
ORIGINAL PAPER

Extending Muirhead’s Inequality

Mitsuo Kato1 • Masashi Kosuda2 • Norihide Tokushige1

Received: 30 September 2020 / Revised: 31 March 2021 / Accepted: 8 June 2021 /
Published online: 3 September 2021
� The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021, corrected
publication 2021

Abstract
We present a method to prove an inequality concerning a linear combination of

symmetric monomial functions. This is based on Muirhead’s inequality combining

with a graph theoretical setting. As an application we prove some interesting

inequalities motivated from extremal combinatorics.

Keywords Symmetric monomial function � Muirhead’s inequality � Maximum

flow � Young diagram

1 Introduction

We start with the following conjecture due to the last author.

Conjecture 1 Let r� 3 be an integer, let a1; . . .; ar 2 ð0; 1Þ be real numbers, and let
a ¼ a1 � � � ar. Then we have

Yr

i¼1

ai þ a2
i þ � � � þ ar�1

i þ ari
� �

�
Yr

i¼1

ai þ a2
i þ � � � þ ar�1

i þ a
� �

� 0 ð1Þ

with equality holding if and only if a1 ¼ � � � ¼ ar.

This conjecture is motivated by study of multiply intersecting hypergraphs,

where one of the main tools is the so-called random walk method, see Chapter 15 of

[1]. Here we briefly explain how Conjecture 1 is related to a problem of random

walk. Let p 2 ð0; 1 � 1
rÞ be a real number, and let us define an infinite random walk
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Wp in the two-dimensional grid Z2. The walk Wp starts at the origin, and at each step

it moves from (x, y) to ðx; yþ 1Þ (one step up) with probability p and from (x, y) to

ðxþ 1; yÞ (one step right) with probability 1 � p. Then Wp hits the line y ¼
ðr � 1Þxþ 1 with probability ap, where ap 2 ð0; 1Þ is a unique root of the equation

X ¼ pþ ð1 � pÞXr:

Let p1; . . .; pr 2 ð0; 1 � 1
rÞ be real numbers. Let W 0 be another infinite random walk

defined similarly to Wp, but this time, at step j (j ¼ 1; 2; . . .) the walk takes up with

probability pi and right with probability 1 � pi, where i :¼ j mod r. This walkW 0 hits the

line y ¼ ðr � 1Þxþ r with probabilityb, whereb 2 ð0; 1Þ is a unique root of the equation

X ¼
Yr

i¼1

ðpi þ ð1 � piÞXÞ:

We are interested in b because we can use it to bound the measure of multiply

intersecting hypergraphs. We also mention that computing (or approximating) b is

more difficult than that of ap. Thus it is desirable that b is bounded in terms of api .
Indeed we conjecture that b� ap1

ap2
� � � apr , which follows from (1) (if true). See

Appendix for the proof.

In this paper we prove Conjecture 1 for the cases 3� r� 11 with aid of computer

search. For the proof we extend Muirhead’s inequality, and propose an approach to

prove a more general inequality concerning a linear combination of symmetric

monomial functions.

Let r and d be fixed positive integers, and let

K :¼ fk ¼ ðk1; . . .; krÞ 2 Zr : k1 � � � � � kr � 0; jkj ¼ dg; ð2Þ

where jkj :¼ k1 þ � � � þ kr, that is, K is a set of non-increasing sequences (vectors)

representing a partition of d into r parts. For k 2 K we define the symmetric

monomial functions mkðxÞ of degree d in variables x ¼ ðx1; . . .; xrÞ by

mkðxÞ :¼
X

r

xr ¼
X

r

Yr

i¼1

xrii ;

where the sums run over all distinct orderings (permutations) r ¼ ðr1; . . .; rrÞ of the

vector k ¼ ðk1; . . .; krÞ. We also define the normalized symmetric monomial func-

tions �mkðxÞ by

�mkðxÞ :¼
mkðxÞ
mkð1Þ

:

For example, if r ¼ d ¼ 4 and k ¼ ð2; 2; 0; 0Þ then

mkðxÞ ¼ x2
1x

2
2 þ x2

1x
2
3 þ x2

1x
2
4 þ x2

2x
2
3 þ x2

2x
2
4 þ x2

3x
2
4;

and �mkðxÞ ¼ mkðxÞ=6. (For more about monomial symmetric functions, see e.g.,

Chapter 7 of [5].) For k; l 2 K we write �mk � �ml if �mkðxÞ� �mlðxÞ holds for all
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x� 0, where x� 0 means that x ¼ ðx1; . . .; xrÞ satisfies xi � 0 for all 1� i� r. In [4]

(see also [2, 3]) Muirhead proved that

�mk � �ml if and only if k� l;

where k� l means

k1 þ � � � þ ki � l1 þ � � � þ li for all 1� i� r: ð3Þ

Moreover �mkðxÞ ¼ �mlðxÞ if and only if k ¼ l or x1 ¼ � � � ¼ xr.

