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Abstract
Let lðGÞ denote the mean color number of a graph G. Dong proposed two mean

color conjectures. One is that for any graph G and a vertex w in G with dðwÞ� 1, if

H is a graph obtained from G by deleting all but one of the edges which are incident

to w, then lðGÞ� lðHÞ. The other is that for any graph G and a vertex w in G,

lðGÞ� lððG� wÞ [ K1Þ. In this paper, we show that the two conjectures hold under

the condition that w is a simplicial vertex in G. And when G is a connected (n, m)-

graph and w is not a cut vertex in G with dðwÞ ¼ n� 1, if m�ð
ffiffi

2
p

2
þ 2Þ

n� 4:5 �
ffiffiffi

2
p

, the second conjecture holds too. The two conjectures also hold for

some special cases, such as wheels and chordal graphs (Dong in J Combin Theory

Ser B 87: 348–365, 2003).
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1 Introduction

In this paper, all graphs are finite and simple. Throughout this paper, n and m will

always denote, respectively, the number of vertices and the number of edges in a

graph G. The readers are assumed familiar with graph theory terminology as in

Bondy and Murty [2], for example.

For any graph G, let V(G), E(G) and v(G) be the vertex set, edge set and order of

G, respectively. For a positive integer k, a proper k-coloring, or simply a k-colorings

of G is a map / : VðGÞ ! f1; 2; . . .; kg such that /ðuÞ 6¼ /ðvÞ where u and v are

adjacent vertices. The chromatic polynomial of G, denoted by PðG; kÞ, is the

number of k-colorings of G. For any positive integer k, let aðG; kÞ denote the

number of partitions of V(G) into exactly k non-empty independent sets. Then

PðG; kÞ ¼
X

n

k¼1

aðG; kÞðkÞk; ð1Þ

where ðkÞk ¼ kðk� 1Þ. . .ðk� k þ 1Þ and n ¼ vðGÞ.
Let G be a graph of order n. It is obvious that there exist n-colorings of G. For

any n-coloring C of G, let lðCÞ be the actual number of colors used. The mean color

number lðGÞ of G, defined by Bartels and Welsh [1], is the average of lðCÞ’s over

all n- colorings C. The number of n-colorings C of G with lðCÞ ¼ k is aðG; kÞðnÞk.
Therefore by the definition of lðGÞ, we have

lðGÞ ¼
Pn

k¼1 kðnÞkaðG; kÞ
Pn

k¼1ðnÞkaðG; kÞ
:

Bartels and Welsh also presented an expression of lðGÞ in terms of the chromatic

polynomials.

Theorem 1.1 ([1]) If vðGÞ ¼ n, then

lðGÞ ¼ n 1 � PðG; n� 1Þ
PðG; nÞ

� �

: ð2Þ

Theorem 1.1 shows that lðGÞ� n where equality holds iff G is complete. For the

empty graph On of order n, we have

lðOnÞ ¼ n 1 � 1 � 1

n

� �n� �

:

Bartels and Welsh conjectured that lðOnÞ is a lower bound of lðGÞ for any graph G
of order n, and their conjecture was proved by Dong [4]. They also proposed a more

general conjecture that if H is a spanning subgraph of G, then lðGÞ� lðHÞ. But

counterexamples have been discovered by Mosca [8].

Thus, in general the following equality is not true:
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lðGÞ� lðHÞ; ð3Þ

where H is a subgraph of G. But it is true for some special cases. It is clear that (3)

holds if G is complete. And Dong proved that (3) holds if H is a spanning subgraph

of G and H is either a tree or an empty graph [4]. Several years later, he also proved

that lðGÞ� lðHÞ if G is a chordal graph and H is a spanning subgraph of G, and the

equality holds iff H ffi G [5].

In this paper, we are concerned with two conjectures proposed by Dong. The first

is the following:

Conjecture 1 ([5]) For any graph G and a vertex w in G with dðwÞ� 1, if H is a
graph obtained from G by deleting all but one of the edges which are incident to w,

then lðGÞ� lðHÞ.

In Sect. 2 we shall show that Conjecture 1 holds under the condition that w is a

simplicial vertex in G with dðwÞ� 1. And Conjecture 1 also holds for the wheel of

order n.

