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Abstract
We address the problem of constructing large circulant networks with given degree

and diameter, and efficient routing schemes. First we discuss the theoretical upper

bounds and their asymptotics. Then we apply concepts and tools from the change-

making problem to efficient routing in circulant graphs. With these tools we

investigate some of the families of circulant graphs that have been proposed in the

literature, and we construct tables of large circulant graphs and digraphs with

efficient routing properties.
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1 Introduction

An outstanding class of problems in network design has to do with the construction

of large networks subject to certain restrictions. Some common restrictions are, for

instance, an upper bound on the number of connections attached to each node (the

degree of the node), or an upper bound on the number of hops that a message has to

travel from an arbitrary source node to an arbitrary target node (the diameter of the

network).
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Let us first consider networks with bi-directional links (i.e. undirected graphs). If

we denote themaximumdegree of any node byD and the diameter of the network byD,
then it is well known that the maximum number of nodes ND;D is bounded above by

ND;D �MD;D ¼ 1þ Dþ DðD� 1Þ þ � � � þ DðD� 1ÞD�1

¼ 1þ D
ðD� 1ÞD � 1

D� 2
if D[ 2

2Dþ 1 if D ¼ 2

8
><

>:

ð1Þ

The upper bound MD;D is known as the Moore bound, and a network with MD;D

nodes is called a Moore graph. The Moore bound is only attainable for a few

combinations of D and D [19]. Nevertheless, for those combinations of D and

D where the Moore bound is not attainable, we can still strive to construct networks

with as many nodes as possible. This optimization problem is known in the graph-

theoretic literature as the Degree/Diameter Problem, or DDP, for short.

DDP can be formulated both for undirected graphs (as above) as well as for

digraphs. In the latter case we will denote by N
!

d;k the maximum number of nodes

that can be attained by a digraph of maximum outdegree d and diameter k, and the

corresponding upper bound would be:

N
!

d;k �M
!

d;k ¼ 1þ d þ d2 þ . . .þ dk ¼
dkþ1 � 1

d � 1
if d[ 1

k þ 1 if d ¼ 1

8
<

:
ð2Þ

A lot of research has been done on particular versions of the problem, namely when

the graphs or digraphs are restricted to a certain class, such as the class of Cayley

graphs [2, 11, 16, 32], Cayley graphs of abelian groups [6], or circulant graphs

[17, 22, 33]. In this paper we are revisiting the problem for the class of circulant

graphs and digraphs.

Circulant graphs and digraphs possess other interesting properties from the point

of view of their potential applications. For example, they are easy to construct, and

are vertex transitive, which means that all nodes are essentially identical. That is a

great advantage from the point of view of algorithm design, and that is one of the

reasons why circulant graphs and digraphs have been used as topologies for

interconnection networks and parallel computers. On the negative side, the upper

bound on the number of vertices for the class of circulant graphs is substantially

smaller than the general Moore bound.

Besides striving to construct large circulant networks with bounded degree and

diameter, we also pay attention to the design of efficient routing algorithms. Greedy

routing is a simple strategy that can be used in circulant networks, and other related

network topologies [9]. Basically, the greedy routing strategy consists of always

forwarding the message packet to the neighbour node that minimizes the distance to

the target node. Needless to say, in an arbitrary network this strategy does not

always result in the shortest route to the target node. However, in some networks it

does. Our aim is to construct large circulant networks for which the greedy routing

algorithm always outputs the shortest route.
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The paper is organized as follows: in Sect. 2, we set the notation and state some

definitions and results that will be needed throughout the rest of the paper. In Sect.

3, we establish the connection between greedy routing in circulant graphs and the

change-making problem, a combinatorial problem in numerical semigroups. In Sect.

4, we investigate some families of large circulant networks that have been proposed

in the literature, and ascertain whether they satisfy the property that greedy routing

always produces the shortest route. Section 5 is devoted to studying some number

sequences whose prefixes have the greedy property mentioned above. Then, Sect. 6

provides some large circulant graphs (both directed and undirected), which have the

greedy routing property. The paper ends with some open problems and future

research directions.