Now we define a bipartite graph G ¼ ðVðGÞ;EðGÞÞ corresponding to K as

follows. For the vertex set let VðGÞ ¼ U t U0, where U and U0 are distinct copies of

K. Then two vertices k 2 U and k0 2 U0 are adjacent in G if and only if k� k0. Let

c : VðGÞ ! R� 0 be a given capacity function. We say that a flow / : EðGÞ ! R� 0

is optimal if
X

k2e
/ðeÞ� cðkÞ for all k 2 U; and

X

k02e
/ðeÞ ¼ cðk0Þ for all k0 2 U0:

Let a : K ! R� 0, which can be viewed as a coefficient vector

a ¼ ðak : k 2 KÞ 2 RK
� 0. Then we define a linear combination of normalized

symmetric monomial functions

�mðaÞ :¼
X

k2K
ak �mk: ð4Þ

Let a; a0 2 RK
� 0 and let c be a capacity function on VðGÞ ¼ U t U0 defined by c ¼ a

on U and c ¼ a0 on U0. We say that a suppresses a0, denoted by a� a0, if G admits an

optimal flow. While the Muirhead’s inequality says that if k� l then �mk � �ml, our

result stated below claims that if a� a0 then �mðaÞ� �mða0Þ. This can be seen as an

extension from the inequality about normalized symmetric monomial functions to

the inequality about linear combinations of them.

Theorem 1 Let a; a0 2 RK
� 0. If a� a0 then �mðaÞ� �mða0Þ with equality holding if

and only if the following two conditions are satisfied:

(i)
P

k2e /ðeÞ ¼ cðkÞ for all k 2 U, and

(ii) �mk � �mk0 for all adjacent k 2 U and k0 2 U0.

Proof Let G be the bipartite graph on VðGÞ ¼ U t U0 defined above, and let / be

an optimal flow. If k 2 U and k0 2 U0 are adjacent by an edge e in G, then �mk � �mk0

and /ðeÞ �mk �/ðeÞ �mk0 . Using this trivial fact we have
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�mðaÞ ¼
X

k2U
cðkÞ �mk

�
X

k2U

X

k2e
/ðeÞ

 !
�mk

¼
X

e2EðGÞ

X

k2e
/ðeÞ �mk

�
X

e2EðGÞ

X

k02e
/ðeÞ �mk0

¼
X

k02U0

X

k02e
/ðeÞ

 !
�mk0

¼
X

k02U0

cðk0Þ �mk0

¼ �mða0Þ:

One can readily verify the equality conditions. h

We note that �mðaÞ� �mða0Þ does not necessarily imply a�a0, see Example 1 in the

last section. Using Theorem 1 we were able to verify Conjecture 1 for 3� r� 11.

Theorem 2 Conjecture 1 is true for 3� r� 11.

Though our proof of Theorem 2 is based on Theorem 1, we need two more ideas.

First, we actually prove a stronger inequality (see Conjecture 2) holding for all non-

negative variables, from which we derive the inequality (1). This is needed because

(1) holds only for variables in the unit interval, while Theorem 1 only applies to

inequalities valid for all non-negative variables. Second, as a bipartite graph applied

to Theorem 1 we do not use the graph whose vertex set is K because it is too large.

Instead we construct a graph on a much smaller vertex set which has a nicer poset

structure induced by (3) (see Theorem 3). This reduces the computation markedly.

2 Proof of Theorem 2

Throughout this section let r� 3 be a fixed integer. As mentioned in the end of the

previous section the inequality (1) is not suitable for applying Theorem 1. So we

should find an inequality which holds for all non-negative variables and implies (1).

This inequality will be obtained by factorizing (1).

For s ¼ ðs1; . . .; srÞ and 1� k� r we define the elementary symmetric functions

ekðsÞ by

ekðsÞ :¼
X

i1\���\ik

si1 � � � sik ;

see, e.g., [5]. Let e0ðsÞ :¼ 1. Then we have
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Yr

i¼1

ðsi þ zÞ ¼
Xr

k¼0

ekðsÞzr�k:

To factorize the LHS of (1), we apply the above identity to s ¼ ðs1; . . .; srÞ, where

si ¼ ai þ a2
i þ � � � þ ar�1

i ; ð5Þ

and z ¼ 1 or z ¼ a. Then we have

Yr

i¼1

ai þ a2
i þ � � � þ ar�1

i þ ari
� �

¼
Yr

i¼1

aið1 þ siÞ ¼ a
Yr

i¼1

ðsi þ 1Þ ¼
Xr

k¼0

ekðsÞa;

Yr

i¼1

ai þ a2
i þ � � � þ ar�1

i þ a
� �

¼
Yr

i¼1

ðsi þ aÞ ¼
Xr

k¼0

ekðsÞar�k:

Thus, writing ek instead of ekðsÞ for simplicity, the LHS of (1) is rewritten as

Xr

k¼0

ða� ar�kÞek

¼
Xr�2

k¼0

ða� ar�kÞek � ð1 � aÞer

¼ ða� arÞe0 þ ða� ar�1Þe1 þ � � � þ ða� a2Þer�2 � ð1 � aÞer
¼ ð1 � aÞ

�
~F � ~GÞ;

where

~F ¼ ðaþ a2 þ � � � þ ar�1Þe0 þ ðaþ � � � þ ar�2Þe1 þ � � � þ ðaþ a2Þer�3 þ aer�2;

~G ¼ er:

Letting

fi ¼ e0 þ e1 þ � � � þ ei; ð6Þ

we have

~F ¼ aðe0 þ e1 þ � � � þ er�2Þ þ a2ðe0 þ � � � þ er�3Þ þ � � � þ ar�2ðe0 þ e1Þ þ ar�1e0;

¼ aðfr�2 þ fr�3aþ � � � þ f1a
r�3 þ f0a

r�2Þ;

and also

~G ¼ er ¼
Yr

i¼1

si ¼
Yr

i¼1

aiðsi=aiÞ ¼ a
Yr

i¼1

ð1 þ ai þ � � � þ ar�2
i Þ:

Consequently we obtain the following expression:
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‘the LHS of ð1Þ’ ¼ að1 � aÞðF � GÞ;

where

F ¼ fr�2 þ fr�3aþ � � � þ f1a
r�3 þ f0a

r�2; ð7Þ

G ¼
Yr

i¼1

ð1 þ ai þ � � � þ ar�2
i Þ: ð8Þ

Finally to prove Conjecture 1 it suffices to show the following conjecture.

Conjecture 2 Let r� 3 be an integer, and let a1; . . .; ar be non-negative real
numbers. Then

F � G� 0;

where F and G are defined by (7) and (8) with (5) and (6). Moreover, equality holds

if and only if a1 ¼ � � � ¼ ar.

Note that Conjecture 2 is slightly stronger than Conjecture 1 because the

condition for ai is weaker. Moreover this condition is precisely what we need to

apply Theorem 1. Note also that F � G� 0 if

FðdÞ � GðdÞ � 0

for every d, where FðdÞ (resp. GðdÞ) denote the degree d part of F (resp. G).

Now we translate the problem of showing FðdÞ � GðdÞ � 0 (for fixed r and d) to a

problem of finding an optimal flow. Recall the definitions of K and �mðaÞ from (2)

and (4). Let a; a0 2 RK
� 0 be such that

�mðaÞ ¼ FðdÞ and �mða0Þ ¼ GðdÞ:

Then, by Theorem 1, FðdÞ � GðdÞ � 0 follows from a� a0. Thus our problem is

translated to show a� a0. However the number of non-zero entries in a and a0 grows

rapidly as r grows, and it is not so easy to verify a� a0 in this naive setting in

practice. To overcome the difficulty we look at the posets derived from the poly-

nomials FðdÞ and GðdÞ in detail, and we reduce the complexity using the structure of

the posets.

Let Kða0Þ ¼ fl 2 K : a0l [ 0g be the set of partitions corresponding to GðdÞ. For

l 2 Kða0Þ it follows from (8) that l1 � r � 2. We partition Kða0Þ by the value of lr.
Let

Kh ¼ fk 2 K : kr ¼ hg:

Then we have Kða0Þ ¼
Fr�2

h¼0
~Qh, where

~Qh ¼ fl 2 Kh : l1 � r � 2g: ð9Þ

Lemma 1 Let KðaÞ ¼ fk 2 K : ak [ 0g. Then we have KðaÞ ¼
Fr�2

h¼0
~Ph, where
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~Ph ¼ fk 2 Kh : k1 � r � 1 þ h; kr�1�h ¼ krg: ð10Þ

Proof In view of (7), k 2 ~Ph comes from fr�2�ha
h. Then, k is decomposed into two

parts l ¼ ðl1; . . .; lrÞ from fr�2�h and m ¼ ðm1; . . .; mrÞ from ah. By (5) and (6) we

have

r � 1� l1 � � � � � lr�h�2 � 0 ¼ lr�1�h ¼ � � � ¼ lr:

We also have m1 ¼ � � � ¼ mr ¼ h. Then the set of sequences k ¼ lþ m defines ~Ph. h

We note that I :¼ KðaÞ \ Kða0Þ is nonempty. For example we have

~Pr�2 ¼ ~Qr�2 ¼ fðr � 2; . . .; r � 2Þg:

We want to look at KðaÞ n I and Kða0Þ n I rather than KðaÞ and Kða0Þ. To this end

we need some preparation. Recall that K itself is a poset, and the bipartite graph G is

defined on VðGÞ ¼ U t U0, where both U and U0 are distinct copies of K. For

x 2 RK let pðxÞ :¼ ðyk : k 2 KÞ, where

yk :¼
xk if xk [ 0;

0 if xk � 0;

�

that is, p(x) extracts positive entries from x. Let b :¼ pða� a0Þ and b0 :¼ pða0 � aÞ.
Then a� a0 ¼ b� b0 and

�mðaÞ � �mða0Þ ¼ �mða� a0Þ ¼ �mðb� b0Þ:

So our aim is to show that �mðb� b0Þ � 0. These coefficient vectors b and b0 define

two subposets of K:

KðbÞ :¼ fk 2 U : bk [ 0g and Kðb0Þ :¼ fl 2 U0 : b0l [ 0g:

These posets are equipped with a nice property as stated in the next theorem, and

this is the reason why we can efficiently verify the existence of an optimal flow in G
with the capacity function coming from b and b0.