The second conjecture is as follows:

Conjecture 2 ([5]) For any graph G and a vertex w in G,

lðGÞ� lððG� wÞ [ K1Þ.

In Sect. 3 we shall show that Conjecture 2 also holds under the condition that w
is a simplicial vertex in G. And when G is a connected (n, m)-graph and w is not a

cut vertex in G with dðwÞ ¼ n� 1, if m�ð
ffiffi

2
p

2
þ 2Þn� 4:5 �

ffiffiffi

2
p

, then

lðGÞ� lððG� wÞ [ K1Þ. For the wheel of order n, conjecture 2 holds too.

For some special cases, for example, chordal graph and 2-tree, the two

conjectures are true [5].

2 The First Conjecture

For any graphs G, H and for any real k, define

sðG;H; kÞ ¼ PðG; kÞPðH; k� 1Þ � PðG; k� 1ÞPðH; kÞ: ð4Þ

By Theorem 1.1, one may deduce that

Lemma 2.1 ([5]) For any graphs G and H with vðGÞ ¼ vðHÞ ¼ n, the inequality
lðGÞ� lðHÞ is equivalent to sðG;H; nÞ� 0.

Now we present a well known result on chromatic polynomial used in this paper.

Lemma 2.2 ([9]) For any graph G, if k� vðGÞ � 1, then PðG; kÞ� 0 where
equality holds iff G is complete and k ¼ vðGÞ � 1.

For any vertex x in G, let NGðxÞ (or simply N(x)) denote the set of vertices in G
which are adjacent to x, and let dGðxÞ (or simply d(x)) be the degree of x in G. The

vertex x in G is called a simplicial vertex if either dðxÞ ¼ 0 or G[N(x)] is a clique.
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Theorem 2.1 For any graph G of order n and a simplicial vertex w in G with
dðwÞ� 1, if k� n� 1 and H is a graph obtained from G by deleting all but one of
the edges which are incident to w, then sðG;H; kÞ� 0 where equality holds iff
dðwÞ ¼ 1 or k ¼ n� 1 and G� w is complete.

Proof Let G� ¼ G� w. For any positive integer k� d, since w is a simplicial

vertex in G, we have

PðG; kÞ ¼ ðk� dÞP G�; kð Þ; PðH; kÞ ¼ ðk� 1ÞP G�; kð Þ; ð5Þ

where d ¼ dðwÞ.
Thus, by (5) and the definition of sðG;H; kÞ, it follows that

sðG;H; kÞ ¼ðk� dÞP G�; kð Þðk� 2ÞP G�; k� 1ð Þ
� ðk� d � 1ÞP G�; k� 1ð Þðk� 1ÞP G�; kð Þ

¼ðd � 1ÞP G�; kð ÞP G�; k� 1ð Þ:
ð6Þ

In addition, for k� n� 1, by Lemma 2.2, we get

P G�; kð Þ[ 0; P G�; k� 1ð Þ� 0: ð7Þ

Observe that dðwÞ� 1. Therefore (6) and (7) imply the theorem holds. h

By Theorem 2.1 and Lemma 2.1, we have the first result on mean color number.

Theorem 2.2 For any graph G and a simplicial vertex w in G with dðwÞ� 1, if H is
a graph obtained from G by deleting all but one of the edges which are incident to
w, then lðGÞ� lðHÞ, where equality holds iff dðwÞ ¼ 1.

Now let us show that Conjecture 1 holds for the wheel of order n: for that let us

introduce some general results.

Lemma 2.3 Let G be a graph of order n, let w 2 VðGÞ with dðwÞ ¼ n� 1, and let
us write G� ¼ G� w. If H is a graph obtained from G by deleting all but one of the
edges which are incident to w, then sðG;H; kÞ� 0 is equivalent to

kðk� 2ÞðPðG�; k� 1ÞÞ2 �ðk� 1Þ2PðG�; kÞPðG�; k� 2Þ.

