 ½3� : ui 2 S0g and

S ¼ S0 [ T 0
u [ ð[i2IpðuiÞÞ; if jI j is odd;

S0 [ T 1
u [ ð[i2IpðuiÞÞ; if jI j is even:

�

Clearly, S is good in G by (4), a contradiction.
Next, we check the cases for jN 1

GðuÞj 2 f0; 2g. Suppose that jN1
GðuÞj ¼ 0. Let

G0 ¼ G� ðfu; vg [ pðu1Þ [ pðu2Þ [ pðu3Þ [ pðv1ÞÞ:
Clearly, G0 contains no isolated vertices as G is fC3;C4;C5g-free and dG1ðv1Þ� 4,
implying a good set S0 in G0. If v1 2 S0, then S0 [ pðv1Þ [ fvg is good in G. Suppose
that v1 62 S0 and let

S ¼ S0 [ fug [ ð[i2IpðuiÞÞ; if Ij j is odd;
S0 [ fu; vg [ ð[i2IpðuiÞÞ; if Ij j is even;

�

where I is defined as before. It is easy to check that S is good in G, a contradiction.
Suppose that jN 1

GðuÞj ¼ 2. Let

V0 ¼ N 1
G½u� [ pðu1Þ [ pðu2Þ [ pðu3Þ [ Lðv1Þ [ fvg and G0 ¼ G� V0:

Note that jLðv1Þj � 2 and then jV0j � 9. Clearly, G0 contains no isolated vertices as G
is fC3;C4;C5g-free and dG1ðv1Þ� 4, implying a good set S0 in G0. If v1 2 S0 (im-
plying that jN1

Gðv1Þj� 2), then S0 [ Lðv1Þ [ fvg is good in G as jLðv1Þj ¼ 2. Suppose
that v1 62 S0 and let

S ¼ S0 [ N 1
G½u� [ ð[i2IpðuiÞÞ; if Ij j is odd;

S0 [ N1
G½u� [ fvg [ ð[i2IpðuiÞÞ; if Ij j is even;

�

where I is defined similarly. Clearly, S is good in G, a contradiction. This completes
the proof of Lemma 2.4. h

For any two vertices x; y 2 V ðGÞ, let N 2
Gðx; yÞ ¼ fz 2 NGðxÞ \ NGðyÞ :

dGðzÞ ¼ 2g. Note that jN2
Gðx; yÞj � 1 as G is C4-free.

Lemma 2.5 A 5-vertex is adjacent to at most three 2-vertices in G1.

Proof Suppose that there is a 5-vertex u in G1 with NG1ðuÞ ¼ fv; u1; u2; u3; u4g and
NG1ðuiÞ ¼ fu; vig for each i 2 ½4�. Note that ui, vi and v are distinct vertices for i 2 ½4�
since G is fC3;C4g-free. Clearly, dGðuiÞ ¼ 2 and dGðviÞ� 5 for each i 2 ½4� by
Lemmas 2.1 and 2.4 . Let U ¼ fu1; u2; u3; u4g and G0 ¼ G� ðN 1

G½u� [ U [ pðvÞÞ.
Recall that dG1ðvÞ� 3 if N1

GðvÞ 6¼ ;. This implies that G0 contains no isolated vertices
as G is C4-free and dGðuiÞ ¼ 2 for each i 2 ½4�. It follows that G0 has a good set S0.
Let S ¼ S0 [ T1

u if v 62 S0 and S ¼ S0 [ T 0
u [ pðvÞ if v 2 S0. For each j 2 f0; 1g, it is

easy to check that
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jTj
uj þ 1� j

jN 1
GðuÞj þ 6

� 1

3

providing jN1
GðuÞj � 3, implying that S is good in G unless jN1

GðuÞj 2 f0; 1; 2g.
Case 1. jN 1

GðuÞj ¼ 2.
Let V0 ¼ N 1

G½u� [ U [ Lðv1Þ [ pðvÞ and G0 ¼ G� V0. Recall that dGðv1Þ� 5 and
dG1ðvÞ� 3 if N1

GðvÞ 6¼ ;. It follows that G0 contains no isolated vertices as G is
fC4;C5g-free. Thus, G0 has a good set S0. If v 2 S0, then S0 [ N1

G½u� [ pðvÞ is good in
G in view of jV0j � 10 and jN 1

G½u�j ¼ 3. If v 62 S0 and v1 62 S0, then S0 [ N1
G½u� [ fu1g

is also good in G. Thus, we have v 62 S0 and v1 2 S0, implying that Lðv1Þ � N 1
Gðv1Þ

and jLðv1Þj ¼ 2. It follows that S0 [ T1
u [ Lðv1Þ is good in G as jT1

u j ¼ 2.
Case 2. jN 1

GðuÞj ¼ 1. For each j 2 f0; 1g, let
Ij ¼ fi 2 ½4� : jN1

GðviÞj ¼ jg and I2 ¼ fi 2 ½4� : jN 1
GðviÞj � 2g:

