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Abstract
Let n, k, t be positive integers. What is the maximum number of arcs in a digraph on

n vertices in which there are at most t distinct walks of length k with the same

endpoints? Denote f ðtÞ ¼ maxf2t þ 1; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

þ 3g. In this paper,

we prove that the maximum number is equal to nðn� 1Þ=2 and the extremal digraph

are the transitive tournaments when k� n� 1� f ðtÞ. Based on this result, we may

determine the maximum numbers and the extremal digraphs when k� f ðtÞ and n is

sufficiently large, which generalizes the existing results. A conjecture is also

presented.
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1 Introduction

We discuss only finite simple digraphs (without multiple arcs but allowing loops).

The terminology and notation is that of [1], except as indicated. The number of the

vertices of a digraph is its order and the number of the arcs its size. We abbreviate

directed walks and directed cycles as walks and cycles, respectively. The length of a

walk or cycle is its number of arcs. A p-cycle is a cycle of length p. Similarly, a p-
walk is a walk of length p.

Turán type problems are among the most important topics in graph theory, which

concern the possible largest number of edges in graphs forbidding given subgraphs

and the extremal graphs achieving that maximum number of edges. The systematic
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investigation of digraph extremal problem was initiated by Brown and Harary [2].

For more details, see [3, 4]. Given a family of digraphs F, a digraph D is said to be

F-free if D contains no subgraph from F. Let exðn;FÞ be the maximum size of

F-free digraphs of order n and EXðn;FÞ be the set of F-free digraphs of order n
with size exðn;FÞ. Given two positive integers k, t, denote by Fk;t the family of

digraphs consisting of t different walks of length k with the same initial vertex and

the same terminal vertex. For example, let x ! u1 ! u2 ! y and x ! v1 ! v2 ! y
be two different walks (u1 ¼ v1 and u2 ¼ v2 do not hold simultaneously) with any

pair of vertices may be the same. Then the union of these two walks belongs to

F3;2. All the digraphs in F2;2 (or their inverses) are illustrated in Fig. 1.

In [5], the authors studied the extremal digraphs such that for any pair of vertices

x, y (not necessary different), there exist at most t directed walks of length k from

x to y. It is equivalent to studying the Turán type problem as follows.

Problem 1 Given positive integers n, k, t, determine exðn;Fk;tþ1Þ and

EXðn;Fk;tþ1Þ.

The initial version of Problem 1 was posed by Zhan at a seminar in 2007, which

concerned the case t ¼ 1; see [13, p. 234]. In the last decade, Problem 1 for the case

t ¼ 1 has been completely solved by the team work in [6–8, 11, 12].

For the general cases of Problem 1, the case k ¼ 2 has been studied in [9]. Huang

and Lyu [5] proved that given a positive integer t, the transitive tournament is the

only extremal digraph when k� n� 1� 6t þ 1.

Theorem 2 ([5]) Let t be a positive integer. For k� n� 1� 6t þ 1, a digraph
D 2 EXðn;Fk;tþ1Þ if and only if D is a transitive tournament.

We define z(t) as the smallest integer such that if k� n� 1� zðtÞ, then D 2
EXðn;Fk;tþ1Þ if and only if D is a transitive tournament. Huang and Zhan [8]

proved that zð1Þ ¼ 4. It follows from Theorem 2 that z(t) is well defined for each

positive integer t and

zðtÞ� 6t þ 1:

Based on this fact, using induction on n, Lyu [10] obtained the following result.

Theorem 3 Let k, n, t be positive integers with k� 6t þ 1 and
n� k þ 5þ blog2ðtÞc. Then D 2 EXðn;Fk;tþ1Þ if and only if D is an balanced
blow-up of the transitive tournament of order k.

Motivated by Theorem 3, [11, Theorem 2] and [7, Theorem 1], we present a

conjecture as follows.

Fig. 1 The diagrams of the digraphs in F2;2
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Conjecture 4 Let k, t be positive integers with k� zðtÞ and let n be sufficiently
large. Then D 2 EXðn;Fk;tþ1Þ if and only if D is a balanced blow-up of the
transitive tournament of order k.

From [8] we get zð1Þ ¼ 4. Hence, Conjecture 4 holds when t ¼ 1. In view of this,

it is important to determine the exact value or a better upper bound of z(t) for each t.

Denote f ðtÞ ¼ maxf2t þ 1; 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

þ 3g. In this note, we present a

new upper bound for z(t) as follows.

Theorem 5 Let t be a positive integer. Then

zðtÞ� f ðtÞ: ð1:1Þ

Adopting the same arguments as in the proofs in [10](modify a few details in the

proof), we may obtain that Theorem 3 holds for k� f ðtÞ, which improves the main

result of [10] when t� 2.

