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Abstract
For any given integer r > 3, let k ¼ kðnÞ be an integer with r 6 k 6 n. A hyper-

graph is r-uniform if each edge is a set of r vertices, and is said to be linear if two

edges intersect in at most one vertex. Let A1; . . .;Ak be a given k-partition of [n]
with jAij ¼ ni > 1. An r-uniform hypergraph H is called k-partite if each edge e
satisfies je \ Aij 6 1 for 1 6 i 6 k. In this paper, the number of linear k-partite r-
uniform hypergraphs on n ! 1 vertices is determined asymptotically when the

number of edges is mðnÞ ¼ oðn4
3Þ. For k ¼ n, it is the number of linear r-uniform

hypergraphs on vertex set [n] with m ¼ oðn4
3Þ edges.

Keywords Asymptotic enumeration � Linear hypergraph � Multipartite

hypergraph � Switching method

Mathematics Subject Classification 05A16

1 Introduction

For any given integer r > 3, a hypergraph H on vertex set [n] is an r-uniform
hypergraph (r-graph for short) if each edge is a set of r vertices, and is said to be a

linear hypergraph if two edges intersect in at most one vertex. Little is known about

the number of distinct linear hypergraphs. An asymptotic enumeration formula for

the logarithm of the number of linear hypergraphs on n ! 1 vertices is obtained by

Grable and Phelps [5]. They also obtained the logarithm of the number of partial

Steiner ðn; r; ‘Þ-systems with 2 6 ‘ 6 r � 1, where a partial Steiner ðn; r; ‘Þ-system
is an r-graph H such that every subset of size ‘ lies in at most one edge of H; the
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(n, r, 2)-systems are linear hypergraphs. Asratian and Kuzjurin [1] gave another

proof. Blinovsky and Greenhill [3, 4] used the switching method to obtain the

asymptotic number of sparse uniform and linear uniform hypergraphs with given

order and degree sequence. Balogh and Li [2] obtained an upper bound on the

number of linear uniform hypergraphs with given order and girth.

It is interesting to consider the enumeration of linear hypergraphs with given size.

Let Hrðn;mÞ denote the set of r-graphs on vertex set [n] with m edges. Let Lrðn;mÞ
denote the set of linear hypergraphs in Hrðn;mÞ. The previous works most relevant

to this one are [7, 8]. Hasheminezhad and McKay [7] obtained the asymptotic

number of linear hypergraphs with a given number of edges of each size, assuming a

constant bound on the edge size and oðn4
3Þ edges. McKay and Tian [8] obtained the

asymptotic enumeration formula for the set of Lrðn;mÞ as far as m ¼ oðn3
2Þ. Let

½x�t ¼ xðx� 1Þ � � � ðx� t þ 1Þ be the falling factorial. The standard asymptotic

notations o and O refer to n ! 1. The floor and ceiling signs are omitted whenever

they are not crucial.

Let s and k ¼ kðnÞ be integers with 1 6 s 6 r 6 k 6 n, and Ns be an abbreviation

for
n
s

� �
. Let A1; . . .;Ak be a given k-partition of [n] with jAij ¼ ni > 1, ~n ¼

ðn1; . . .; nkÞ and rsð~nÞ ¼
P

16i1\���\is6k ni1 � � � nis be the s-th elementary symmetric

function of ~n. We use Ai1 � � �Ais to denote the set of s-sets Fs of [n] such that

jFs \ Aij j ¼ 1 for all 1 6 j 6 s, and Esð~nÞ ¼
S

16i1\���\is6k Ai1 � � �Ais for all

1 6 s 6 r. An r-graph H is called k-partite if each edge e satisfies e 2 Erð~nÞ. Let
Hrð~n;mÞ denote the set of k-partite r-graphs with m edges and with vertex partition

determined by ~n, and let Lrð~n;mÞ denote the set of all linear hypergraphs in

Hrð~n;mÞ. In this paper, we obtain an asymptotic enumeration formula for jLrð~n;mÞj
as far as m ¼ oðn4

3Þ.

