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Abstract
The universal cyclic edge-connectivity of a graph G is the least k such that there

exists a set of k edges whose removal disconnects G into components where every

component contains a cycle. We show that for graphs of minimum degree at least 3

and girth g at least 4, the universal cyclic edge-connectivity is bounded above by

ðD� 2Þg where D is the maximum degree. We then prove that if the second

eigenvalue of the adjacency matrix of a d-regular graph of girth g� 4 is sufficiently

small, then the universal cyclic edge-connectivity is ðd � 2Þg, providing a spectral

condition for when this upper bound on universal cyclic edge-connectivity is tight.

Keywords Edge connectivity � Cyclic edge connectivity � Graph spectrum

1 Introduction

The traditional notion of graph edge-connectivity is the smallest k such that there

exists a set of edges S � EðGÞ with jSj ¼ k, where G n S is disconnected. Note that

traditional edge-connectivity does not stipulate any conditions on properties of the

components of G n S. The notion of conditional edge-connectivity, introduced by
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Harary [15], extends the traditional edge-connectivity by stipulating that compo-

nents of G n S satisfy some given property. More precisely:

Definition 1 (Harary 1983 [15]) Let P be any property of a graph G ¼ ðV ;EÞ, and
let S � EðGÞ. The universal P-connectivity is the minimum |S| such that G n S is

disconnected, and every component of G n S has property P.

We note there are several formulations of conditional connectivity; for instance,

the qualifier universal reflects that every component of G n S has P, whereas

existential conditional connectivity relaxes this condition to some component

satisfying P. Harary’s introduction of conditional connectivity focused on surveying

a wide swath of possible properties, including planarity, degree and diameter

restrictions, and the property of being cyclic, Hamiltonian, or Eulerian. Aruguing

that ‘‘the most fruitful topics are those suggested by applications’’, Harary aimed to

provide a framework for devising connectivity concepts that are meaningful in

applications. In particular, Harary references the pertinence of conditional

connectivity to the analysis of computer network reliability [4], and VLSI and

separator problems [18], among others. For instance, he notes that guarantees on

connected component sizes reflect the resilience of computer networks to

disruptions.

In this work, we consider the universal P-edge-connectivity, where P is the

property of containing a cycle. We call this the universal cyclic edge-connectivity of

G, which we denote by j0� ðGÞ. Prior to Harary’s work, Bollobas alludes to universal
cyclic edge-connectivity [5, p. 113], and Harary proved the universal cyclic edge-

connectivity of the balanced complete bipartite graph Kn;n is n
2 � 2n for n even. The

cycle condition is also natural for a number of applications, such as network

reliability, as the existence of a cycle is necessary to guarantee multiple paths

between pairs of vertices. Cyclic edge-connectivity has also been utilized as a

condition to solve other problems, such as in integer flow conjectures [12], and early

attempts [28] at proving the four color theorem. Lastly, cyclic-edge connectivity has

also garnered interest due to its close relationships with other types of connectivity

[16, 25] and so-called n-extendable graphs [26].

Before proceeding, we note universal cyclic edge-connectivity is equal to several

other notions of connectivity. Instead of requiring every component of G n S have a

cycle, a number of researchers (cf. [17, 21, 22]) define cyclic edge-connectivity has

the smallest edge cut set S such that at least 2 components possess a cycle. Defined

in this way, while a cyclic edge cut need not be a universal cyclic edge cut, it is

nonetheless straightforward1 to show this notion of cyclic-edge connectivity is equal

to universal cyclic edge-connectivity. Despite this equivalence, we still utilize the

universal formulation of cyclic edge-connectivity because restricting the permis-

sible cuts affords advantages in our proof techniques. Lastly, we note other notions

of edge-connectivity are equivalent to cyclic edge-connectivity for certain

1 Suppose that S is a minimal cyclic edge cut that is not universal. Then G n S has a tree component T as

well as two components C1 and C2 that contain a cycle. Now there is some edge e 2 S which is incident to
T. Consider the edge cut S0 ¼ S n e. Since e is not incident between C1 and C2, G n S0 still has two distinct
components, C0

1 and C0
2 which contain C1 and C2 as subgraphs, respectively. But then S0 is a cyclic edge

cut, a contradiction.