2 Proof of Theorem 5

In order to present the proofs, we need the following notations and definitions. Let

D ¼ ðV;AÞ be a digraph with vertex set V and arc set A. The size of D is denoted by

a(D). The outdegree and indegree of a vertex u, denoted by dþðuÞ and d�ðuÞ, are the
numbers of arcs with tails and heads u, respectively. Denote by

NþðuÞ ¼ x 2 Vjðu; xÞ 2 Af g and N�ðuÞ ¼ x 2 Vjðx; uÞ 2 Af g:

For a set X � V, we denote by D[X] the subgraph of D induced by X. For u; v 2 V,
uv denotes the arc from u to v and the notation u ! v means uv 2 A.

Lemma 6 Let n, t be positive integers and let D be a digraph of order n. If an m1-
cycle C1 and an m2-cycle C2 in D are joint, then D is not Fk;tþ1-free for all
k� Ldlog2ðt þ 1Þe; where L is the least common multiple of m1 and m2.

Proof Let a1 ¼ L=m1 and a2 ¼ L=m2. Assume C1 and C2 are joint at vertex v. We

first consider the case k ¼ Ldlog2ðt þ 1Þe. Let w be the walk of length Ldlog2ðt þ
1Þe from v to v along C1. We partition w into dlog2ðt þ 1Þe walks of the same length

from v to v, say w1; . . .;wdlog2ðtþ1Þe. Each of fw1; . . .;wdlog2ðtþ1Þeg could be replaced

by repeating C2 a2 times. Therefore, there exist t þ 1 distinct walks of length

Ldlog2ðt þ 1Þe from v to v. For k[ Ldlog2ðt þ 1Þe, we can extend these walks along
C2 to k-walks with the same endpoints. h

Lemma 7 ([5]) Let n, t be positive integers and let D be a digraph of order n. If an
m1-cycle C1 and an m2-cycle C2 in D are connected by an arc, then D is not Fk;tþ1-
free for k� tLþ 1:

The girth of a digraph D with a cycle is the length of its shortest cycle, denoted

by g(D), and a digraph with no cycle has infinite girth.

123

Graphs and Combinatorics (2022) 38:33 Page 3 of 7 33



Lemma 8 ([5]) Let D be a loopless digraph of order n. If aðDÞ ¼ nðn� 1Þ=2, then
D is a transitive tournament or

gðDÞ� 3:

Let D ¼ ðV;AÞ be a digraph with l loops. Denote by d(u) the number of arcs

incident with u. We have

dðuÞ ¼
dþðuÞ þ d�ðuÞ � 1; if u ! u;

dþðuÞ þ d�ðuÞ; otherwise:

�

Since aðDÞ ¼
P

u2V
dþðuÞ and aðDÞ ¼

P

u2V
d�ðuÞ, we have

2aðDÞ ¼
X

u2V
dðuÞ þ l; ð2:1Þ

and

dðuÞ ¼ aðDÞ � a D½V n fug�ð Þfor allu 2 V:

Lemma 9 Let D ¼ ðV;AÞ be Fk;tþ1-free with k� 2dlog2ðt þ 1Þe. Then dðuÞ� jVj
for all u 2 V.

Proof Suppose there exists u 2 V such that dðuÞ� jVj þ 1. It follows that at least

two cycles are joint at u. Moreover, these two cycles are either two 2-cycles or one

loop and one 2-cycle. By Lemma 6, D is not Fk;tþ1-free for k� 2dlog2ðt þ 1Þe, a
contradiction. h

Lemma 10 Let D ¼ ðV;AÞ be a digraph and let C and T be disjoint cycle and

tournament in D, where jVðTÞj � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

þ 1. If there exists at least

one arc between each vertex of C1 and each vertex of T, then D is not Fk;tþ1-free
for k� maxft þ 1; 3dlog2ðt þ 1Þeg.

Proof To the contrary, suppose D is Fk;tþ1-free for

k� maxft þ 1; 3dlog2ðt þ 1Þeg. Suppose T contains a 3-cycle C1 as its subdigraph.

Let

C � w1 ! . . . ! wl ! w1andC1 � u1 ! u2 ! u3 ! u1:

Without loss of generality, we assume w1 ! u1. If u2 ! w1, we obtain a 3-cycle

u2 ! w1 ! u1 ! u2. Since two 3-cycles are joint, by Lemma 6 we obtain D is not

Fk;tþ1-free, a contradiction. Hence, w1 ! u2. Similarly, w1 ! u3. If there exists

some i such that ui ! wl, we obtain ui ! wl ! w1 ! ui. Then two 3-cycles are

joint. By Lemma 6, D is not Fk;tþ1-free, a contradiction. Hence wl ! ui for

i 2 f1; 2; 3g. Repeating the above arguments, we have
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wi ! uj fori 2 f1; 2; . . .; lgandj 2 f1; 2; 3g: ð2:2Þ

We construct walks of length k from w1 to u1 in the following way. For each

t1 2 f0; 1; . . .; tg, there are a walk of length t1 with its initial vertex w1 along C, say
Wt1 , and a walk of length k � t1 � 1 with terminal vertex u1 along C1, sayW