Proof By the definition of sðG;H; kÞ, we have

sðG;H; kÞ ¼ PðG; kÞPðH; k� 1Þ � PðG; k� 1ÞPðH; kÞ: ð8Þ

By the equality dðwÞ ¼ n� 1, one has that

PðG; kÞ ¼ kP G�; k� 1ð Þ: ð9Þ

And it is evident that

PðH; kÞ ¼ ðk� 1ÞP G�; kð Þ: ð10Þ

Combining (9) and (10) with (8), one may find that
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sðG;H; kÞ ¼ kðk� 2Þ P G�; k� 1ð Þð Þ2�ðk� 1Þ2P G�; kð ÞP G�; k� 2ð Þ: ð11Þ

Hence sðG;H; kÞ� 0 iff kðk� 2ÞðPðG�; k� 1ÞÞ2 �ðk� 1Þ2PðG�; kÞPðG�; k� 2Þ.
This completes the proof of the theorem. h

By Lemma 2.3 and Lemma 2.1, we have the following

Corollary 2.1 Let G be a graph of order n ðn� 2Þ and let w 2 VðGÞ with
dðwÞ ¼ n� 1. If H is a graph obtained from G by deleting all but one of the edges

which are incident to w, then lðGÞ� lðHÞ iff nðn� 2ÞðPðG�; n� 1ÞÞ2

�ðn� 1Þ2PðG�; nÞPðG�; n� 2Þ, where G� ¼ G� w.

Remark 1 In the early 1970’s Welsh and later, independently, Brenti [3] proposed a

conjecture that for all k 2 N and all graphs G, ðPðG; kÞÞ2 �PðG; kþ 1ÞPðG; k� 1Þ.
But a counterexample was found by Seymour [10]. Although in general the

conjecture is not true, Dong et al. [6] proposed another conjecture as follows :

Let G be a graph of order n. For k 2 R with k� n� 1,

P G; kð Þð Þ2 �PðG; kþ 1ÞPðG; k� 1Þ:

This conjecture remains open. Obviously, Corollary 2.1 is closely related to it. If

this conjecture is not true, then lðGÞ\lðHÞ. And this leads to Conjecture 1 not

being established.

The wheel of order n, denoted by Wn, is defined as Wn ¼ Cn�1 þ K1 (Wn is the

join of Cn�1 and K1). For any vertex x in Wn ðn� 4Þ, it is clear that dðxÞ� 3. The

following result shows that Conjecture 1 is true for Wn.

Theorem 2.3 For any wheel graph Wn ðn� 4Þ and a vertex w in Wn, if H is a graph
obtained from Wn by deleting all but one of the edges which are incident to w, then
lðWnÞ� lðHÞ.

Proof Let Wn be the wheel of order n ðn� 4Þ and w be a vertex in Wn. Now assume

that H is a graph obtained from Wn by deleting all but one of the edges which are

incident to w. The vertex w may be divided into the following two cases.

Case 1. dðwÞ ¼ n� 1, namely, w lies in the center of Wn.

Let us write W�
n ¼ Wn � w. By Corollary 2.1, we only need to check that

nðn� 2ÞðPðW�
n ; n� 1ÞÞ2 � ðn� 1Þ2PðW�

n ; nÞPðW�
n ; n� 2Þ� 0.

According to the definition of chromatic polynomial of a graph, we have

P W�
n ; k

� �

¼ P Cn�1; kð Þ ¼ ðk� 1Þn�1 þ ð�1Þn�1ðk� 1Þ:

Thus,
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nðn�2Þ P W�
n ;n�1

� �� �2�ðn�1Þ2P W�
n ;n

� �

P W�
n ;n�2

� �

¼nðn�2Þ ðn�2Þn�1þð�1Þn�1ðn�2Þ
h i2

�ðn�1Þ2 ðn�1Þn�1þð�1Þn�1ðn�1Þ
h i

� ðn�3Þn�1þð�1Þn�1ðn�3Þ
h i

:

ð12Þ

By the parity of n, we divide into the following two subcases.

Case 1.1. n is even.

By (12), it is easy to verify that nðn�2ÞðPðW�
n ;n�1ÞÞ2�ðn�

1Þ2PðW�
n ;nÞPðW�

n ;n�2Þ[0 for n¼4.

Now suppose that n�6.