Theorem 3 There exist unique positive integer k and partitions

KðbÞ ¼ A1 t � � � t Ak;

Kðb0Þ ¼ B1 t � � � t Bk;

with representatives ~k1; . . .; ~kk and ~l1; . . .; ~lk satisfying ~ki ¼ minAi, ~li ¼ maxBi,

and ~ki � ~li for all 1� i� k.

For a concrete example of such partitions, see Example 2 in the next section. We

remark that Ai (resp. Bi) does not necessarily have the maximum (resp. minimum)

element, see Example 3.

We partition KðbÞ and Kðb0Þ by the value of the last element. It follows from (9)

and (10) that KðbÞ ¼
Fr�3

h¼0 Ph and Kðb0Þ ¼
Fr�3

h¼0 Qh, where
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Ph ¼ fk 2 Kh : r � 1� k1 � r � 1 þ h; kr�1�h ¼ krg;
Qh ¼ fl 2 Kh : l1 � r � 2; lr�1�h [ lrg:

Then the disjoint union Ph t Qh is a proper subset of Kh.

We have already fixed r and d, and now we fix h. We will define two maps

D1 : Ph ! Qh and U1 : Qh ! Ph, which will play a key role for the proof of

Theorem 3. To this end we need two auxiliary maps D and U (down and up,

respectively). Before going into the details of the proof we explain our plan. Let

k 2 Ph and l 2 Qh with k� l. We can draw the Young diagrams corresponding to k
and l, and starting from k we can get l by moving a box at a right upper corner to a

left lower corner one by one. (We will give a formal definition of such operations

shortly.) In this process we can find D1ðkÞ and U1ðlÞ such that

k�U1ðlÞ�D1ðkÞ� l with some additional nice properties. Actually we will

get D1ðkÞ from k by repeating the down map D finitely many times, and we will get

U1ðlÞ from l by repeating the up map U finitely many times.

Definition 1 For k 2 Kh n Qh define p and q as follows.

(Case I) If k1 � r � 1 then

p ¼ maxfi : ki ¼ k1g;
q ¼ minfi : ki � k1 � 2g:

(Case II) If k1\r � 1 and kr�1�h ¼ kr then

p ¼ maxfi : ki � kr þ 2g;
q ¼ minfi : ki ¼ krg:

Define a map D : Kh ! Kh by DðkÞ :¼ k0 if k 62 Qh, where

k0i ¼
kp � 1 if i ¼ p;

kq þ 1 if i ¼ q;

ki otherwise;

8
><

>:

and by DðkÞ :¼ k if k 2 Qh. (See Example 2.)

Definition 2 For l 2 Kh n Ph define p and q as follows.

(Case III) If lr�1�h [ lr then

p ¼ minfi : li ¼ lr�2�hg;
q ¼ maxfi : li [ lrg:

(Case IV) If lr�1�h ¼ lr and l1 � r � 2 then

p ¼ 1;

q ¼ maxfi : li ¼ l2g:

Define a map U : Kh ! Kh by UðlÞ :¼ l0 if l 62 Ph, where
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l0i ¼
lp þ 1 if i ¼ p;

lq � 1 if i ¼ q;

li otherwise;

8
><

>:

and by UðlÞ :¼ l if l 2 Ph.

Lemma 2 Let k 2 Kh n Qh and l 2 Qh. If k� l then DðkÞ� l.

Proof Let k0 ¼ DðkÞ. By definition of k0 we only need to check that

k01 þ � � � þ k0i � l1 þ � � � þ li ð11Þ

for all p� i\q because if i\p or i� q then the sum for k0 and the sum for k are the

same.

For Case I we have k0i � ki � 1� r � 2� li for each p� i\q, which yields (11).

For Case II we note that if p\j\q then hþ 1 ¼ kj � lj and h ¼ kq\lq (and if

j[ q then kj ¼ lj). Hence, for p � i\ q, we have

kiþ1 þ � � � þ kr\liþ1 þ � � � þ lr:

Since jkj ¼ jlj ¼ d it follows that

k1 þ � � � þ ki [ l1 þ � � � þ li:

Thus we have

k01 þ � � � þ k0p þ � � � þ k0i ¼ k1 þ � � � þ ðkp � 1Þ þ � � � þ ki � l1 þ � � � þ li;

as needed. h

Lemma 3 Let l 2 Kh n Ph and k 2 Ph. If k� l then k�UðlÞ.