2 Definitions and Basic Facts

In this section, we define some notation and concepts that are needed throughout the

paper, mainly dealing with circulant graphs. We have mostly followed the notation

and style of [8], which contains some additional details. References [12, 20] are also

relevant sources in directed and undirected circulants, respectively.

A directed circulant graph C(n; S) is a Cayley graph on the cyclic group Zn, with

connection set S ¼ fs1; . . .; stg, such that S does not include any pair consisting of a

generator si and its inverse. In other words, every vertex i is connected by an arc to

the vertices iþ s1; iþ s2; . . .; iþ st, where addition is performed modulo n. So, the
out-degree of every vertex is jSj. In order to simplify the notation, we drop the curly

brackets fg in the specification of the set S in C(n; S) and write Cðn; s1; . . .; stÞ. It is
well known that C(n; S) is strongly connected if, and only if, gcdðn; s1; . . .; stÞ ¼ 1.

In turn, an undirected circulant graph C(n; S) is a Cayley graph on the cyclic

group Zn, with a symmetric connection set S (i.e. S ¼ S�1, or S ¼ �S in additive

notation).

C(n; S) is vertex-transitive, since it is a Cayley graph. The degree of C(n; S) is
D ¼ jSj, and its order is obviously n. A circulant graph can also be defined as a

graph of n vertices whose adjacency matrix is circulant [7].

Regarding the degree, we distinguish two cases:

1. Even degree: D ¼ 2t. In that case, S ¼ f�s1; . . .;�stg, where

1� s1\ � � �\st\ n
2
.

2. Odd degree: D ¼ 2t þ 1. In that case, S ¼ f�s1; . . .;�st;
n
2
g, where

1� s1\ � � �\st\ n
2
. It follows that odd degree is only possible when n is even.

As in the directed case, an undirected circulant C(n; S) is connected if, and only if,

gcdðn; s1; . . .; stÞ ¼ 1. If gcdðn; rÞ ¼ 1, then C(n; S) is isomorphic to C(n; rS), where
multiplication is taken modulo n. In that case we say that the connection sets S and

rS are multiplicatively related. It should be noted, however, that two circulant

graphs may be isomorphic without their connection sets being multiplicatively

related [7, 23].
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Now, let N
!AC

d;k be the number of vertices of the largest abelian Cayley digraph

with out-degree d and diameter k; then

N
!AC

d;k �
k þ d

d

� �

¼ k þ d

k

� �

ð3Þ

Since circulant digraphs are a special case of abelian Cayley digraphs, N
!AC

d;k is also

an upper bound for circulant digraphs. Actually, N
!AC

d;k is the best general upper

bound for circulant digraphs known so far (see [6, 15]).

The upper bound in the undirected case is a bit more involved. Let NAC
D;D be the

number of vertices of the largest abelian Cayley graph with degree D and diameter

D. If D ¼ 2t, then

NAC
D;D �Fðt;DÞ ¼

Xt

i¼0

2i
t

i

� � D

i

� �

ð4Þ

This upper bound was proved in [3] and later rediscovered by Muga [22]. As in the

undirected case, NAC
D;D is also the best general upper bound for a circulant graph with

degree D and diameter D known so far [6, 15]. As of today, no smaller general upper

bound (yet) exists for circulant graphs, which is quite surprising if we consider that

they are a special case of abelian Cayley graphs.

The numbers F(t, D) of Eq. (4) are known as Delannoy numbers (sequence

A008288 of [24]), and they arise in several combinatorial and geometric problems

[27]. Geometrically, they correspond to the volume of the ball of radius D/2 in the

L1 metric in t dimensions [6, 18, 31].

There is actually a formula that generalizes the aforementioned upper bounds for

the directed and the undirected case, in the sense that it allows both directed arcs

and undirected edges (see [15]).

Circulant graphs and digraphs are also called multi-loop networks. In particular,

circulants with t ¼ 2 and t ¼ 3 generators are called double-loop and triple-loop
networks, respectively.

An important special case of multi-loop networks is the case when s1 ¼ 1, also

called chordal rings by some authors. This case will be considered in detail here

because it provides a direct link with the change-making problem [26], as we will

see next.