123

2080 Graphs and Combinatorics (2021) 37:2079–2093



parameter settings, or for certain families of graphs. For instance, Latifi et al. [16]

propose a new measure of conditional connectivity for large multiprocessor

systems, requiring every vertex have degree k in G n S. As observed in [29], when

k ¼ 2 and the minimum degree is at least 3, this quantity is equal to cyclic edge-

connectivity. For more on the relationship between cyclic edge-connectivity and

other connectivity measures, see [25].

We take a spectral approach for studying universal cyclic edge-connectivity. We

prove that for a d-regular graph with girth g, with d� 5, a bound on the second

eigenvalue of the adjacency matrix is sufficient to guarantee that j0� ðGÞ ¼ ðd � 2Þg,
which is the largest possible universal cyclic edge-connectivity (see Theorems 1 and 2

below). Furthermore, we construct a family of d-regular graphs that show our spectral

condition is necessary. Prior work has established a number of spectral bounds for

traditional edge and vertex connectivity; see [1, 7, 13] and the references contained

therein. Furthermore, researchers have also investigated connectivity and conditional

connectivity with restrictions on component sizes for many families of graphs

[8, 9, 11, 19, 30]. However, spectral bounds on conditional connectivity appear far

more rare. One exception, however, is recent work by Zhang [30], who makes use of

spectral tools to determine the cyclic edge-connectivity of strongly regular graphs.

Despite the pervasive use of spectral methods as a proof technique, Zhang’s approach

does not immediately lead to an eigenvalue condition for cyclic edge-connectivity.

Focusing on themore general case of d-regular graphs, our bound establishes a spectral
threshold for extremal cyclic edge-connectivity, depending on girth and degree. We

note all strongly-regular graphswhich are at least 5-regular satisfy the condition of our

theorem. It is interesting to note, that all 4-regular strongly regular graphs also satisfy

the stated spectral threshold even though not satisfying our degree condition.

2 Main Tools and Notation

For a graph G ¼ ðV ;EÞ, let j0� ðGÞ denote the cyclic edge-connectivity of G. For
vertex subsets X; Y � V , let E(X, Y) denote the set of edges between X and Y, and let
eðX; YÞ :¼ jEðX; YÞj. Further, let G[X] denote the subgraph induced by X. One of

our primary tools will be the following well-known lemma from [24].

Lemma 1 (Lemma 3.1 of [24]) Let G be a graph of order n, X � V , and k2 the
second largest eigenvalue of the adjacency matrix. Then

eðX; �XÞ� ðd � k2Þ
jXjðn� jXjÞ

n
:

The other key ingredient of the proof is the following theorem of Alon, Hoory,

and Linial which provides a lower bound for the number of vertices in a graph with

a given average degree and girth. This result may be thought of as an irregular

generalization of the result of Moore (see [3, p. 180]), which lower bounds the

number of vertices in a d-regular graph of a given diameter.
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Irregular Moore Bound (Alon et al. [2]) The number of vertices n in a graph of
girth g and average degree at least d� 2 satisfies n� n0ðd; gÞ where

n0ðd; gÞ ¼
1þ d

Xr�1

i¼0

ðd � 1Þi if g ¼ 2r þ 1

2
Xr�1

i¼0

ðd � 1Þi if g ¼ 2r

8
>>>><

>>>>:

:

To demonstrate the applicability of these tools, we first obtain the following naı̈ve

spectral bound on conditional edge-connectivity in terms of girth when conditioned

on the size of the minimal component.

Proposition 1 Let c be the size (number of edges) of the smallest edge-cut of a d-
regular graph with second largest adjacency eigenvalue k2 which results in
components of size at least k, and let the girth be g. Then

c� kðd � k2Þ 1� k

n0ðd; gÞ

� �
;

where n0ðd; gÞ is as in the Irregular Moore Bound.