Proof Let l0 ¼ UðlÞ. We only need to show that

k1 þ � � � þ ki � l01 þ � � � þ l0i

for all p� i\q.

For Case III suppose, to the contrary, that

k1 þ � � � þ ki þ 1� l01 þ � � � þ l0i ð12Þ

for some p� i\q. The RHS is equal to l1 þ � � � þ li þ 1, and at most k1 þ � � � þ
ki þ 1 because k� l. Thus we have

k1 þ � � � þ ki ¼ l1 þ � � � þ li: ð13Þ

Since jkj ¼ jlj we also have kiþ1 þ � � � þ kr ¼ liþ1 þ � � � þ lr. Moreover, noting

kj\lj for r � 1 � h� j� q, and kj ¼ lj for q\j� r, we have that p� i\r � 1 � h

and
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kiþ1 þ � � � þ kr�2�h [ liþ1 þ � � � þ lr�2�h:

This together with liþ1 ¼ lr�2�h gives us kiþ1 [ liþ1 and

ki � kiþ1 [ liþ1 ¼ li:

On the other hand it follows from (13) and k1 þ � � � þ ki�1 � l1 þ � � � þ li�1 that

ki � li. This is a contradiction.

For Case IV suppose (12). Since k1 � r � 1� l1 þ 1 ¼ l01 we may assume that

2� i\q. Using k1 [ l1 and l2 ¼ li with (13) we have ki\li. Then

kiþ1 � ki\li ¼ liþ1 and

k1 þ � � � þ kiþ1 ¼ l1 þ � � � þ li þ kiþ1\l1 þ � � � þ li þ liþ1;

which contradicts the assumption k� l. h

Let Dn ¼ ðD � � � � � DÞ (n times), and define D1 ¼ limn!1 Dn. If k 2 Ph then

D1ðkÞ ¼ DnðkÞ for some n� r. Indeed we first repeat Case I until k1\r � 1, and

next repeat Case II until kr�1�h [ kr, and then eventually the resulting k comes into

Qh. Thus D1 is a map from Ph to Qh. Similarly we define a map U1 : Qh ! Ph by

U1 ¼ limn!1 Un, which is actually obtained by applying U at most r times. By

Lemma 2 and Lemma 3 we get the following results. (See Example 3.)

Lemma 4 Let k 2 Ph and l 2 Qh with k� l.

(1) D1ðkÞ� l and D1ðkÞ ¼ maxfl0 2 Qh : k� l0g.

(2) k�U1ðlÞ and U1ðlÞ ¼ minfk0 2 Ph : k
0 � lg.

Lemma 5 It follows that

(i) ðU1 � D1ÞðkÞ ¼ k for all k 2 U1ðQhÞ, and

(ii) ðD1 � U1ÞðlÞ ¼ l for all l 2 D1ðPhÞ.

Proof Let l 2 Qh, and define k :¼ U1ðlÞ, l0 :¼ D1ðkÞ, and k0 :¼ U1ðl0Þ.
Since k ¼ U1ðlÞ we have k� l. Then by (1) of Lemma 4 we have

l0 ¼ D1ðkÞ ¼ maxfl00 2 Qh : k� l00g � l:

Thus fk00 2 Ph : k
00 � l0g � fk00 2 Ph : k

00 � lg and taking the minimum element of

each set we get k0 � k. On the other hand k� l0 follows from l0 ¼ D1ðkÞ. Applying

(2) of Lemma 4 we obtain k�U1ðl0Þ ¼ k0. Consequently k ¼ k0 and
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ðU1 � D1ÞðkÞ ¼ U1ðl0Þ ¼ k0 ¼ k. This proves (i) of this lemma. One can show

(ii) similarly. h

Proof of Theorem 3 By Lemma 5 there exists k ¼ kðhÞ such that U1ðQhÞ ¼
f~k1; . . .; ~kkg and D1ðPhÞ ¼ f~l1; . . .; ~lkg. For 1� i� k let

Ai ¼ fk 2 Ph : ðU1 � D1ÞðkÞ ¼ ~kig;
Bi ¼ fl 2 Qh : ðD1 � U1ÞðlÞ ¼ ~lig:

Then Ph ¼ A1 t � � � t Ak and Qh ¼ B1 t � � � t Bk. Moreover, by Lemma 4, we have

~ki ¼ minAi and ~li ¼ maxBi. Finally we get the desired partitions KðbÞ ¼
Fr�3

h¼0

FkðhÞ
i¼1 Ai and Kðb0Þ ¼

Fr�3
h¼0

FkðhÞ
i¼1 Bi. h

Using Theorem 3 we can further reduce the problem and decrease the

computation sharply. This reduction is based on the following simple observation.