3 Making Change and Greedy Routing in Circulant Graphs

Broadly speaking, network routing is the process by which a path is chosen in order

to transmit a message across a network. The path is chosen according to different

criteria, e.g. the distance to be travelled by the message, fault-tolerance of the

communication protocol, network congestion, etc. If the network topology is fixed,

then a static routing algorithm can be implemented.
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There is an extensive body of work on routing algorithms for specific network

topologies, such as circulant networks (see, for instance [10, 21, 30]). However, less

attention has been paid to the design of large circulant networks with efficient

communication features.

A simple and popular routing strategy is greedy routing, which consists of always
forwarding the message packet to the neighbour node that minimizes the distance to

the target node, for some distance function defined on the nodes of the network. This

strategy makes sense, for instance, in geographically embedded networks, and also

in circulant networks [9]. Nevertheless, in an arbitrary network this strategy does

not always result in the shortest route to the target node, but in some networks it

does. In this section, we will investigate the conditions under which greedy routing

results in the best route. As we will see, this problem has already been investigated

in a different setting, under the name of change-making problem [25, 26], and it is

related to other problems in numerical semigroups.

Let us first note that, since circulant graphs and digraphs are vertex-transitive, the

problem of finding a route (optimal or not) from vertex i to vertex j, can be reduced

to the problem of finding a route from vertex 0 to vertex k, where k is either i� j or
j� i. Therefore, from now on we may focus on the analysis of routing strategies

starting at vertex 0. This establishes a direct connection between the routing

problem and the money-changing problem, which we will now recall.

In the money-changing problem we have a set of coin denominations

S ¼ fs1; . . .; stg, with 1� s1\ � � �\st. Usually we impose the stronger condition

that s1 ¼ 1, so as to be able to make any arbitrary payment, although we will see

that this requirement can be relaxed in our setting. We also have a target amount k,
and the goal is to make k using as few coins as possible. Mathematically, we are

looking for a payment vector ða1; . . .; atÞ, such that

ai � 0; for all i ¼ 1; . . .; t ð5Þ

Xt

i¼1

aisi ¼ k; ð6Þ

Xt

i¼1

ai is minimal. ð7Þ

The greedy algorithm for making change proceeds as follows
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Algorithm 1: GREEDY PAYMENT METHOD

Input : The set of denominations S = 1, s2, . . . , st, with
1 < s2 < . . . < st, and a quantity k ≥ 0.

Output: Payment vector (a1, a2, . . . , at).

1 for i:= t downto 1 do
2 ai := k div si;
3 k := k mod si;
4 end

The payment vector produced by Algorithm 1 is not necessarily optimal (i.e.

GreedyCostSðkÞ ¼
Pt

i¼1 ai is not always minimal among all possible payment

vectors) but for some sets of denominations we can guarantee that it is optimal.

Let’s take for example two sets of denominations: S1 ¼ f1; 2; 5g and

S2 ¼ f1; 4; 6g, and suppose that we want to represent the quantity 8. With the set

S1, Algorithm 1 produces the representation 8 ¼ 5þ 2þ 1, which uses three coins,

one of each denomination. In other words, the payment vector would be (1, 1, 1).

This payment vector happens to be optimal, i.e. it is impossible to find a

representation of 8 using fewer coins of S1. In fact, it can be proved that with the set

S1, Algorithm 1 produces an optimal representation for any quantity k.
On the other hand, with the set S2, Algorithm 1 produces the representation

8 ¼ 6þ 1þ 1, which again uses three coins, one of denomination 6 and two of

denomination 1. However, in this case the payment vector produced by the greedy

method is not optimal, since there is a better representation of the quantity 8, namely

8 ¼ 4þ 4, which uses only two coins.

If a set S of denominations always produces an optimal payment vector for any
amount k, then S is called orderly, canonical, or greedy. There is a polynomial-time

algorithm that determines whether a given set of denominations is greedy [25, 26],

as well as plenty of necessary or sufficient conditions for special families of

denomination sets [1, 4].