Proof We first note that by the minimality of the cut, there is some set X such that

c ¼ eðX;XÞ. Thus, by Lemma 1, we have that

c ¼ eðX; �XÞ� ðd � k2Þ
jXjðn� jXjÞ

n
:

Applying the aforementioned Irregular Moore Bound of Alon et al. [2] immediately

yields the desired result. h

The form of this lower bound is quite close to the trivial upper bound on c,
kðd � 2Þ þ 2, stemming from the case where G[X] is a k-vertex tree. In some sense,

this extremal example makes universal cyclic edge-connectivity the natural

strengthening of the size-limited connectivity.

The final tool we will utilize to study the universal cyclic edge-connectivity of d-
regular graphs is the ear decomposition of a graph, which as stated in [6], may

defined as follows.

Ear Decomposition. For a subgraph F of G, an ear of F in G is a nontrivial path
in G whose ends lie in F but whose internal vertices do not. An ear decomposition of
a 2-edge-connected graph G is a nested sequence ðG0;G1; . . .;GkÞ of subgraphs of
G such that

(i) G0 is a cycle,
(ii) Giþ1 ¼ Gi [ Pi, where Pi is an ear of Gi in G, for 0� i� k,
(iii) Gk ¼ G.
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3 Cyclic Edge-Connectivity

Before proceeding with our main result, we first address the existence of and upper

bounds on cyclic-edge connectivity. Indeed, for acyclic or unicyclic graphs, it is

clear the cyclic edge connectivity does not exist. The work of Lovász [23] and Dirac

[10] provide a complete characterization of the class of graphs with no pairs of

vertex disjoint cycles. Roughly speaking, these are graphs obtained from K5, a

wheel, and K3;t plus any subset of edges connecting vertices in the three element

class, and a forest plus a dominating vertex by the duplication and subdivision of

edges and the addition of trees. However, as no assurances are provided on the

relative sizes of these cycles, these works do not yield an upper bound on the

universal cyclic edge-connectivity even in the d-regular case. Lou and Holton [20,

Lemma 1] provide a straight-forward argument that for d-regular girth g graphs, the

cyclic edge connectivity is bounded above by ðd � 2Þg. However, their approach
does not appear to generalize to the irregular graphs. To address this, we provide in

Lemma 2 explicit conditions for the existence of a girth-length cycle which induces

a universal cyclic edge cut.

Lemma 2 Let G be a graph with minimum degree d� 3 and girth g� 4. If G is not

K3;t, then there exists a cycle C of length g such that every component of G�
EðC;CÞ contains a cycle.

As an immediate corollary we have the following.

Theorem 1 Let G be a graph with minimum degree at least 3 and girth � 4. If G is
not K3;t, then j0� ðGÞ� D� 2ð Þg where D is the maximum degree of G.

Proof of Lemma 2 We first consider the case that g� 5 and let C be a cycle of

length g. As C is an induced cycle it is clear that G[C] contains a cycle. Now

consider an arbitrary component G[X] of G� EðC;CÞ and let x 2 X. As g� 5, the

vertex x has at most one neighbor in C as otherwise there exists a cycle of length at

most g
2

� �
þ 1\g. But then the minimum degree of G[X] is 2 and hence it contains a

cycle.

Now suppose that G is a graph with girth 4 and is not K3;t. Let x, y be vertices of
G such that the set of common neighbors, Z ¼ z1; . . .; zkf g has size at least 2. The

existence of such a pair of points is guaranteed as the girth is 4 and there is an

induced 4-cycle in G. It is worth mentioning that, since the girth of G is 4, none of

the vertices adjacent to a vertex in Z are adjacent to either x or y. We now consider

the component structure of G� x; yf g. Let Z1; . . .; Zkz be the vertex sets for

components that contain an element of Z and let X1; . . .;Xkx , (respectively

Y1; . . .; Yky ) be the vertex sets for the components such that EðXi; xf gÞ 6¼ £ and