By (12) we have

nðn� 2Þ P W�
n ; n� 1

� �� �2�ðn� 1Þ2P W�
n ; n

� �

P W�
n ; n� 2

� �

¼ nðn� 2Þ ðn� 2Þn�1 � ðn� 2Þ
h i2

�ðn� 1Þ2 ðn� 1Þn�1 � ðn� 1Þ
h i

� ðn� 3Þn�1 � ðn� 3Þ
h i

¼ nðn� 2Þðn� 2Þ2ðn�1Þ � 2nðn� 2Þnþ1 � ðn� 1Þ2 ðn� 1Þðn� 3Þ½ 	n�1

þ ðn� 3Þðn� 1Þnþ1 þ ðn� 1Þ3ðn� 3Þn�1 þ 2n� 3

¼ nðn� 2Þ ðn� 1Þðn� 3Þ þ 1½ 	n�1�2nðn� 2Þnþ1 � ðn� 1Þ2 ðn� 1Þðn� 3Þ½ 	n�1

þ ðn� 3Þðn� 1Þnþ1 þ ðn� 1Þ3ðn� 3Þn�1 þ 2n� 3

[ ðn� 1Þnðn� 3Þn�1 � 2nðn� 2Þnþ1 þ ðn� 3Þðn� 1Þnþ1

[ ðn� 1Þnðn� 3Þn�1 � 2nðn� 2Þnþ1 þ ðn� 3Þð2nþ 1Þðn� 2Þn

[ ðn� 2Þnðn� 3Þn�1 � ðnþ 3Þðn� 2Þn

[ 2ðn� 3Þ2ðn� 2Þn � ðnþ 3Þðn� 2Þn ¼ ðn� 2Þn 2n2 � 13nþ 15
� �

[ 0;

where the second inequality holds, as

ðn� 1Þnþ1 ¼ ðn� 2Þnþ1 þ
nþ 1

1

� �

ðn� 2Þn þ
nþ 1

2

� �

ðn� 2Þn�1 þ � � �

[ ðn� 2Þnþ1 þ ðnþ 1Þðn� 2Þn þ 2ðn� 2Þn:

Case 1.2. n is odd.

By (12) we obtain
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nðn�2Þ P W�
n ;n�1

� �� �2�ðn�1Þ2P W�
n ;n

� �

P W�
n ;n�2

� �

¼nðn�2Þ ðn�2Þn�1þðn�2Þ
h i2

�ðn�1Þ2 ðn�1Þn�1þðn�1Þ
h i

� ðn�3Þn�1þðn�3Þ
h i

¼nðn�2Þðn�2Þ2ðn�1Þþ2nðn�2Þnþ1�ðn�1Þ2 ðn�1Þðn�3Þ½ 	n�1

�ðn�3Þðn�1Þnþ1�ðn�1Þ3ðn�3Þn�1þ2n�3

[nðn�2Þ ðn�1Þðn�3Þþ1½ 	n�1þ4nðn�3Þnþ1�ðn�1Þ2 ðn�1Þðn�3Þ½ 	n�1

�ðn�3Þðn�1Þnþ1�ðn�1Þ3ðn�3Þn�1

[nðn�2Þ ðn�1Þðn�3Þþ1½ 	n�1þ 4ðn�3Þ2�ðn�1Þ2
h i

ðn�1Þðn�3Þn�1

�ðn�1Þ2 ðn�1Þðn�3Þ½ 	n�1�ðn�3Þðn�1Þnþ1

[nðn�2Þðn�1Þn�1ðn�3Þn�2� ðn�1Þðn�3Þ½ 	n�1�ðn�3Þðn�1Þnþ1

[ðn�1Þnðn�3Þn�1�ðn�3Þðn�1Þnþ1¼ðn�1Þnðn�3Þ ðn�3Þn�2�ðn�1Þ
h i

[ðn�1Þnðn�3Þ ðn�3Þ2�ðn�1Þ
h i

¼ðn�1Þnðn�3Þ n2�7nþ10
� �

�0;

where the third inequality holds, as

ðn� 1Þðn� 3Þ þ 1½ 	n�1 ¼ ðn� 1Þðn� 3Þ½ 	n�1þ
n� 1

1

� �

ðn� 1Þðn� 3Þ½ 	n�2þ � � �

[ ðn� 1Þðn� 3Þ½ 	n�1þðn� 1Þn�1ðn� 3Þn�2

and 4ðn� 3Þ2 � ðn� 1Þ2 ¼ 3n2 � 22nþ 35� 0.