The most powerful necessary and sufficient condition is given by the so-called

one-point theorem (see Theorem 2.1 [1]). Here we state it in a modified form:

Theorem 1 Suppose that S ¼ f1; s2; . . .; stg is a greedy set of denominations, and

stþ1 [ st. Now let m ¼ stþ1

st

� �

. Then Ŝ ¼ f1; s2; . . .; st; stþ1g is greedy if, and only if,

GreedyCostSðmst � stþ1Þ\m. h

Notice that

ðm� 1Þst þ 1� stþ1 �mst;

by the definition of m. A straightforward consequence of the one-point theorem is

the following

Corollary 1 (Lemma 7.4 of [1]) Suppose that S ¼ f1; s2; . . .; stg is a greedy set, and

stþ1 ¼ ust, for some u 2 N. Then Ŝ ¼ f1; s2; . . .; st; stþ1g is also greedy. h
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All the above concepts and results can be extended directly to the routing

problem in circulant graphs and digraphs:

Let C
!

be a circulant digraph Cðn; 1; s2; . . .; stÞ, where S ¼ f1; s2; . . .; stg is a

greedy system of denominations in the aforementioned sense, and let k 2
f0; . . .; n� 1g be an arbitrary vertex of C

!
. Then, the greedy payment vector

ða1; a2; . . .; atÞ gives us the best route from vertex 0 to vertex k, by following the st-
arcs at times, the st�1-arcs at�1 times, and so on. A circulant digraph

Cðn; 1; s2; . . .; stÞ equipped with a greedy connection set will be called greedy,
and the payment vector will be the routing vector.

Notice that, if we know the routing vector in advance, we can follow the arcs in

any order. For instance, we can start with the a1 unit steps, then we can follow the a2
arcs of type s2, and so on, in increasing order of the sub-index i. That gives us

several different optimal routes from vertex 0 to vertex k. More precisely, the

number of routes is

A

a1; a2; . . .; at

� �

¼ A!

a1! a2! � � � at!
;

where A ¼
Pt

i¼1 ai. The multiplicity of optimal routes is the basis for fault-tolerant

routing algorithms, but that is out of the scope of this paper.

Anyway, the best feature of the greedy routing algorithm is perhaps that we don’t

need to compute the whole routing vector in advance; we can do it online. However,
in that case we lose the multiple routes.

Now, since we are performing addition modulo n, we can relax the requirement

that s1 ¼ 1, provided that gcdðn; s1; . . .; stÞ ¼ 1. If vertex k is not reachable ‘in the

first round’, then it will be reachable in some subsequent ‘round’. To the best of our

knowledge, there is no study on greedy denomination systems with s1 [ 1. In any

case, the requirement that s1 ¼ 1 is not as restrictive as it looks at first sight, since

the circulant Cðn; s1; s2; . . .; stÞ, with s1 [ 1, is often isomorphic to a circulant of the

form Cðn; 1; s02; . . .; s0tÞ.
For example, let C ¼ Cðn; SÞ, where S ¼ fs1; s2; . . .; stg, with s1 [ 1. If there is

some si that is relatively prime with n, then by Euler’s theorem, s
/ðnÞ
i � 1 ð mod nÞ.

If k is relatively prime with n, then Cðn; kSÞ is isomorphic to C, where

multiplication is taken modulo n. In particular, if we take k ¼ s
/ðnÞ�1
i , and let

S0 ¼ s
/ðnÞ�1
i S, then 1 2 S0 and C ffi Cðn; S0Þ. Thus, we can rearrange S0 and we get a

circulant graph of the form Cðn; 1; s02; . . .; s0tÞ that is isomorphic to C.
We can also extend the greedy routing algorithm to the undirected case. Let C be

a circulant graph Cðn;�s1;�s2; . . .;�stÞ, and let Sþ ¼ fs1; s2; . . .; stg and

S� ¼ f�s1;�s2; . . .;�stg. Then we can either reduce the routing problem in C to

the routing problem in the circulant digraph C
!
, with connection set

S ¼ Sþ [ ðS� mod nÞ, or we can restrict the routing problem to the nodes k� n
2
.
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4 Analysis of Some Families of Large Circulant Graphs and Digraphs

A classic construction of large directed circulants with small diameter is the one

given by Wong and Coppersmith [33]. This construction is the basis for many other

variants. More precisely, they proved that the directed circulant

Cðut; 1; u; u2; . . .; ut�1Þ has diameter tðu� 1Þ. We call this construction FAMILY 0.