Xi \ Z ¼ £ (respectively, EðYi; yf gÞ 6¼ £ and Yi \ Z ¼ £). We note that the

collection of vertex sets X1; . . .Xkxf g and Y1; . . .; Yky
� �

are not necessarily distinct,

however, this potential duplicate naming will not affect our subsequent analysis. We

will show the desired cycle is in x; yf g [
S

i Zi. We note the components induced by

any Xi or Yj do not provide an obstruction. This is easy to see as by definition any
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vertex in Xi or Yj is incident to precisely one of x; yf g as otherwise it would belong

to Z. Thus G½Xi	 and G½Yj	 have minimum degree at least 2, and thus, contain a

cycle. As a consequence, we may restrict our attention to the components

G½Z1	; . . .;G½Zkz 	 without loss of generality.
We first consider the case where one of the components, say T ¼ G½Z1	, is a tree.

As the minimum degree of G is 3 and Z contains every vertex adjacent to both x and
y, the leaves of T are given by Z1 \ Z: Let z; z0 be two vertices of maximum distance

in T and let the unique path between them be given by z ¼ t0; t1; . . .; t‘; t‘þ1 ¼ z0. We

first consider the case where ‘� 2 and so t1 and t‘ are distinct vertices. We note that

Eð x; yf g; t1; t‘f gÞ ¼ £ as both t1 and t‘ are incident to elements of Z. Thus t1 and t‘
have degree at least 3 in T and thus there are vertices t01 and t0‘ that are incident to t1
and t‘, respectively. By the maximality of the distance between z and z0 in T and the

uniqueness of the shortest path in trees, t01 and t0‘ are also leaves and hence in Z. But

then consider the components of G� C, where C is the cycle y; z; t1; t
0
1

� �
. Note that

x; z0; t‘; t
0
‘

� �
is a cycle and disjoint from y; z; t1; t

0
1

� �
and thus is present in G� C.

Furthermore, the components of T � z; t1; t
0
1

� �
as well as the components

G½Z2	; . . .;G½Zkz 	 are all incident to x and thus form a single component which

contains the cycle x; z0; t‘; t
0
‘

� �
. Hence, C is the desired cycle.

Thus we may now assume that any tree component among G½Z1	; . . .;G½Zkz 	 has
diameter 2 and a unique vertex not in Z. Suppose G½Z1	 is such a component and let

v be the unique element of G½Z1	 not in Z. Since v is adjacent to an element of Z, we
have that v is not adjacent to x; yf g, has degree at least 3, and x; y; vf g [ ðZ1 \ ZÞ
induces copy of K3;t in G. As G is not equal to K3;t, this implies that one of Z2, X1, or

Y1 exists and is not empty. Suppose first that X1 exists and let z; z0 2 Z1 \ Z:
Consider the components of G� y; z; v; z0f g. As every element of Z � z; z0f g is

incident to x, G½X1	 contains a cycle, and there is an edge between X1 and x, we have
that every component formed contains a cycle. A similar argument holds if Y1 exists
by exchanging the roles of x and y. Finally, assume that no components of the type

Xi or Yj exist, but Z2 exists. Let z; z0 2 Z \ Z1 and consider the components of

G� y; z; v; z0f g: As all the components Z3; . . .; Zkz as well as the vertices of Z1 �
z; z0f g are connected to x, in order to show that the all the components of G�
y; z; v; z0f g have a cycle it suffices to show that G½Z2 [ xf g	 contains a cycle. To that

end, if Z2 \ Zj j ¼ 1, then every vertex in Z2 � Z is adjacent to at most one vertex in

x; yf g [ Z and hence G½Z2 � Z	 has minimum degree 2 and a cycle. Otherwise,

Z2 \ Zj j � 2 and G½Z2 [ xf g	 contains a cycle by taking a path between distinct

elements of Z in G½Z2	 joined by the vertex x.
At this point, we may assume without loss of generality that G½Zi	 is not a tree for

all i. Suppose that the induced graph G½
S

i Zi	 has at least two vertices of degree 1,

z; z0. Then as z and z0 are on no cycles in G½
S

i Zi	, the components of G½
S

i Zi �
z; z0f g	 all contain cycles. This gives that x; z; y; z0f g is the desired cycle C. Thus we