Case 2. dðwÞ ¼ 3, namely, w lies in the rim of Wn.

Since dðwÞ ¼ 3, it follows that

PðH; kÞ ¼ ðk� 1ÞP Wn � w; kð Þ ¼ kðk� 1Þ2ðk� 2Þn�3: ð13Þ

And it is clear that

P Wn; kð Þ ¼ kP Cn�1; k� 1ð Þ ¼ k ðk� 2Þn�1 þ ð�1Þn�1ðk� 2Þ
h i

: ð14Þ

Thus, by (4), (13) and (14), we have

s Wn;H; kð Þ ¼P Wn; kð ÞPðH; k� 1Þ � P Wn; k� 1ð ÞPðH; kÞ

¼kðk� 1Þðk� 2Þ2ðk� 3Þn�3 ðk� 2Þn�1 þ ð�1Þn�1ðk� 2Þ
h i

� kðk� 1Þ3ðk� 2Þn�3 ðk� 3Þn�1 þ ð�1Þn�1ðk� 3Þ
h i

:

ð15Þ

According to the parity of n, we can divide into the following two subcases.

Case 2.1. n is even.

By (15) we get
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s Wn;H;nð Þ¼nðn�1Þðn�2Þ2ðn�3Þn�3 ðn�2Þn�1�ðn�2Þ
h i

�nðn�1Þ3ðn�2Þn�3 ðn�3Þn�1�ðn�3Þ
h i

¼nðn�1Þðn�2Þn�3ðn�3Þn�3 ðn�2Þ4�ðn�1Þ2ðn�3Þ2
h i

�nðn�1Þðn�2Þ3ðn�3Þn�3þnðn�3Þðn�1Þ3ðn�2Þn�3

¼nðn�1Þðn�2Þn�3ðn�3Þn�3
2n2�8nþ7
� �

�nðn�1Þðn�2Þ3ðn�3Þn�3þnðn�3Þðn�1Þ3ðn�2Þn�3

�nðn�1Þðn�2Þðn�3Þn�3
2n2�8nþ7
� �

�nðn�1Þðn�2Þ3ðn�3Þn�3þnðn�3Þðn�1Þ3ðn�2Þn�3

¼nðn�1Þðn�2Þðn�3Þn�3 n2�4nþ3
� �

þnðn�3Þðn�1Þ3ðn�2Þn�3

[0:

Case 2.2. n is odd.

By (15) we have

s Wn;H;nð Þ¼nðn�1Þðn�2Þ2ðn�3Þn�3 ðn�2Þn�1þðn�2Þ
h i

�nðn�1Þ3ðn�2Þn�3 ðn�3Þn�1þðn�3Þ
h i

¼nðn�1Þðn�2Þn�3ðn�3Þn�3 ðn�2Þ4�ðn�1Þ2ðn�3Þ2
h i

þnðn�1Þðn�2Þ3ðn�3Þn�3�nðn�3Þðn�1Þ3ðn�2Þn�3

¼nðn�1Þðn�2Þn�3ðn�3Þn�3
2n2�8nþ7
� �

þnðn�1Þðn�2Þ3ðn�3Þn�3�nðn�3Þðn�1Þ3ðn�2Þn�3

[nðn�1Þðn�3Þðn�2Þn�3
2n2�8nþ7
� �

þnðn�1Þðn�2Þ3ðn�3Þn�3�nðn�3Þðn�1Þ3ðn�2Þn�3

¼nðn�1Þðn�3Þðn�2Þn�3 n2�6nþ6
� �

þnðn�1Þðn�2Þ3ðn�3Þn�3

[0:

Thus, for dðwÞ¼3, by Lemma 2.1, we have

lðWnÞ[ lðHÞ:

This completes the proof of the theorem. h

3 The Second Conjecture

For two disjoint graphs G and H, let G [ H denote the graph with vertex set

VðGÞ [ VðHÞ and edge set EðGÞ [ EðHÞ. For any graph H and positive integer m,

let H [ mK1 be the graph obtained from H by adding m new vertices and no new

edges.
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Now we present the first result of this section.