A straightforward consequence of Corollary 1 is that FAMILY 0 is greedy.

A variant of the above construction (FAMILY 1) is given by Hwang [12], namely

Cðut � 2u; 1; u; u2; . . .; ut�2; ut�1 � 1Þ, which has diameter tðu� 1Þ � 2. We will

prove the following result:

Proposition 1 FAMILY 1 is greedy.

Proof The subset S ¼ f1; u; u2; . . .; ut�2g is greedy, hence we only have to check

that it remains greedy when we add the generator ut�1 � 1. This can be done with

the aid of the one-point theorem. In this case m ¼ ut�1 � 1

ut�2

� �

¼ u, hence

u � ut�2 � ðut�1 � 1Þ ¼ 1, and GreedyCostSð1Þ ¼ 1\u. h

FAMILY 1 can be generalized by subtracting k� 1 to ut�1, as follows:

Let the FAMILY 1’ of circulants be defined by the set of generators

S ¼
�
1; u; u2; . . .; ut�2; ut�1 � k

	
;

where u� 2, t� 3, and the subtract k belongs to a set of integers K, which depends

on u and t. We can distinguish several combinations of u and t, and their corre-

sponding set of subtracts K, and connection set S:

Case

1:

u ¼ 2; t ¼ 3. This is a trivial case, since S is just f1; 2; 4� kg, where k is
limited to the value 1.

Case

2:

u ¼ 2; t ¼ 4. In this case S ¼ f1; 2; 4; 8� kg, where k 2 K ¼ f1; 2g.

Case

3:

u ¼ 3; t ¼ 3. Here S ¼ f1; 3; 9� kg, where k 2 K ¼ f1; 2; 3; 4g.

Case

4:

u ¼ 3; t ¼ 4. Here S ¼ f1; 3; 9; 27� kg, where

k 2 K ¼ f1; 2; 3; 4; 6; 9; 10; 12g.
Case

5:

u ¼ 2; t[ 4. Then k 2 K ¼ f1; 2; . . .; 2u� 2g.

Case

6:

u ¼ 3; t[ 4. Then k is in the set

K ¼ f1; 2; . . .; 2u� 2; 2u; 2uþ 1; . . .; 3u� 3g.
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Case

7:

All the remaining combinations of u and t, i.e. u� 4; t� 3. Then k is in the
set

K ¼
�
1; 2; . . .; 2u� 2;

2u; 2uþ 1; . . .; 3u� 3;

..

.

ðu� 1Þu
	
;

which corresponds to the upper left triangle of the following matrix

(excluding 0), represented in boldface:

Au	u ¼

0 1 � � � u� 2 u� 1

u uþ 1 � � � 2u� 2 2u� 1

2u 2uþ 1 � � � 3u� 2 3u� 1

..

. ..
. . .

. ..
. ..

.

ðu� 1Þu ðu� 1Þuþ 1 � � � u2 � 2 u2 � 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Theorem 2 FAMILY 1’ is greedy.

Proof Cases 1� 4 have a (small) finite number of possibilities, and they can be

verified by hand, so we can concentrate on the cases 5� 7. In all those cases m ¼ u,

and m � ut�2 � ðut�1 � kÞ ¼ k. Let Ŝ ¼ f1; u; u2; . . .; ut�2g. Note that

GreedyCostŜðkÞ is just the sum of the digits of the representation of k in base u.

It is not difficult to verify that
�
GreedyCostŜð1Þ ¼ 1; . . .;GreedyCostŜð2u� 2Þ ¼ u� 1;

GreedyCostŜð2uÞ ¼ 2; . . .;GreedyCostŜð3u� 3Þ ¼ u� 1;

..

.