may assume that there is at most 1 vertex of degree 1 in G½
S

i Zi	, which we call z,
and let z0 2 Z � zf g. As the induced subgraph G½

S
i Zi � z; z0f g	 has at most one

vertex of degree 1 (potentially the unique common neighbor of z and z0), all of its
components contain a cycle and again x; z; y; z0f g is the desired cycle. We may now
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assume that for i, the induced subgraph G½Zi	 is not a tree and every element of Z has

degree at least 2 in the relevant component. Suppose that kz � 2 and let z 2 Z1 \ Z,
z0 2 Z2 \ Z. Every vertex in Z1 � Z is adjacent to at most one of x; y; z; z0f g and so

has degree at least 2 in G½Z1 � z; z0f g	, while the elements of Z \ Z1 � z; z0f g are

incident to neither of z or z0, and thus also have minimum degree 2. This implies that

G½Zi � z; z0f g	 has minimum degree 2 for all i and thus contains a cycle, and hence

x; z; y; z0f g is the desired cycle.

Finally, we may now assume that there is a single component Z1 of G� x; yf g
that contains all elements of Z and further, that component is not a tree and every

element of Z \ Z1 has degree at least two in the component. Now fix two elements

z; z0 2 Z and and let F be the forest of tree components of G½Z1 � z; z0f g	. Clearly if

F is empty, then x; z; y; z0f g is the desired cycle. Thus we may assume that F is non-

empty and let L be the leaves of F. As Z is an independent set and every vertex of z
has degree at least 2 in G½Z1	, we note that L \ Z ¼ £. Further, as the minimum

degree is at least 3, any ‘ 2 L is adjacent to at least two of x; y; z; z0f g. As ‘ 62 Z, it
can not be adjacent to both x and y. Additionally, ‘ can not be adjacent to one of

x; yf g and one of z; z0f g as this forms a triangle. Thus every element of L is adjacent

to both z and z’. Now suppose that there is some tree T 2 F such that EðT; x; yf gÞ ¼
£ and let ‘; ‘0 be leaves of that tree. But then, z and z0 are antipodal points in a 4-

cycle such that their common neighbors are in distinct components of G� z; z0f g.
Specifically, ‘; ‘0 are in a different component than x; yf g and thus by previous

arguments the desired cycle exists. Thus we may assume that every component of F
is adjacent to either x or y. But then, if Zj j � 4, we have that for any two leaves

‘; ‘0 2 L, the cycle z; ‘; z0; ‘0f g is the desired cycle. Specifically, if �z; �z0 2 Z � z; z0f g
then the tree components of G� x; y; z; z0; ‘; ‘0f g are all connected to the cycle

x; �z; y; �z0f g via either x or y. To complete the proof we note that the common

neighbors of z and z0 include x; yf g and L, and thus have at least 4 elements. Thus,

by repeating the arguments above with z; z0f g in the role of x; yf g, we may assume

that Zj j � 4 as needed. h

One might hope Lemma 2 could be extended to girth 3 graphs with a similarly

small set of exceptions as the girth 4 case. However, it is relatively easy to identify

infinite families of counterexamples from the work of Lovász [23] and Dirac [10].

For example, the wheel graph on (see Fig. 1) on any number of vertices forms a

counterexample as every 3-cycle in the graph involves the central hub as well as an

edge from the from the outer cycle. Thus the removal of a 3-cycle destroys every

cycle in the graph. Another infinite family of counterexamples can be formed by

taking K3;t and adding a non-empty set of edges to the partition of size 3. In this

case, every 3-cycle uses 2 of the vertices of partition of size 3 and thus because the

graph is bipartite there are not enough vertices remaining on that side to form a

cycle (see Fig. 1).