By Theorem 3 we have ~ki ¼ minAi implying
X

k2Ai

bk �mk � ~ci �m~ki
;

where ~ci :¼
P

k2Ai
bk, and similarly

X

l2Bi

b0l �ml � ~c 0
i �m~li ;

where ~c 0
i :¼

P
l2Bi

b0l. So we define two coefficient vectors s; s0 2 RK
� 0 as follows:

for each k; l 2 K let

sk :¼
~ci if k ¼ ~ki for some i;

0 otherwise,

(
and s0l :¼

~ci
0 if l ¼ ~li for some i;

0 otherwise.

�

Then it follows from the definition that �mðbÞ� �mðsÞ, �mðs0Þ � �mðb0Þ, and

�mðb� b0Þ � �mðs� s0Þ:

Thus our aim is now reduced to showing s� s0, which yields �mðs� s0Þ � 0 and so

�mðb� b0Þ � 0, as required. Finally, similarly as we changed from a; a0 to b; b0 we

modify s; s0 one last time to get t; t0 2 RK
� 0 by t :¼ pðs� s0Þ and t0 :¼ pðs0 � sÞ.

Since t � t0 ¼ s� s0 it suffices to show t� t0 to verify s� s0, see Example 4 in the

next section. In summary we have shown that
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�mðaÞ � �mða0Þ ¼ �mðbÞ � �mðb0Þ � �mðsÞ � �mðs0Þ ¼ �mðtÞ � �mðt0Þ:

The point is that the number of non-zero entries in t and t0 is much smaller than

those in a and a0, for example, if r ¼ 11 and d ¼ 52 then the former is only 367

while the latter is 6594. This is the reason why such reductions make the compu-

tation much faster. Consequently we can complete the proof of Conjecture 2 by

showing t� t0, and we have indeed verified this for 3� r� 11 (and all d) with aid of

a computer.

Thus the inequality in Conjecture 2 holds for 3� r� 11. Moreover if

a1 ¼ � � � ¼ ar, then clearly F � G ¼ 0. On the other hand if F � G ¼ 0 then we

need �mðaÞ � �mða0Þ ¼ 0. This together with (ii) of Theorem 1 implies that �mk ¼ �mk0

for all adjacent k and k0 in the graph G. Therefore all ai are the same, which verifies

the equality condition in Conjecture 2. This completes the proof of Theorem 2.

3 Some Examples

Example 1 We present an example showing that the converse of Theorem 1 does

not hold, that is, an example satisfying �mðaÞ� �mða0Þ but a 6� a0.
Let r ¼ 2 and d ¼ 4. Then K ¼ fð4; 0Þ; ð3; 1Þ; ð2; 2Þg, and

�mð4;0ÞðxÞ ¼
1

2
ðx4

1 þ x4
2Þ; �mð3;1ÞðxÞ ¼

1

2
ðx3

1x2 þ x1x
3
3Þ; �mð2;2ÞðxÞ ¼ x2

1x
2
2:

Let a ¼ ð2; 0; 2Þ and a0 ¼ ð0; 4; 0Þ. Then we have

�mðaÞ ¼ 2 �mð4;0ÞðxÞ þ 2 �mð2;2ÞðxÞ ¼ ðx4
1 þ x4

2Þ þ 2x2
1x

2
2;

�mða0Þ ¼ 4 �mð3;1ÞðxÞ ¼ 2ðx3
1x2 þ x1x

3
2Þ:

A routine calculus shows that �mðaÞ� �mða0Þ for all x1; x2 � 0.

Let G be the corresponding bipartite graph. Then, by writing only vertices with

positive capacities, we have VðGÞ ¼ fð4; 0Þ; ð2; 2Þg t fð3; 1Þg. There is only one

edge joining (4, 0) and (3, 1), where the capacity of (4, 0) is 2 while the capacity of

(3, 1) is 4. Thus there is no optimal flow, and a 6� a0.

Example 2 Let r ¼ 8, d ¼ 29, and h ¼ 0. Let ~k ¼ ð7; 7; 5; 4; 4; 2; 0; 0Þ 2 P0 and

~l ¼ ð6; 6; 6; 5; 4; 1; 1; 0Þ 2 Q0. We get the following sequence by applying D:

Fig. 1 The down map sending ~k ¼ 77544200 to ~l ¼ 66654110
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~k �! ð7; 6; 6; 4; 4; 2; 0; 0Þ �! ð6; 6; 6; 5; 4; 2; 0; 0Þ �! ~l:

This shows that D1ð~kÞ ¼ D3ð~kÞ ¼ ~l. See Figure 1, where the map D sends a box

with ‘	’ to the position marked by ‘
.’

Example 3 (Continued from Example 2) Let

A :¼ fk 2 P0 : ðU1 � D1ÞðkÞ ¼ ~kg;
B :¼ fl 2 Q0 : ðD1 � U1ÞðlÞ ¼ ~lg:

Then it follows that A ¼ f76554200; 76555100; 76644200; ~kg, and B ¼ f~lg, and

moreover minA ¼ ~k (but A does not have the maximum element) and maxB ¼ ~l,

see Figure 2, where black arrows correspond to D and red arrows correspond to U.