GreedyCostŜððu� 1ÞuÞ ¼ u� 1
	
:

h

Hwang also proposed another family of greedy circulants (FAMILY 2), defined as

CðUðtÞ; 1; u1; u1u2; . . .;U
ðt�1ÞÞ;

where UðkÞ ¼
Qk

i¼1 ui. The diameter of FAMILY 2 is
Pt

i¼1ðui � 1Þ. It is clear that

FAMILY 2 is greedy by Corollary 1. FAMILY 2 can also be generalized in the same

manner as FAMILIES 1 and 1’, but there are more cases to consider, and the proof

becomes a bit cumbersome.

In [5], Chang and Chen introduce several families of triple-loop networks that

improve on the previous constructions. Among these we have:1

1 We have modified the original formulation of these families slightly.
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FAMILY 3: Cðw3 � 6w2 þ 12w� 8; 1;w;w2 � 3wþ 2Þ, of diameter 3w� 11

(Theorem 5 of [5]).

FAMILY 4: Cðw3 � 7w2 þ 14w� 11; 1;w;w2 � 4wþ 2Þ, of diameter 3w� 13

(Theorem 6 of [5]).

Proposition 2 FAMILY 3 and FAMILY 4 are not greedy.

Proof FAMILY 3: The subset S ¼ f1;wg is greedy, hence we only have to check

whether it remains greedy when we add the third generator, w2 � 3wþ 2. In this

case m ¼ w� 2, hence ðw� 2Þw� ðw2 � 3wþ 2Þ ¼ w� 2, and

GreedyCostSðw� 2Þ ¼ w� 2 ¼ m.
FAMILY 4: The subset S ¼ f1;wg is greedy, hence we only have to check whether

it remains greedy when we add the third generator, w2 � 4wþ 2. In this case

m ¼ w� 3, hence ðw� 3Þw� ðw2 � 4wþ 2Þ ¼ w� 2, and

GreedyCostSðw� 2Þ ¼ w� 2[m. h

Negative results, like that of Proposition 2, seem to be quite abundant, so we will

not review any more examples. Instead, we will extend these ideas to infinite

sequences.

5 Totally Greedy Sets and Totally Greedy Sequences

A set S ¼ f1; s2; . . .; stg is totally greedy2 if every prefix subset f1; s2; . . .; skg, with
k� t is greedy. Obviously, a totally greedy set is also greedy, but the converse is not

true in general. Take, for instance, the greedy set f1; 2; 5; 6; 10g, whose prefix subset
f1; 2; 5; 6g is not greedy.

The definition of totally greedy sets can be extended to infinite sequences in an

obvious way. We can now use Theorem 1 to prove that some noteworthy sequences

are totally greedy:

Proposition 3 The (modified) Fibonacci sequence f1; 2; 3; 5; 8; . . .g is totally
greedy.

Proof Let FðtÞ ¼ f1; 2; 3; . . .;Ftg be the set of the first t Fibonacci numbers (not

counting F0), for t� 1. We will prove by induction that any FðtÞ is greedy. It is clear

that Fð1Þ and Fð2Þ are greedy, and it is very easy to verify that Fð3Þ is also greedy. So,

let’s suppose that FðtÞ for t� 3 is greedy, and let’s prove that Fðtþ1Þ is also greedy.

So, in this case m ¼ Ftþ1

Ft

� �

¼ 1þ Ft�1

Ft

� �

¼ 2, hence

2 � Ft � Ftþ1 ¼ Ft � Ft�1 ¼ Ft�2, and GreedyCostFðtÞ ðFt�2Þ ¼ 1\2 ¼ m. h

A similar result holds for the Lucas numbers, which are defined by the same

recurrence Lk ¼ Lk�1 þ Lk�2, but with the initial values L0 ¼ 2 and L1 ¼ 1

(Sequence A000032 of [24]). In this case we can rearrange the sequence so that it

2 Also called normal, or totally orderly.
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starts with 1, as follows: f1; 2; 3; 4; 7; 11; 18; 29; . . .g. Actually, we can easily

generalize Proposition 3 to a family of sequences defined by the recurrence

Gk ¼ pGk�1 þ Gk�2; ð8Þ

where p� 1 is an integer. This family includes the Fibonacci and Lucas numbers,

where p ¼ 1, and other interesting number sequences, such as the Pell numbers,

where p ¼ 2 (Sequence A000129 of [24]). For the moment we will fix G0 ¼ 0 and

G1 ¼ 1, as in the Fibonacci and Pell numbers, although it is not difficult to extend

this result to other combinations of G0 and G1.