Theorem 1.1 For a fixed integer r > 3, let s and k ¼ kðnÞ be integers with

1 6 s 6 r 6 k 6 n, and let m ¼ mðnÞ be an integer with m ¼ oðn4
3Þ. Let ~n ¼

ðn1; . . .; nkÞ and rsð~nÞ ¼
P

16i1\���\is6k ni1 � � � nis be the s-th elementary symmetric

function of ~n. Suppose that there exists a constant C[ 0 such that
Pk

i¼1
1
ni
6 C k2

n .

Then, as n ! 1

jLrð~n;mÞj ¼
rmr ð~nÞ
m!

exp

�
� r2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�
m2

n3
þ m3

n4

��
:

Note that if there exists a constant c[ 0 such that ni > c n
k for 1 6 i 6 k,

Theorem 1.1 holds. Also, for example, if n1 ¼ . . . ¼ np ¼ n
1
2 for some positive

constant p\k, npþ1 ¼ . . . ¼ nk ¼ 1, then k ¼ nþ p� pn
1
2 and Theorem 1.1 holds;

if n1 ¼ . . . ¼ n‘ ¼ c0n, n‘þ1 ¼ . . . ¼ nk ¼ 1 for some positive constants ‘\k and c0

such that c0‘\1, then k ¼ ð1� c0‘Þnþ ‘ and Theorem 1.1 holds. For n sufficiently

large, many cases satisfy
Pk

i¼1
1
ni
6 C k2

n for some constant C[ 0. In particular, for

k ¼ n, k-partite r-graphs are general r-graphs, r2ð~nÞ ¼ N2, rr�2ð~nÞ ¼ Nr�2 and
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rrð~nÞ ¼ Nr. We have the following corollary on the number of linear r-graphs on

[n] with m ¼ oðn4
3Þ edges, which coincides with the uniform case in [7] and is a

subcase in [8].

Corollary 1.2 For any fixed integer r > 3, let m ¼ mðnÞ be an integer with

m ¼ oðn4
3Þ. Then, as n ! 1,

jLrðn;mÞj ¼
Nm
r

m!
exp

�
� ½r�22½m�2

4n2
þ O

�
m2

n3
þ m3

n4

��
:

The remainder of the paper is structured as follows. Lemmas are presented in

Section 2. In Section 3, we complete the enumeration of Lrð~n;mÞ with m ¼ oðn4
3Þ.

2 Some Lemmas

In order to identify several events which have low probabilities in the uniform

probability space Hrð~n;mÞ with m ¼ oðn4
3Þ, the following lemmas will be useful.

Lemma 2.1 For a fixed integer r > 3, let s and k ¼ kðnÞ be integers with
1 6 s 6 r 6 k 6 n. Let rsð~nÞ be the s-th elementary symmetric function of
~n ¼ ðn1; . . .; nkÞ. Suppose that there exists a constant C[ 0 such thatPk

i¼1
1
ni
6 C k2

n . Then rsð~nÞ ¼ Oðns�rÞrrð~nÞ.

Proof Let Sjð~nÞ ¼
k
j

� ��1

rjð~nÞ for all j ¼ 0; . . .; k. It is clear that Sk�1ð~nÞ ¼

k�1
Pk

i¼1
n1���nk
ni

and Skð~nÞ ¼ n1 � � � nk. By Newton’s inequality, we have

Sj�1ð~nÞSjþ1ð~nÞ 6 S2j ð~nÞ, and then

Ss�1ð~nÞ
Ssð~nÞ

6
Ssð~nÞ
Ssþ1ð~nÞ

6 � � � 6 Sk�1ð~nÞ
Skð~nÞ

¼ 1

k

Xk
i¼1

1

ni
6 C

k

n
:

Therefore

rsð~nÞ
rrð~nÞ

¼ ½r�r�s

½k � s�r�s

Ssð~nÞ
Srð~nÞ

6
½r�r�s

½k � s�r�s

Cr�skr�s

nr�s
¼ Oðns�rÞ;

where the last step holds since s 6 r ¼ Oð1Þ and k > r imply that

kr�s ¼ Oð½k � s�r�sÞ. h

The following two lemmas are vector forms of [8, Lemmas 2.1 and 2.2]. Their

proofs are similar to those in [8], but Lemma 2.1 is a key requirement in the proof of

Lemma 2.3.