Theorem 3.1 For any graph G and a simplicial vertex w in G,

lðGÞ� lððG� wÞ [ K1Þ.

Proof If dðwÞ ¼ 0, it is clear that the inequality holds.

Now assume that dðwÞ� 1. As w is a simplicial vertex in G, we have

PðG; kÞ ¼ k� dðwÞð ÞP G� w; kð Þ: ð16Þ

Let H ¼ ðG� wÞ [ K1. Then

PðH; kÞ ¼ kP G� w; kð Þ: ð17Þ

For k� n� 1, by (4), (16) and (17), one has that

s G;H; kð Þ ¼ ðk� 1Þ k� dðwÞð ÞP G� w; kð ÞP G� w; k� 1ð Þ
� k k� dðwÞ � 1ð ÞP G� w; kð ÞP G� w; k� 1ð Þ

¼ dðwÞP G� w; kð ÞP G� w; k� 1ð Þ� 0:

Thus, by Lemma 2.1, lðGÞ� lðHÞ ¼ lððG� wÞ [ K1Þ. h

By the proof of Theorem 3.1, one may find that if w is a simplicial vertex in G
with dðwÞ� 1 then lðGÞ[ lððG� wÞ [ K1Þ.

Corollary 3.1 Let G be a graph and w be a simplicial vertex in G with dðwÞ� 1. If
H is a subgraph of G which is obtained from G by deleting all edges adjacent to w.
Then lðGÞ[ lðHÞ.

Proof Let H be a subgraph of G which is obtained from G by deleting all edges

adjacent to w. It is obvious that H is a spanning subgraph of G and

H ffi ðG� wÞ [ K1. By the discussion above, this corollary follows immedi-

ately. h

On the basis of Theorem 3.1, we can obtain a more general result as follows:

Corollary 3.2 Let G be any graph and w1;w2; . . .;wl be all simplicial vertices in G.
Then lðGÞ� lððG� [t

i¼1wiÞ [ tK1Þ ð1� t� lÞ.

Proof As wt ð2� t� lÞ is a simplicial vertex in G, wt is a simplicial vertex in

ðG� [t�1
i¼1wiÞ. Moreover, it is also a simplicial vertex in ðG� [t�1

i¼1wiÞ [ ðt � 1ÞK1.

By Theorem 3.1, we have lððG� [t�1
i¼1wiÞ [ ðt � 1ÞK1Þ� lðG� wt � [t�1

i¼1wiÞ[
ðt � 1ÞK1 [ K1Þ ¼ lððG� [t

i¼1wiÞ [ tK1Þ. It follows that

lððG� w1Þ [ K1Þ� lððG� ðw1 [ w2ÞÞ [ 2K1Þ� � � � � lððG� [t
i¼1wiÞ [ tK1Þ.

Observe that w1 is a simplicial vertex in G too, by Theorem 3.1, we have

lðGÞ� lððG� w1Þ [ K1Þ. This implies the theorem holds. h

Similarly, we have the following

Corollary 3.3 Let G be any graph and w1;w2; . . .;ws be all simplicial vertices in G
with dðwiÞ� 1 ð1� i� sÞ. If Hj ð1� j� sÞ is a subgraph of G which is obtained
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from G by sequentially deleting all edges adjacent to wi ð1� i� jÞ, then
lðGÞ[ lðHjÞ.

Theorem 3.2 Let G be a graph of order n ðn� 2Þ and w 2 VðGÞ with
dðwÞ ¼ n� 1. Assume that H ¼ ðG� wÞ [ K1 and write G� ¼ G� w. Then for

k� 1; sðG;H; kÞ� 0 iff ðPðG�; k� 1ÞÞ2 �PðG�; kÞPðG�; k� 2Þ.