Clearly, jI0j þ jI1j þ jI2j ¼ 4. In what follows, we get a contradiction by showing
that jIjj � 1 for each j 2 f0; 1; 2g. Otherwise, we may assume that ½2� � Ij for some
j 2 f0; 1; 2g. Now, we define a set V 	 according to Ij as follows: if j ¼ 2, then let
V 	 � N1

Gðv1Þ [ N 1
Gðv2Þ with jV 	 \ N1

GðviÞj ¼ 2 for each i 2 ½2�; otherwise,
V 	 ¼ N1

G½v1� [ N1
G½v2� [ N 2

Gðv1; v2Þ. Let V0 ¼ N 1
G½u� [ U [ V 	 [ pðvÞ and

G0 ¼ G� V0. Note that jV0j � 12 as jN2
Gðv1; v2Þj � 1. Clearly, G0 contains no isolated

vertices as G is fC4;C5g-free and dGðviÞ� 5 for each i 2 ½4�. Thus, G0 has a good set
S0. If v1; v2 62 S0, then either S0 [ fu1; u2; ug [ N1

GðuÞ (if v 62 S0) or S0 [ fu1; u2; ug [
pðvÞ (if v 2 S0) is good in G as jV0j � 12. If vi 2 S0 for some i 2 ½2�, then either
S0 [ ðV 	 \ N1

GðviÞÞ [ N1
G½u� (if v 62 S0) or S0 [ ðV 	 \ N1

GðviÞÞ [ fug [ pðvÞ (if v 2 S0)
is good in G as jV0j � 12 and jV 	 \ N 1

GðviÞj ¼ 2.
Case 3. jN 1

GðuÞj ¼ 0. Let

I0 ¼ fi 2 ½4� : jN1
GðviÞj ¼ 0g and I1 ¼ fi 2 ½4� : jN1

GðviÞj� 1g:
We first claim that jI0j � 2. Otherwise, we may assume that ½3� � I0. Let

V0 ¼ U [ fu; v1; v2; v3g [ pðvÞ [ ð[1� k\‘� 3N
2
Gðvk ; v‘ÞÞ and G0 ¼ G� V0:

Clearly, jV0j � 12 and G0 contains no isolated vertices as G is fC4;C5g-free and
dGðviÞ� 5 for each i 2 ½4�. Thus, G0 has a good set S0. It follows that either S0 [
fu; u1; u2; u3g (if v 62 S0) or S0 [ fu; u1; u2g [ pðvÞ (if v 2 S0) is good in G. Thus, we
have jI0j � 2. Let pðviÞ ¼ fpig for each i 2 ½4� and

V 0
0 ¼ U [ pðvÞ [ fug [ ð[i2½4�pðviÞÞ [ ð[1� k\‘� 4N

2
Gðpk ; p‘ÞÞ:

Note that j [1� k\‘� 4 N2
Gðpk ; p‘Þj � 1 as jI0j � 2. Thus, jV0j � 11. Clearly, G00 ¼

G� V 0
0 contains no isolated vertices as G is fC4;C5g-free and dGðviÞ� 5 for each

i 2 ½4�. Thus, G00 has a good set S00. Let I ¼ fi 2 ½4� : vi 2 S00g. If jI j � 2 (say
½2� 2 I), then S00 [ fu1; u2g [ pðv1Þ [ pðv2Þ is good in G. This implies that
j½4� n I j � 3. Suppose that ½3� � ½4� n I , i.e., vi 62 S00 for i 2 ½3�. It follows that either
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S00 [ fu; u1; u2; u3g (if v 62 S00) or S00 [ fu; u1; u2g [ pðvÞ (if v 2 S00) is good in G.
This completes the proof of Lemma 2.5. h

We mention that these lemmas comprise the heart of the proof of Theorem 1.3 for
planar graphs with girth at least 6.

3 Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by way of the discharging method. Let G be a
plane graph and denote by F(G) the set of faces of G. For each face f 2 FðGÞ, the
degree dGðf Þ of f is the number of edges in its boundary. A k-face or kþ-face is a face
with degree equal to k or at least k, respectively. Note that all the Lemmas are proved
in Section 2 for graphs with girth at least 6. The condition that G is C6-free for g ¼ 7
is only used in the discharging process.