Lemma 2.2 For a fixed integer r > 3, let k ¼ kðnÞ be an integer with r 6 k 6 n,
and H be chosen uniformly at random fromHrð~n;mÞ. Let t ¼ tðnÞ > 1 be an integer
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and e1; . . .; et be distinct r-sets in Erð~nÞ. Then the probability that fe1; . . .; etg are

edges of H is at most
�

m
rrð~nÞ

�t
.

Proof Since H is a k-partite r-graph that is chosen uniformly at random from

Hrð~n;mÞ, the probability that e1; . . .; et are edges of H is

rrð~nÞ � t

m� t

� �

rrð~nÞ
m

� � ¼ ½m�t
½rrð~nÞ�t

¼
Yt�1

i¼0

m� i

rrð~nÞ � i
6

� m

rrð~nÞ
	t
:

h

Lemma 2.3 Let r > 3, t and a be integers such that r; t; a ¼ Oð1Þ and 0 6 a 6 rt.
For any integer k ¼ kðnÞ with r 6 k 6 n, let H be chosen uniformly at random from

Hrð~n;mÞ. If there exists a constant C[ 0 such that
Pk

i¼1
1
ni
6 C k2

n , then the

expected number of sets of t edges whose union has rt � a or fewer vertices is
Oðmtn�aÞ.

Proof Let e1; . . .; et be distinct r-sets in Erð~nÞ. We first bound the number of

sequences e1; . . .; et such that je1 [ � � � [ etj ¼ rt � b for some b with a 6 b\rt,
regardless of whether they are edges of H. For 2 6 i 6 t, define

ai ¼ jðe1 [ � � � [ ei�1Þ \ eij, thus we have
Pt

i¼2 ai ¼ b. The first r-set e1 can be

chosen in rrð~nÞ ways, then for 2 6 i 6 t, the number of choices for ei given

e1; . . .; ei�1 is at most ðrtÞairr�aið~nÞ. Note that by Lemma 2.1,

rr�aið~nÞ ¼ rrð~nÞOðn�aiÞ. Therefore, the number of choices of e1; . . .; et for given

b; a2; . . .; at is at most Oð1Þrtrð~nÞ
Qt

i¼2ðrtÞ
ain�ai ¼ Oðrtrð~nÞn�bÞ.

The number of choices of a2; . . .; at given b is at most O(1) by r; t ¼ Oð1Þ. Also,
by Lemma 2.2, the probability that e1; . . .; et 2 H is at most ðm=rrð~nÞÞt. Therefore,
the expected number of sets of t edges of H whose union has size rt � b is

Oðmtn�bÞ, uniformly over b. Finally, the sum of this expression over b > a is

bounded by a decreasing geometric series dominated by the term b ¼ a. This

completes the proof. h

We also need the following Lemma from [6], which was used to enumerate some

hypergraphs in [3, 4, 7, 8].

Lemma 2.4 ( [6], Corollary 4.5) Let N > 2 be an integer, and for 1 6 i 6 N, let
real numbers A(i), B(i) be given such that AðiÞ > 0 and 1� ði� 1ÞBðiÞ > 0. Define

A1 ¼ minNi¼1 AðiÞ, A2 ¼ maxNi¼1 AðiÞ, C1 ¼ minNi¼1 AðiÞBðiÞ and

C2 ¼ maxNi¼1 AðiÞBðiÞ. Suppose that there exists a real number ĉ with 0\ĉ\ 1
3

such that maxfA=N; jCjg 6 ĉ for all A 2 ½A1;A2�, C 2 ½C1;C2�. Define h0, h1, . . .,

hN by h0 ¼ 1 and hi
hi�1

¼ AðiÞ
i ð1� ði� 1ÞBðiÞÞ for 1 6 i 6 N, with the following

interpretation: if AðiÞ ¼ 0 or 1� ði� 1ÞBðiÞ ¼ 0, then hj ¼ 0 for i 6 j 6 N. Then