Example 4 We describe the partitions in Theorem 3 for the case r ¼ 7 and d ¼ 15.

Then KðbÞ ¼ fk1; . . .; k19g and Kðb0Þ ¼ fl1; . . .; l19g listed below with their

capacities, e.g., k1 ¼ ð6; 2; 2; 2; 1; 1; 1Þ and cðk1Þ ¼ 140.

k1 6222111 140 l1 3322221 105

k2 6321111 210 l2 3332211 210

k3 6411111 42 l3 3332220 140

k4 7221111 105 l4 3333210 210

k5 7311111 42 l5 4222221 42

k6 6322200 420 l6 4322211 420

k7 6332100 1260 l7 4322220 210

Fig. 2 Example for Lemma 4 and Lemma 5
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Fig. 3 Hasse diagram of KðbÞ and Kðb0Þ as posets for r ¼ 7 and d ¼ 15
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k8 6333000 140 l8 4332210 1260

k9 6422100 1260 l9 4333110 420

k10 6431100 1260 l10 4422210 420

k11 6432000 840 l11 4432110 1260

k12 6441000 420 l12 4441110 140

k13 6521100 1260 l13 5222211 105

k14 6522000 420 l14 5222220 42

k15 6531000 840 l15 5322210 840

k16 6540000 210 l16 5332110 1260

k17 6611100 210 l17 5422110 1260

k18 6621000 420 l18 5431110 840

k19 6630000 105 l19 5521110 420

Then we can view KðbÞ and Kðb0Þ as posets, where the partial order is introduced by

the majorization. Figure 3 shows the corresponding Hasse diagrams, where ki is

denoted by i and lj is denoted by j .

The partitions in Theorem 3 in this case are

KðbÞ ¼ A1 t A2 t A3 t A4;

Kðb0Þ ¼ B1 t B2 t B3 t B4;

where

A1 ¼ fki : 1� i� 5g; B1 ¼ fl1; l2; l5; l6; l13g;
A2 ¼ fk6g; B2 ¼ fl3; l4; l7; l8; l10; l14; l15; l16; l17g;
A3 ¼ fk7; k8g; B3 ¼ fl9; l11; l12; l18g;
A4 ¼ fki : 9� i� 19g; B4 ¼ fl19g:

The representatives ~ki ¼ minAi and ~li ¼ maxBi are given by

~k1 ¼ k1; ~k2 ¼ k6; ~k3 ¼ k7; ~k4 ¼ k9;
~l1 ¼ l13; ~l2 ¼ l17; ~l3 ¼ l18; ~l4 ¼ l19:

Fig. 4 The reduced graph for t and t0 (r ¼ 8 and d ¼ 29)
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Example 5 Here we present an example of the reduction after applying Theorem 3.

Let r ¼ 8, d ¼ 29. In this case the number of partitions in Theorem 3 is k ¼ 12, and

the corresponding representatives are listed below.

~k1 ¼ 74333333; ~k2 ¼ 75542222; ~k3 ¼ 75544400; ~k4 ¼ 75554111;
~k5 ¼ 75554300; ~k6 ¼ 75555200; ~k7 ¼ 76544111; ~k8 ¼ 76544300;
~k9 ¼ 76553111; ~k10 ¼ 76553300; ~k11 ¼ 76554200; ~k12 ¼ 76653200;

~l1 ¼ 54443333; ~l2 ¼ 66533222; ~l3 ¼ 66544310; ~l4 ¼ 66553211;
~l5 ¼ 66554210; ~l6 ¼ 66555110; ~l7 ¼ 66643211; ~l8 ¼ 66644210;
~l9 ¼ 66652211; ~l10 ¼ 66653210; ~l11 ¼ 66654110; ~l12 ¼ 66663110:

The corresponding capacities are the following.

~c1 ¼ 64; ~c2 ¼ 13272; ~c3 ¼ 2520; ~c4 ¼ 1120;
~c5 ¼ 3360; ~c6 ¼ 840; ~c7 ¼ 6720; ~c8 ¼ 11760;
~c9 ¼ 75936; ~c10 ¼ 16800; ~c11 ¼ 23520; ~c12 ¼ 93800;

~c 0
1 ¼ 336; ~c 0

2 ¼ 27272; ~c 0
3 ¼ 74536; ~c 0

4 ¼ 91568;
~c 0

5 ¼ 21840; ~c 0
6 ¼ 1680; ~c 0

7 ¼ 6720; ~c 0
8 ¼ 11200;

~c 0
9 ¼ 1680; ~c 0

10 ¼ 7840; ~c 0
11 ¼ 3360; ~c 0

12 ¼ 1680:

Then to construct t and t0 we compute

~c1 � ~c 0
1 ¼ �272; ~c2 � ~c 0

2 ¼ �14000; ~c3 � ~c 0
3 ¼ �72016; ~c4 � ~c 0

4 ¼ �90448;
~c5 � ~c 0

5 ¼ �18480; ~c6 � ~c 0
6 ¼ �840; ~c7 � ~c 0

7 ¼ 0; ~c8 � ~c 0
8 ¼ 560;