Proof of Theorem 1.3 Let G be a minimal n-vertex plane graph with girth at least g
and without isolated vertices such that every odd induced subgraph in G has less than
cgn vertices for g 2 f6; 7g, where c6 ¼ 1=3 and c7 ¼ 2=5. Recall that G1 is the graph
obtained from G by deleting all its vertices with degree exactly one. In Section 2, we
present series of local structures of G1, which finally show that such graph doesn’t
exist by way of the discharging method as proved later. It follows that G doesn’t exist
or is a single edge (as G is connected). This leads to a contradiction in either case. In
what follows, we prove that G1 doesn’t exist.

We first define the initial charge function lG1
ðxÞ on G1 such that lG1

ðvÞ ¼
dG1ðvÞ � 4 for each v 2 V ðG1Þ and lG1

ðf Þ ¼ dG1ðf Þ � 4 for each f 2 FðG1Þ. By
Euler’s formula, we haveX

v2V ðG1Þ
ðdG1ðvÞ � 4Þ þ

X
f 2FðG1Þ

ðdG1ðf Þ � 4Þ ¼ �8:

Next, by defining suitable discharging rules, we aim to change lG1
ðxÞ to the final

charge function l0G1
ðxÞ such that l0G1

ðxÞ� 0 for all x 2 V ðG1Þ [ FðG1Þ. The dis-
charging rules on G1 are as follows:

(R1) Each 2-vertex gets g�4
3 from each incident gþ-face;

(R2) Each 3-vertex gets 1
3 from each incident gþ-face;

(R3) Each 5þ-vertex gives 1
3 to each adjacent 2-vertex (specially for g ¼ 6).

Claim 3.1 For every face f 2 FðG1Þ, we have l0G1
ðf Þ � 0.

Proof For each ‘ 2 f2; 3g, let t‘ðf Þ be the number of ‘-vertices on the face
f 2 FðG1Þ. Clearly, the number of 4þ-vertices on f is dG1ðf Þ � t2ðf Þ � t3ðf Þ. Note
that there is at most one 2-vertex between any two consecutive 4þ-vertices on f by
Lemmas 2.2 and 2.3 . It follows that t2ðf Þ� dG1ðf Þ � t2ðf Þ � t3ðf Þ, i.e.,
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2t2ðf Þ þ t3ðf Þ� dG1ðf Þ:
In particular, we have 2t2ðf Þ� dG1ðf Þ. Thus, for each f 2 FðG1Þ, we conclude by
(R1) and (R2) that

l0G1
ðf Þ� lG1

ðf Þ � g � 4

3

 t2ðf Þ � 1

3

 t3ðf Þ

¼ dG1ðf Þ � 4� g � 6

6

 2t2ðf Þ � 1

3

 ð2t2ðf Þ þ t3ðf ÞÞ

� 10� g

6

 dG1ðf Þ � 4:

ð5Þ

This together with the fact dG1ðf Þ� g 2 f6; 7g implies that l0G1
ðf Þ� 0 if (i) g ¼ 6, or

(ii) g ¼ 7 and dG1ðf Þ� 8. It remains to consider the case for g ¼ dG1ðf Þ ¼ 7. Clearly,
we have 2t2ðf Þ� 6 in this situation. Thus, the desired result also holds in view of (5)
providing that 2t2ðf Þ þ t3ðf Þ� dG1ðf Þ � 1 ¼ 6. Suppose that
g ¼ dG1ðf Þ ¼ 2t2ðf Þ þ t3ðf Þ ¼ 7. By (5), we have l0G1

ðf Þ� ð2� t2ðf ÞÞ=3, implying
that l0G1

ðf Þ� 0 unless t2ðf Þ ¼ 3. Note that it is impossible to warrant t2ðf Þ ¼ 3 and
t3ðf Þ ¼ 1 in any 7-face f by Lemmas 2.2 and 2.3 . Hence, we have l0G1

ðf Þ� 0 for
each f 2 FðG1Þ. This completes the proof of Claim 3.1. h

Claim 3.2 For every vertex v 2 V ðG1Þ, we have l0G1
ðvÞ� 0.

Proof Recall that G1 has minimum degree at least two by Lemma 2.1. We first prove
this for g ¼ 7. By (R1) and (R2), we have l0G1

ðvÞ ¼ dG1ðvÞ � 4þ 2
 1 ¼ 0 for each
2-vertex v and l0G1

ðvÞ ¼ dG1ðvÞ � 4þ 3
 1=3 ¼ 0 for each 3-vertex v. Since any

4þ-vertex doesn’t involve in the discharging procedure, its charge remains
nonnegative. This means that l0G1

ðvÞ � 0 for all v 2 V ðG1Þ. Now, we show that
the claim holds for g ¼ 6. Clearly, the charge of any 4-vertex remains nonnegative.
Recall that there is no 2-vertex adjacent to a 4�-vertex in G1 by Lemmas 2.2, 2.3 and
2.4 . It follows from (R1) and (R3) that l0G1