R1 6
PN

i¼0 hi 6 R2, where R1 ¼ exp½A1 � 1
2
A1C2� � ð2eĉÞN and

R2 ¼ exp½A2 � 1
2
A2C1 þ 1

2
A2C

2
1 � þ ð2eĉÞN .
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3 Enumeration of Lrð~n,mÞ with m=oðn4
3Þ

Let H be a k-partite r-graph in Hrð~n;mÞ. As defined in [8], a 2-set fx; yg � ½n� is
called a link if there are two distinct edges e, f such that fx; yg � e \ f . The two

edges e and f are called linked edges if je \ f j > 2. Let GH be the simple graph

whose vertices are the edges of H, with two vertices of G adjacent iff the

corresponding edges of H are linked. An edge-induced subgraph of H corresponding

to a non-trivial component of GH is called a cluster of H.
Let Prð~n;mÞ denote the probability that a k-partite r-graph H 2 Hrð~n;mÞ chosen

uniformly at random is linear. Hence,

jLrð~n;mÞj ¼
rrð~nÞ
m

� �
Prð~n;mÞ: ð1Þ

We will prove that Prð~n;mÞ equals the exponential factor in Theorem 1.1.

Firstly, we show that most of Hrð~n;mÞ has a simple structure. Define

Hþ
r ð~n;mÞ � Hrð~n;mÞ to be the set of k-partite r-graphs H which satisfy the

following two properties ðaÞ and ðbÞ.

(a) Every cluster of H consists of two edges overlapping by two vertices.

(b) The number of clusters in H is at most M, where

M ¼
l
log nþ 56r2r�2

ð~nÞr2ð~nÞm2

r2r ð~nÞ

m
:

We show that the expected number of k-partite r-graphs in Hrð~n;mÞ not

satisfying the properties of Hþ
r ð~n;mÞ is quite small.

Lemma 3.1 For a fixed integer r > 3, let k ¼ kðnÞ and m ¼ mðnÞ be integers with
r 6 k 6 n and m ¼ oðn4

3Þ. Then, as n ! 1,
jHþ

r ð~n;mÞj
jHrð~n;mÞj ¼ 1� O

�
m2

n3
þ m3

n4

�
.

Proof Consider H 2 Hrð~n;mÞ chosen uniformly at random. We apply Lemma 2.3

several times to show that H satisfies the properties ðaÞ and ðbÞ with probability

1� O
�
m2

n3
þ m3

n4

�
.

If two edges overlap by three or more vertices, then they have at most 2r � 3

vertices in total, which has probability O
�
m2

n3

�
by Lemma 2.3. Similarly if there is a

cluster of more than two edges, then three of those edges have at most 3r � 4

vertices in total, which has probability O
�
m3

n4

�
by Lemma 2.3. Therefore, H satisfies

the property ðaÞ with probability 1� O
�
m2

n3
þ m3

n4

�
.

Note that if ðaÞ holds, all clusters have two edges and no two clusters share an

edge or a link. Define the event

D ¼ fthere exist at least d edge- and link-disjoint clusters in Hg;

where d ¼ M þ 1. Using Lemma 2.2, we have
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P½D� ¼ O

�
r2dr�2ð~nÞ

r2ð~nÞ
d

� ��
m

rrð~nÞ

�2d�

¼ O

��
er2ð~nÞr2r�2ð~nÞm2

dr2r ð~nÞ

�d�

¼ O
�� e

56

	d 	

¼ O
� 1
n3

	
;

where the last two inequalities are true because d[ 56r2r�2
ð~nÞr2ð~nÞm2

r2r ð~nÞ
and d[ log n.