Proof By the definition of sðG;H; kÞ, we have

sðG;H; kÞ ¼ PðG; kÞPðH; k� 1Þ � PðG; k� 1ÞPðH; kÞ: ð18Þ

Since dðwÞ ¼ n� 1, one may deduce that

PðG; kÞ ¼ kP G�; k� 1ð Þ: ð19Þ

And it is clear that

PðH; kÞ ¼ kP G�; kð Þ: ð20Þ

By substituting (19) and (20) into (18), one may find that

sðG;H; kÞ ¼ kðk� 1Þ P G�; k� 1ð Þð Þ2�P G�; kð ÞP G�; k� 2ð Þ
h i

:

Thus, for k� 1, sðG;H; kÞ� 0 iff ðPðG�; k� 1ÞÞ2 � PðG�; kÞPðG�; k� 2Þ� 0,

namely, ðPðG�; k� 1ÞÞ2 �PðG�; kÞPðG�; k� 2Þ. This completes the proof of the

theorem. h

By Theorem 3.2 and Lemma 2.1, we get another result on mean color numbers.

Theorem 3.3 Let G be a graph of order n ðn� 2Þ, w 2 VðGÞ with dðwÞ ¼ n� 1

and G� ¼ G� w. Then lðGÞ� lððG� wÞ [ K1Þ iff

ðPðG�; n� 1ÞÞ2 �PðG�; nÞPðG�; n� 2Þ.

Remark 2 It is evident that Theorem 3.3 is also related to Dong’s conjecture in

Remark 1. Thus, if the conjecture is true, then lðGÞ� lððG� wÞ [ K1Þ; otherwise,

lðGÞ\lððG� wÞ [ K1Þ. This leads to Conjecture 2 not being established.

In what follows we introduce an known inequality on chromatic polynomials of

graphs.

Lemma 3.1 ([7]) Let G be a connected (n, m)-graph. If k 2 R and

k� maxfn� 1;
ffiffiffi

2
p

ðm� nþ 2:5Þg, then

P G; kð Þð Þ2 �P G; kþ 1ð ÞP G; k� 1ð Þ: ð21Þ

Theorem 3.4 Suppose that G is a connected (n, m)-graph and that w is a vertex

such that dðwÞ ¼ n� 1 and w is not a cut vertex of G. If m�ð
ffiffi

2
p

2
þ 2Þn� 4:5 �

ffiffiffi

2
p

,

then
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lðGÞ� l ðG� wÞ [ K1ð Þ: ð22Þ

Proof Let G� ¼ G� w. As G is a connected graph and w is not a cut vertex in G,

G� is a connected graph too. It is clear that j VðG�Þ j¼ n� 1 and

j EðG�Þ j¼ m� nþ 1. Hence G� is a connected ðn� 1;m� nþ 1Þ-graph.

By the inequality m�ð
ffiffi

2
p

2
þ 2Þn� 4:5 �

ffiffiffi

2
p

, we have

ðn� 1Þ � 1 ¼ n� 2�
ffiffiffi

2
p

ðm� 2nþ 4:5Þ ¼
ffiffiffi

2
p

½ðm� nþ 1Þ � ðn� 1Þ þ 2:5	:
ð23Þ

Then, by (23) and Lemma 3.1, it follows that

P G�; n� 1ð Þð Þ2 �P G�; nð ÞP G�; n� 2ð Þ: ð24Þ

Thus, by (24) and Theorem 3.3, the theorem holds. h

By Theorem 3.4, we have the following

Corollary 3.4 Suppose that G is a 2-connected (n, m)-graph and w is any vertex in

G with dðwÞ ¼ n� 1. If m�ð
ffiffi

2
p

2
þ 2Þn� 4:5 �

ffiffiffi

2
p

, then

lðGÞ� l ðG� wÞ [ K1ð Þ: ð25Þ

Theorem 3.5 For any wheel graph Wn ðn� 4Þ and any vertex x in Wn, one has
lðWnÞ� lððWn � xÞ [ K1Þ.

Proof Let Wn ðn� 4Þ be the wheel of order n and x be a vertex in Wn. The vertex

x may be divided into the following two cases.

Case 1. dðxÞ ¼ n� 1, namely, x lies in the center of Wn.

It is clear that Wn is a connected ðn; 2n� 2Þ graph and x is not a cut vertex in Wn.

By Theorem 3.4, one may deduce that lðWnÞ� lððWn � xÞ [ K1Þ for n� 6. And it

is easy to verify that the inequality also holds for n ¼ 4; 5.