ðvÞ ¼ dG1ðvÞ � 4þ 2
 2=3þ 2
 1=3 ¼
0 for each 2-vertex v. It is also easy to see that l0G1

ðvÞ ¼ dG1ðvÞ � 4þ 3
 1=3 ¼ 0
for each 3-vertex v by (R2). Note that there are at most three 2-vertices get charges
from the same 5-vertex by Lemma 2.5. This implies that l0G1

ðvÞ ¼ dG1ðvÞ � 4�
3
 1=3 ¼ 0 for each 5-vertex v by (R3). At last, we have l0G1

ðvÞ ¼ dG1ðvÞ � 4�
dG1ðvÞ 
 1=3� 0 for each 6þ-vertex v. Thus, we complete the proof of Claim 3.2. h

By Claims 3.1 and 3.2 , we have l0G1
ðxÞ� 0 for all x 2 V ðG1Þ [ FðG1Þ. This leads

to a contradiction, completing the proof of Theorem 1.3. h

4 Concluding Remarks

We have shown that every n-vertex planar graph with girth at least g and without
isolated vertices has an odd induced subgraph with at least cgn vertices for
g 2 f6; 7g, where c6 ¼ 1=3 and c7 ¼ 2=5. For some small graphs, we claim that both
bounds are tight as shown by Proposition 1.4. We also find several classes of planar
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graphs with c ¼ 1=3, all of which contain small cycles. It is interesting to see
whether every n-vertex planar graph without isolated vertices has an odd induced
subgraph with at least n/3 vertices. In the end, we give a proof of Proposition 1.4.

Proof of Proposition 1.4 ðiÞ Note that any graph in Fig. 1 contains an odd induced
subgraph with at most 2 vertices. It follows that Proposition 1.4 ðiÞ holds for these
graphs and their disjoint union.

ðiiÞ Note that any cycle of length 3k þ i for i 2 f0; 1; 2g has an odd induced
subgraph with at most 2k vertices. As a consequence, if g ¼ 7, then Proposition 1.4
ðiiÞ holds for any cycle of length 7, 8, 11, and the disjoint union of two cycles of
length 8; if g ¼ 6, then it is valid for any cycle of length 7, 8, and any cycle of length
6 with a pendent edge at some vertex of the cycle. h

Acknowledgements The authors would like to thank Prof. Jie Ma for bringing this topic to their attention.
The authors are also grateful to Dr. Heng Li for helpful discussion on an earlier version of this manuscript.

References

1. Aashtab, A., Akbari, S., Ghanbari, M.: Vertex partitioning of graphs into odd induced subgraphs.
Discuss. Math. Graph Theory (2020). https://doi.org/10.7151/dmgt.2371. (in press)

2. Berman, D.M., Radcliffe, A.J., Scott, A.D., Wang, H., Wargo, L.: All trees contain a large induced
subgraph having all degrees 1 (mod k). Discret. Math. 175, 35–40 (1997)

3. Berman, D.M., Wang, H., Wargo, L.: Odd induced subgraphs in graphs of maximum degree three.
Aust. J. Combin. 15, 81–85 (1997)

4. Caro, Y.: On induced subgraphs with odd degrees. Discret. Math. 132, 23–28 (1994)
5. Caro, Y., Krasikov, I., Roditty, Y.: On induced subgraphs of trees with restricted degrees. Discret.

Math. 125, 101–106 (1994)
6. Ferber, A., Krivelevich, M.: Every graph contians a linearly sized induced subgraph with all degrees

odd. arXiv:2009.05495v3 (2021)
7. Grötzsch, H.: Ein Dreifarbenzatz für dreikreisfreie netze auf der Kugel. Math. Natur. Reihe 8, 109–120

(1959)
8. Hou, X., Yu, L., Li, J., Liu, B.: Odd induced subgraphs in graphs with treewidth at most two. Graphs

Combin. 34, 535–544 (2018)
9. Hou, J., Ma, H., Yu, X., Zhang, X.: A bound on judicious bipartitions of directed graphs. Sci. China

Math. 63, 297–308 (2020)
10. Hou, J., Li, Z., Wu, S.: On bipartitions of directed graphs with small semidegree. Eur. J. Combin. 84,

103039 (2020)
11. Ji, Y., Liu, J., Bai, Y., Wu, S.: Full friendly index sets of mCn. Front. Comput. Sci. 16, 163403 (2022)
12. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979)

�

� �

� �

�

�
�

�
� �

�
�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

� �

�

�
�

�
� �

�
�

� �
�

�
� �

�
�

� �
�

�
� �

�
�

�

Fig. 1 Planar graphs with c ¼ 1=3
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