The proof is complete on noting that the event ‘‘ðaÞ and ðbÞ hold’’ is contained in

the union of the events ‘‘ðaÞ holds’’ and ‘‘D doesn’t hold’’. h

From the proof of Lemma 3.1, we have jHþ
r ð~n;mÞj 6¼ 0. Hence, there exists a

nonnegative integer t such that the set of k-partite r-graphs with exactly t clusters in

Hþ
r ð~n;mÞ is nonempty and is denoted by Cþt . By the definition ofHþ

r ð~n;mÞ we have
jHþ

r ð~n;mÞj ¼
PM

t¼0 jCþt j. By the switching operations below, we will prove that

Lrð~n;mÞ ¼ Cþ0 6¼ ;. It follows that

1

Prð~n;mÞ
¼
�
1� O

�m2

n3
þ m3

n4

		XM
t¼0

jCþt j
jLrð~n;mÞj

¼
�
1� O

�m2

n3
þ m3

n4

		XM
t¼0

jCþt j
jCþ0 j

:

ð2Þ

In order to find the ratio jCþt j=jCþ0 j when 1 6 t 6 M, we design switchings to find a

relationship between the sizes of Cþt and Cþt�1. Let H 2 Cþt . A forward switching
from H is used to reduce the number of clusters in H. Take any cluster consisting of

two edges e and f, and remove them from H. Define H0 with the the same vertex set

[n] and the edge set EðH0Þ ¼ EðHÞ n fe; fg. Choose any r-set e1 from Erð~nÞ such
that e1 does not share a link with any edge of H0, and define H0 by setting

EðH0Þ ¼ EðH0Þ [ fe1g. Next, similarly choose another r-set e2 from Erð~nÞ such that

e2 does not share a link with any edge of H0. Add edge e2 to H0 to produce H00,
which is the result of the forward switching from H. Note that the two edges e1 and

e2 may have at most one vertex in common and H00 2 Cþt�1.

A reverse switching is the reverse of a forward switching. Let H00 2 Cþt�1.

Sequentially choose two edges e1 and e2 of H
00 such that neither of them contains a

link. Define H0 with the same vertex set [n] and EðH0Þ ¼ EðH00Þ n fe1; e2g. Take
two r-sets e and f in Erð~nÞ such that je \ f j ¼ 2 and neither of them share a link with

any edge of H0. Insert e and f into H0. Call the resulting graph H. Then, H 2 Cþt .

Lemma 3.2 For any fixed integer r > 3, let k ¼ kðnÞ and m ¼ mðnÞ be integers

with r 6 k 6 n and m ¼ oðn4
3Þ. Let t be some positive integer with 1 6 t 6 M.

(a) Let H 2 Cþt . The number of forward switchings for H is tr2r ð~nÞ
�
1þ O

�
m
n2

��
.

(b) Let H00 2 Cþt�1. The number of reverse switchings for H00 is
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m�2ðt�1Þ
2

� 	
r2ð~nÞr2r�2ð~nÞ

�
1þ O

�
1
n þ m

n2

��
.

Proof

(a) Let H 2 Cþt . Let RðHÞ be the set of all forward switchings which can be

applied to H. There are exactly t ways to choose a cluster; remove it from H
to produce H0. The number of choices for the r-set e1 is at most rrð~nÞ. From
this we must subtract the number of r-sets that overlap some edge of H0 in

two or more vertices, which is at most
r
2

� �
ðm� 2Þrr�2ð~nÞ ¼ Oðm

n2
Þrrð~nÞ by

Lemma 2.1 and r ¼ Oð1Þ. Thus, there are rrð~nÞð1þ Oðm
n2
ÞÞ ways to choose

e1. Similarly, there are rrð~nÞð1þ Oðmn2ÞÞ ways to choose e2. We have

jRðHÞj ¼ tr2r ð~nÞð1þ Oðm
n2
ÞÞ.

(b) Conversely, suppose that H00 2 Cþt�1. Similarly, let R0ðH00Þ be the set of all

reverse switchings for H00. There are exactly 2
m� 2ðt � 1Þ

2

� �
ways to

delete two edges in sequence such that neither of them contains a link in H00.