~c9 � ~c 0
9 ¼ 74256; ~c10 � ~c 0

10 ¼ 8960; ~c11 � ~c 0
11 ¼ 20160; ~c12 � ~c 0

12 ¼ 92120:

Figure 4 shows the reduced graph for t and t0, that is, the top five vertices are

corresponding to �mðtÞ and the bottom six vertices are corresponding to �mðt0Þ, and ~k

and ~l are adjacent if ~k� ~l. In this picture we label the vertices by ~ci � ~c 0
i instead of

the capacity j~ci � ~c 0
ij. Then one of the optimal flows is shown in Fig. 5.

Appendix

Write ai for api , and let qi ¼ 1 � pi.

Fig. 5 An optimal flow in the reduced graph (r ¼ 8 and d ¼ 29)
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Fact 1 Let t� 1 be an integer, and let lj be the line y ¼ ðr � 1Þxþ j. Then the walk

Wpi hits the line lt with probability ati, and the walk W 0 hits the line lrt with

probability bt.

Proof Suppose that the probability that the walk Wpi hits the line lt is given by Xt for

some X 2 ð0; 1Þ. After the first step, the walk is at (0, 1) with probability pi, and at

(1, 0) with probability qi. From (0, 1) the probability for the walk hitting lt is Xt�1,

and from (1, 0) the probability is Xt�1þr. Then it follows

Xt ¼ piX
t�1 þ qiX

t�1þr;

that is,

X ¼ pi þ qiX
r:

Thus X ¼ ai, and the walk hits the line lt with probability ati.
Next suppose that the probability that the walk W 0 hits the line lrt is given by Yt

for some Y 2 ð0; 1Þ. After the first r steps, it is at ðx; r � xÞ with probability
X

I2
½r�
x

� �
Y

i2I
pi
Y

j2½r�nI
qj;

where ½r� ¼ f1; 2; . . .; rg. From ðx; r � xÞ the probability for the walk hitting lrt is

Yxþt�1. This yields

Yt ¼
Xr

x¼0

Yxþt�1
X

I2
½r�
x

� �
Y

i2I
pi
Y

j2½r�nI
qj;

that is,

Y ¼
Xr

x¼0

Yx
X

I2
½r�
x

� �
Y

i2I
pi
Y

j2½r�nI
qj ¼

Yr

i¼1

ðpi þ qiYÞ:

Thus Y ¼ b, and the walk hits the line lrt with probability bt. h

Define a polynomial f(x) by
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f ðXÞ :¼ �X þ
Yr

i¼1

ðpi þ qiXÞ:

By definition f ðbÞ ¼ 0.

Fact 2 If 0\y\1 and f ðyÞ� 0, then b� y.

Proof This follows because f ð0Þ[ 0, f ð1Þ ¼ 0, f 0ð1Þ ¼ �1 þ
Pr

i¼1 qi [ � 1 þ r �
1
r ¼ 0 ( here we used pi\1 � 1

r ), and f 00ðxÞ[ 0 for x[ 0. h

Fact 3 The inequality a :¼ a1 � � � ar � b follows from (1).

Proof By Fact 7 it suffices to show f ðaÞ� 0. Since ai ¼ pi þ qia
r
i we have

a ¼ a1 � � � ar ¼
Yr

i¼1

ðpi þ qia
r
i Þ;

and

f ðaÞ ¼ �aþ
Yr

i¼1

ðpi þ qiaÞ ¼ �
Yr

i¼1

ðpi þ qia
r
i Þ þ

Yr

i¼1

ðpi þ qiaÞ:

So we need to show

Yr

i¼1

ðpi þ qiaÞ�
Yr

i¼1

ðpi þ qia
r
i Þ: ð14Þ

Solving ai ¼ pi þ ð1 � piÞari for pi gives

pi ¼
ai � ari
1 � ari

:

Then

pi þ qia ¼ ai � ari
1 � ari

þ 1 � ai � ari
1 � ari

� �
a ¼ 1

1 � ari
ai � ari þ ð1 � aiÞa
� �

;

pi þ qia
r
i ¼ ai ¼

1

1 � ari
aið1 � ari Þ
� �

:

Noting that 0\ai\1 we see that (14) is equivalent to
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Yr

i¼1

ðai � ari þ ð1 � aiÞaÞ�
Yr

i¼1

aið1 � ari Þ

()
Yr

i¼1

1 � ar�1
i þ ð1 � aiÞ

a

ai

� �
�
Yr

i¼1

ð1 � ari Þ

()
Yr

i¼1

1 þ ai þ � � � þ ar�2
i þ a

ai

� �
�
Yr

i¼1

1 þ ai þ � � � þ ar�1
i

� �
;

and multiplying both sides by a ¼ a1 � � � ar we get (1). h
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