0
t1
. Since

(2.2),Wt1W
0
t1
is a walk of length k with initial vertex w1 and terminal vertex u1. Then

there exist t þ 1 distinct walks of length k from w1 to u1, a contradiction. Hence T
contains no 3-cycles. Combining this with Lemma 8, T is acyclic, and hence it is

transitive. Let a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

. Since jVðTÞj� 2aþ 1, without loss of

generality, we assume w1 has at least aþ 1 successors in T. Let those successors be
ft0; t1; t2; . . .; tag with ti ! t0 for i ¼ f1; 2; . . .; ag. For any pair i; j 2 f1; 2; . . .; ag
with i\j, we have � � � ! w1 ! ti ! tj ! t0. Since aða� 1Þ=2� t þ 1, there are

more than t walks of length at least 3, a contradiction. h

Now we are ready to give the proof of Theorem 5.

Proof of Theorem 5 Assume k� n� 1� f ðtÞ. It is sufficient to prove that D 2
EXðn0;Fk;tþ1Þ if and only if D is a transitive tournament on n vertices. At first, we

determine exðn0;Fk;tþ1Þ for n0 � aþ 2, where a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

þ 1. It is

easily seen that the transitive tournament of order n0 is in EXðn0;Fk;tþ1Þ. Hence,

ex n0;Fk;tþ1

� �

� n0 n0 � 1ð Þ
2

ð2:3Þ

Now we prove that

ex n0;Fk;tþ1

� �

¼ n0 n0 � 1ð Þ
2

: ð2:4Þ

Suppose otherwise that D is Fk;tþ1-free on n0 vertices with l loops and

aðDÞ� n0 n0 � 1ð Þ
2

þ 1: ð2:5Þ

By the pigeonhole principle, there exists some v such that dðvÞ� n0. Combining this

with Lemma 9, we have

dðvÞ ¼ n0: ð2:6Þ

We distinguish the following two cases.

Case 1. vv 62 A. Then there exists u 2 V n fvg such that vu; uv 2 A. By Lemma

6, two 2-cycles can not be joint. Hence v is on exactly one 2-cycle. Combining this

with (2.6), each vertex in V n fu; vg is jointed with v by exactly one arc. By Lemma

7, D� v has no 2-cycles or loops, which implies that dðwÞ� n0 � 1 for all

w 2 V n fv; ug. By Lemma 9 and (2.5), we obtain dðuÞ ¼ n0 and

dðwÞ ¼ n0 � 1 forallw 2 V n fv; ug:

Hence, D½V n fu; vg� is a tournament. Moreover, each vertex in V n fu; vg is jointed
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with each of fu; vg by exactly one arc. Since jV n fu; vgj� a, by Lemma 10, D is not

Fk;tþ1, a contradiction.

Case 2. vv 2 A. By Lemma 7, v is jointed by exactly one arc with each vertex in

V. Moreover, each vertex in V n fvg is not on a loop or a 2-cycle. It follows from

(2.5) and (2.6) that D½V n fvg� is a tournament. By Lemma 10, D is not Fk;tþ1-free,

a contradiction. Now we get (2.4).

Now we characterize the structures of the digraphs in EXðn;Fk;tþ1Þ. Let

D 2 EXðn;Fk;tþ1Þ. First we show that D contains no loops. Since n� aþ 2, by

(2.4), we obtain that

aðDÞ ¼ nðn� 1Þ
2

anda D V n fug½ �ð Þ� ðn� 1Þðn� 2Þ=2:

Combining this with the definition of d(u), we get dðuÞ� n� 1 for all u 2 V.
Recalling (2.1), D is loopless. Moreover,

dðuÞ ¼ n� 1forallu 2 V: ð2:7Þ

Suppose D contains a 2-cycle u ! v ! u. By Lemma 6, v can not be on two distinct
2-cycles. Hence, it is joined with n� 2 distinct vertices. Let v0 2 V such that there

is no arc between v and v0. From (2.7) v0 is on a 2-cycle, say v0 ! v1 ! v0.
Obviously, v1 is joined with v. By Lemma 7, D is not Fk;tþ1-free, a contradiction.

Hence, D contains no 2-cycles. Recalling (2.7), D is a tournament.

Suppose D contains a 3-cycle u ! v ! w ! u. Note that D½V n fu; v;wg� is also
a tournament. Since n� 3� a, by Lemma 10, D is not Fk;tþ1-free, a contradiction.

It follows from Lemma 8 that D is a transitive tournament.

Conversely, it is easily seen that the transitive tournament of order n is in

EXðn;Fk;tþ1Þ. This completes the proof. h

Remark that in the above proof, we also obtain exðn;Fk;tþ1Þ ¼ nðn� 1Þ=2 for

k� f ðtÞ and 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2t þ 9=4
p

þ 1=2
l m

þ 3� n� f ðtÞ. However, we do not know the

structures of the digraphs attaining the maximum arcs.
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