Let the resulting graph be H0. There are at most 1
2
r2ð~nÞr2r�2ð~nÞ ways to

choose two r-sets e and f in Erð~nÞ such that e and f are linked edges. From this

we firstly subtract the ones with je \ f j > 3, which is at most
r
2
r2ð~nÞrr�2ð~nÞrr�3ð~nÞ ¼ r2ð~nÞr2r�2ð~nÞOð1nÞ by Lemma 2.1, since r ¼ Oð1Þ.

Secondly, we subtract the cases where at least one of e, f (say e) shares a link
with one of the m� 2 edges e0 in H0. Let ‘1 be the link shared by e, f and ‘2 be
the link shared by e; e0. The number of cases for j‘1 [ ‘2j ¼ 2; 3; 4 is at most

mr2r2r�2ð~nÞ, mr2r1ð~nÞrr�3ð~nÞrr�2ð~nÞ and mr2r2ð~nÞrr�4ð~nÞrr�2ð~nÞ, respec-
tively, where the last one is only possible if r > 4. By Lemma 2.1, each of

these expressions is r2ð~nÞr2r�2ð~nÞOðmn2Þ. This completes the proof.

h

Corollary 3.3 With notation as above, for some 1 6 t 6 M,

(a) jCþt j[ 0 iff m > 2t.

(b) Let t0 be the first value of t 6 M such that Cþt ¼ ;, or t0 ¼ M þ 1 if no such

value exists. Then, as n ! 1, uniformly for 1 6 t\t0,

jCþt j
jCþt�1j

¼

m� 2ðt � 1Þ
2

� �
r2ð~nÞr2r�2ð~nÞ

tr2r ð~nÞ
�
1þ O

�1
n
þ m

n2

		
:

Proof

(a) Firstly, m > 2t is necessary for jCþt j[ 0. By Lemma 3.1, there is some 0 6

t̂ 6 M such that Cþt̂ 6¼ ;. We can move t̂ to t by a sequence of forward and

reverse switchings while no greater than M. Note that since the values given
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in Lemma 3.2 at each step of this path are positive for any 0 6 t 6 M, we

have jCþt j[ 0.

(b) By (a), if Cþt ¼ ;, then Cþtþ1; . . .; CþM ¼ ;. By the definition of t0, if 1 6 t\t0,

then the left hand ratio is well defined. By Lemma 3.2 completes the proof.

h

At last, we estimate the sum
PM

t¼0 jCþt j=jCþ0 j by applying Lemma 2.4, which is

used to count certain hypergraphs in [3, 4, 7, 8].

Lemma 3.4 For any given integer r > 3, let k ¼ kðnÞ and m ¼ mðnÞ be integers

with r 6 k 6 n and m ¼ oðn4
3Þ. With notation above, as n ! 1,

XM
t¼0

jCþt j
jCþ0 j

¼ exp

�
r2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	�
:

Proof Let t0 be as defined in Corollary 3.3 (b). We know that jCþ0 j 6¼ 0, then t0 > 1.

If t0 ¼ 1, then we have m\2 from Corollary 3.3 (a), and the conclusion is obviously

true. In the following, suppose t0 > 2. Define h0; . . .; hM by h0 ¼ 1, ht ¼ jCþt j=jCþ0 j
for 1 6 t\t0 and ht ¼ 0 for t0 6 t 6 M. By Corollary 3.3 (b), we have for 1 6 t\t0,

ht
ht�1

¼ 1

t

m� 2ðt � 1Þ

2

 !
r2ð~nÞr2r�2ð~nÞ

r2r ð~nÞ
�
1þ O

�1
n
þ m

n2

		
: ð3Þ

For 1 6 t 6 M, define

AðtÞ ¼ r2ð~nÞr2r�2ð~nÞ½m�2
2r2r ð~nÞ

þ O
�m2

n3
þ m3

n4

	
;

BðtÞ ¼
2ð2m� 2t þ 1Þ

mðm� 1Þ ; for 1 6 t\t0;

ðt � 1Þ�1; otherwise:

8><
>:

ð4Þ

Using the equations shown in (3) and (4), for 1 6 t\t0, we further have

ht
ht�1

¼ AðtÞ
t

�
1� ðt � 1ÞBðtÞ

�
:

Following the notation of Lemma 2.4, we also have

A1;A2 ¼
r2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	
: ð5Þ

For 1 6 t\t0, we have
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AðtÞBðtÞ ¼ r2ð~nÞr2r�2ð~nÞð2m� 2t þ 1Þ
r2r ð~nÞ

þ O
�m
n3

þ m2

n4

	
:

Then AðtÞBðtÞ ¼ O
�
m
n2

�
because r2r�2ð~nÞ=r2r ð~nÞ ¼ Oðn�4Þ by applying Lemma 2.1,

and r2ð~nÞ ¼ Oðn2Þ based on the fact that r2ð~nÞ is the number of edges of complete

k-partite graphs and its maximum value occurs at the approximately equal partition.

For the case t0 6 t 6 M and t0 > 2, by Corollary 3.3 (a), we have 2 6 m\2t, and

then AðtÞBðtÞ ¼ O
�
m
n2

�
for t0 6 t 6 M. In both cases, following the notation of

Lemma 2.4, we have

C1;C2 ¼ O
�m
n2

	
: ð6Þ

Then jCj ¼ oð1Þ for all C 2 ½C1;C2� when m ¼ oðn4
3Þ.

Let ĉ ¼ 1
110

. Note that M ¼


log nþ 56r2r�2

ð~nÞr2ð~nÞm2

r2r ð~nÞ
�
. We have A

M 6
1þOð1=nþm=n2Þ

112

for all A 2 ½A1;A2� as shown in (5). Thus, maxfA
M ; jCjg\ĉ and ð2eĉÞM ¼ Oð 1n3Þ as

n ! 1. Using the equations shown in (5) and (6), we have

A1C2;A2C1 ¼ O
�m2

n2
� m
n2

	
¼ O

�m3

n4

	
and A2C

2
1 ¼ O

�m2

n2
� m

2

n4

	
¼ O

�m4

n6

	
:

Lemma 2.4 applies to obtain

XM
t¼0

jCþt j
jCþ0 j

¼ exp
hr2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	i
þ O

� 1
n3

	

¼ exp
hr2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	i

when m ¼ oðn4
3Þ. h

Proof of Theorem 1.1 By applying Lemma 3.4, using the equations shown in (1)

and (2), we have

jLrð~n;mÞj ¼
rrð~nÞ
m

� �
exp
h
� r2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	i

¼ rmr ð~nÞ
m!

exp
h
� r2ð~nÞr2r�2ð~nÞ½m�2

2r2r ð~nÞ
þ O

�m2

n3
þ m3

n4

	i
;

since

rrð~nÞ
m

� �
¼ rmr ð~nÞ

m!
exp
h
O
� m2

rrð~nÞ

	i
¼ rmr ð~nÞ

m!
exp
h
O
�m2

n3

	i

because rrð~nÞ >
k
r

� �
crðnkÞ

r
and r > 3.
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Proof of Corollary 1.2 If k ¼ n, then r2ð~nÞ ¼ N2, rr�2ð~nÞ ¼ Nr�2, rrð~nÞ ¼ Nr and

k-partite r-graphs are r-graphs. By applying Theorem 1.1, it follows that

jLrðn;mÞj ¼
Nm
r

m!
exp
h
� ½r�22½m�2

4n2
þ O

�m2

n3
þ m3

n4

	i

when m ¼ oðn4
3Þ. h

Remark 3.5 The formula in Corollary 1.2 coincides with the uniform case in [7]

and is a subcase in [8]. Compared with the enumeration formula of jLrðn;mÞj in [8],

jLrðn;mÞj ¼
Nm
r

m!
exp

�
� ½r�22½m�2

4n2
� ½r�32ð3r2 � 15r þ 20Þm3

24n4
þ O

�m2

n3

	�
;

the term
½r�32ð3r2�15rþ20Þm3

24n4
¼ O

�
m3

n4

�
is under our conditions. It will take new ideas to

handle larger m in Lrð~n;mÞ and they will be more complicated than those in [7, 8].

We leave these problems for future work.
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