Theorem 3 The sequence defined by G0 ¼ 0; G1 ¼ 1, and Eq. (8), is totally greedy
for all p� 1.

Proof For the purposes of this theorem we leave G0 out, so that the sequence starts

with 1. So, let t� 1, and let GðtÞ ¼ f1; p; p2 þ 1; . . .;Gtg be the set of the first t
generalized Fibonacci numbers defined by the recurrence 8. As before, we will

prove the theorem by induction. For the base case we have to verify that Gð3Þ is

greedy, given that Gð2Þ is greedy. Indeed we have: m ¼ G3

G2

� �

¼ pþ 1

p

� �

¼ pþ 1.

Now, mG2 � G3 ¼ ðpþ 1Þp� ðp2 þ 1Þ ¼ p� 1, and

GreedyCostGð2Þ p� 1ð Þ ¼ p� 1\pþ 1 ¼ m.

So, let’s suppose that GðtÞ is greedy for some arbitrary t� 3, and let’s prove that

Gðtþ1Þ is also greedy.

We have m ¼ Gtþ1

Gt

� �

¼ pþ Gt�1

Gt

� �

¼ pþ 1. Now, ðpþ 1ÞGt � Gtþ1 ¼ Gt�

Gt�1 ¼ ðp� 1ÞGt�1 þ Gt�2, whence GreedyCostGðtÞ ðp� 1ÞGt�1 þ Gt�2ð Þ ¼
p\pþ 1 ¼ m. h

Tribonacci numbers are another natural generalization of Fibonacci numbers.

Tribonacci numbers are defined by the third-order recurrence

Tk ¼ Tk�1 þ Tk�2 þ Tk�3: ð9Þ

Different choices of T1, T2 and T3 lead to different sequences, hence we may speak

about the family of Tribonacci sequences. For instance, if we take T1 ¼ T2 ¼ 0 and

T3 ¼ 1 we get the sequence f1; 2; 4; 7; 13; 24; 44; 81; . . .g (sequence A000073 of

[24]). On the other hand, if we take T1 ¼ T2 ¼ T3 ¼ 1 we get the sequence

f1; 3; 5; 9; 17; 31; 57; 105; . . .g (sequence A000213 of [24]). Finally, by taking T1 ¼
T3 ¼ 0 and T2 ¼ 1 we get the sequence f1; 2; 3; 6; 11; 20; 37; 68; . . .g (sequence

A001590 of [24]). Note that the original Tribonacci sequences have been shifted

here, so that they start at the last occurrence of 1.

Theorem 4 Let fT ngn2N be a sequence generated by the recurrence

T k ¼ T k�1 þ T k�2 þ T k�3; ð10Þ

with initial values 1 ¼ T 1\T 2\T3. If the set T ð4Þ ¼ fT 1; T 2; T 3; T 4g is greedy,
then the Tribonacci sequence fT ngn2N is totally greedy.
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Proof Again, we prove the theorem by induction. The base case is guaranteed by

the assumptions of the theorem. So, let’s suppose that T ðkÞ is totally greedy for some

arbitrary k� 3, and let’s prove that T ðkþ1Þ is also greedy (and hence totally greedy).

We have m ¼ T kþ1

T k

� �

¼ 1þ T k�1 þ T k�2

T k

� �

¼ 2, hence

2 � T k � T kþ1 ¼ T k�3, and GreedyCostT ðkÞ ðT k�3Þ ¼ 1\2 ¼ m. h

Theorem 4 applies to the three sequences, A000073, A000213 and A001590,

mentioned above.