Case 2. dðxÞ ¼ 3, namely, x lies in the rim of Wn.

Let H ¼ ðWn � xÞ [ K1. Since dðxÞ ¼ 3, it follows that

PðH; kÞ ¼ kP Wn � x; kð Þ ¼ k2ðk� 1Þðk� 2Þn�3: ð26Þ

And it is clear that

P Wn; kð Þ ¼ kP Cn�1; k� 1ð Þ ¼ k ðk� 2Þn�1 þ ð�1Þn�1ðk� 2Þ
h i

: ð27Þ

Thus, by (4), (26) and (27), we have
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s Wn;H; kð Þ ¼ P Wn; kð ÞPðH; k� 1Þ � P Wn; k� 1ð ÞPðH; kÞ

¼ kðk� 2Þðk� 1Þ2 ðk� 3Þn�3 ðk� 2Þn�1 þ ð�1Þn�1ðk� 2Þ
h in

�kðk� 2Þn�4 ðk� 3Þn�1 þ ð�1Þn�1ðk� 3Þ
h io

:

ð28Þ

According to the parity of n, we can divide into the following two subcases.

Case 2.1. n is even.

For k� 4, by (28), we obtain

s Wn;H; kð Þ ¼ kðk� 2Þðk� 1Þ2 ðk� 3Þn�3 ðk� 2Þn�1 � ðk� 2Þ
h in

�kðk� 2Þn�4 ðk� 3Þn�1 � ðk� 3Þ
h io

¼ kðk� 2Þðk� 1Þ2 ðk� 2Þn�4ðk� 3Þn�3 ðk� 2Þ3 � kðk� 3Þ2
h in

þkðk� 3Þðk� 2Þn�4 � ðk� 2Þðk� 3Þn�3
o

¼ kðk� 2Þðk� 1Þ2 ð3k� 8Þðk� 2Þn�4ðk� 3Þn�3
n

þkðk� 3Þðk� 2Þn�4 � ðk� 2Þðk� 3Þn�3
o

� kðk� 2Þðk� 1Þ2 ð3k� 8Þðk� 2Þn�4ðk� 3Þn�3
n o

[ 0:

ð29Þ

Case 2.2. n is odd.

For k� 4, by (28), we have

s Wn;H; kð Þ ¼ kðk� 2Þðk� 1Þ2 ðk� 3Þn�3 ðk� 2Þn�1 þ ðk� 2Þ
h in

�kðk� 2Þn�4 ðk� 3Þn�1 þ ðk� 3Þ
h io

¼ kðk� 2Þðk� 1Þ2 ðk� 2Þn�4ðk� 3Þn�3 ðk� 2Þ3 � kðk� 3Þ2
h in

þðk� 2Þðk� 3Þn�3 � kðk� 3Þðk� 2Þn�4
o

¼ kðk� 2Þðk� 1Þ2 ð3k� 8Þðk� 2Þn�4ðk� 3Þn�3
n

þðk� 2Þðk� 3Þn�3 � kðk� 3Þðk� 2Þn�4
o

� kðk� 2Þðk� 1Þ2 ðk� 2Þðk� 3Þn�3
n o

[ 0:

ð30Þ

Combining (29) with (30), we have
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s Wn;H; kð Þ[ 0

for k� 4. Hence sðWn;H; nÞ[ 0 ðn� 4Þ. By Lemma 2.1, we have

lðWnÞ[ lðHÞ ¼ l ðWn � xÞ [ K1ð Þ:

Thus, the theorem holds. h

Remark 3 Let G be a chordal graph or 2-tree and H be a subgraph of G. By the

results in [4, 5], lðGÞ� lðHÞ. It is clear that Conjecture 1 holds for a chordal graph

or 2-tree G. In addition, for a vertex w in G with dðwÞ� 1, if H is a subgraph

obtained from G by deleting all the edges which are incident to w, then

H ffi ðG� wÞ [ K1. Therefore lðGÞ� lðHÞ ¼ lððG� wÞ [ K1Þ. It means that

Conjecture 2 also holds for a chordal graph or 2-tree G.
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