6 Some Large Greedy Circulant Networks

Research in the Degree/Diameter Problem has been greatly enhanced by the

compilation of the largest known graphs. In [28] there is a list of graph categories,

with the corresponding tables of largest known graphs for each combination of

degree and diameter. These tables provide benchmarks that can be used to compare

different constructions and algorithms. In particular, there is a table for the largest

known undirected circulant graphs [29], that spans degrees 3–20 and diameters

2–16.

Collecting the largest known graphs of a specific class is an arduous task. As of

today, there is still no such compilation of the largest circulant digraphs, although

there are several papers that provide computational results. In this section, we also

summarize some preliminary computational results, that could lead to a compilation

of the largest greedy circulant graphs and digraphs in the near future.

Our starting point are Families 0, 1 and 2, described in Sect. 4, as well as the

tables of largest circulant graphs and digraphs (some of them greedy) given in [6].

Another source is a table given in [26], where some efficient greedy sets are given.

The efficiency of those sets is measured in terms of the average greedy cost. In our

circulant graph setting, this corresponds to the average distance. On the other hand,

the diameter of a circulant graph with such a given connection set is the largest
greedy cost. The diameter and the average distance must not always coincide, i.e.

the connection set that minimizes the average distance is not necessarily the same

connection set that minimizes the diameter. However, both measures are intimately

related, and they often coincide.

We have summarized our findings in Tables 3 and 4. For each combination of

outdegree 3� d� 6 (degree 5�D� 6) and diameter 2� k� 10 (undirected

diameter 2�D� 10), we give the order of the largest greedy circulant digraph

(graph) found so far, together with the connection set that realizes it. Note that

connection sets of the form f1; s2g are always greedy, hence the corresponding

circulant digraphs of outdegree 2, and the undirected circulant graphs of degrees 3

and 4, have already been tabulated in previous works.

In principle, we may also construct greedy circulant graphs and digraphs from

any totally greedy sequence, such as the Fibonacci, Lucas, and Tribonacci

sequences mentioned in Sect. 5. For the sake of illustration we list the largest

digraphs and graphs generated by prefixes of the Fibonacci sequence in Tables 1 and
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2, respectively. However, as it can be seen, the graphs that are obtained from those

sequences fall short of the benchmarks recorded in Tables 3 and 4.

7 Some Open Problems

The purpose of this paper was not to make a complete catalogue of greedy and non-

greedy families of circulant networks proposed in the literature. However, such a

catalogue might be handy for network designers. In particular, it could be interesting

to investigate the families that include some the largest known circulant graphs for

some combinations of degree and diameter, such as the families described in

[13, 14].

The largest known circulant graphs are tabulated in [29] for each combination of

degree and diameter. It would be natural to ask for the construction of a similar

table of the largest known greedy circulants.

Another issue here is to investigate the greediness of connection sets of the form

S ¼ fs1; s2; . . .; stg, with s1 [ 1, especially in those cases where the circulant

Cðn; s1; s2; . . .; stÞ is not isomorphic to a circulant of the form Cðn; 1; s02; . . .; s0tÞ. In
this case, not all integers are representable as a sum of the elements of S, but we can
investigate the optimality of the greedy algorithm for the integers that are indeed

representable, i.e. the sub-monoid hSi 
 N generated by S. Nevertheless, in the

context of circulant graphs, since we are demanding that gcdðn; s1; . . .; stÞ ¼ 1, all

the integers will be representable modulo n.
In the more general setting of numerical semigroups, it could be interesting to

investigate the properties of numerical semigroups generated by greedy sets.

Appendix: Tables of Large Greedy Circulant Graphs and Digraphs

See Tables 1, 2, 3 and 4.

Table 1 Largest circulant digraphs derived from the Fibonacci sequence (the degree is the length of the

sequence prefix)

d

k 2 3 4 5 6 7 8 9 10

3 7 11 15 19 23 27 31 35 39

4 14 19 24 29 34 39 44 49

5 20 28 36 44 52 60 68 76

6 25 38 51 64 77 90 103 116

Table 2 Largest circulant

graphs derived from the

Fibonacci sequence (the degree

is the length of the sequence

prefix)

D

D 2 3 4 5 6 7 8 9 10

6 13 19 25 31 37 43 49 55 61
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