In fact, by adding relatively few vertices it is possible to transform an arbitrary

triangle-free graph into a counterexample to Lemma 2 where the universal cyclic

edge-connectivity exists. Specifically, let G be an arbitrary triangle-free graph and

let T be a tree with at least 3 leaves and minimum non-leaf degree 3. Adding two

adjacent vertices c; c0 which are connected to all the leaves of T and an arbitrary
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independent set S in G, results in a graph G0 in which every triangle uses the edge

c; c0f g and a vertex in S or a leaf of T. Thus, deleting the edges incident to any

triangle in G0 results a cycle-free component, namely T or T with a single leaf

removed. However, with the added restriction that the graph is d-regular, the only

counterexamples the authors are aware of are K4 and K5. Thus it is possible there is

a finite set of exceptions for a d-regular, girth 3, version of Lemma 2.

Theorem 2 Let G be a d-regular graph with d� 5 and second largest adjacency
eigenvalue k2. If G has girth g� 4 and

d � k2 �
2ðd � 2Þg

n0 d � 2
r�1

; g
� 	 ;

where r ¼ g=2b c and n0 is as in the Irregular Moore Bound, then
j0� ðGÞ ¼ ðd � 2Þg. If G has girth g ¼ 3, the cyclic-edge connectivity exists, and

d � k2 � 6� 12

d
;

then j0� ðGÞ ¼ 3d � 6.

Proof Let S be a minimal set of edges such that G� S is disconnected with all

components containing a cycle and that Sj j\ðd � 2Þg. By minimality, we may

assume that there is some set of vertices X such that S ¼ EðX;XÞ, Xj j � X


 

, and

H ¼ G½X	 contains a cycle. Further, we may assume that X is the minimal

cardinality set yielding an edge cut of size Sj j. Now, by Lemma 1, we have that

eðX;XÞ� ðd � k2Þ
Xj j X


 


n

�ðd � k2Þ
Xj j
2

:

Thus, to prove the desired result for g� 4, by Lemma 2 (or Lemma 1 in [20]) it

suffices to show that

(a) Wheel (b) K3,t with dashed optional edges

Fig. 1 Examples from two infinite families of girth 3 graphs where the universal cyclic edge-connectivity
does not exist
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Xj j � n0 d � 2

r � 1
; g

� �
� 2ðd � 2Þg

d � k2
:

We first observe that if H is a simple cycle, then Xj j � g and eðX;XÞ� ðd � 2Þg, as
desired. Thus assume without loss of generality that H is not a cycle. Further note

that, if x 2 X is such that there is some cycle C 2 G½X � xf g	, then the degree of x

in H is at least d
2

� �
as otherwise G½X � xf g	 contains the cycle C, G½X [ xf g	

contains the same cycle as G½X	, and eðX � xf g;X [ xf gÞ� eðX;XÞ. As a conse-

quence, the minimum degree in H is at least 2.

At this point it is possible to observe that H is 2-edge-connected. Specifically,

suppose that there exists two disjoint sets X1 and X2 such that X1 [ X2 ¼ X and

eðX1;X2Þ� 1. As the minimum degree in H is at least 2, both G½X1	 and G½X2	
contain some cycle. By minimality of the edge cut and that X1;X2 � X, we have that

eðX1;X1Þ; eðX2;X2Þ� eðX;XÞ þ 1, thus

e X;X
� 	

¼ e X1;X1

� 	
þ e X2;X2

� 	
� 2� 2e X;X

� 	
;

a contradiction.

Since H is 2-edge-connected, there exists an ear decomposition for H [27].

Specifically, there exists a cycle C 2 H as well as paths P1; . . .;Pk such that the

internal vertices of Pi are disjoint from C [
Si�1

j¼1 Pj

 �
and H ¼ C [

Sk
j¼1 Pj

 �
.

Since we may assume that H is not a cycle, we have that there is a non-zero number

of paths in the ear decomposition. So we may consider the last path in the ear

decomposition, Pk. By construction of the ear decomposition, any internal vertex in

Pk will have degree 2 in H but will be disjoint from the cycle C. But as such vertices

have degree at least d
2

� �
and d� 5, no such vertex exists and Pk is a single edge

e ¼ x; yf g. By the properties of the ear decomposition H � e is a 2-edge-connected
graph and hence there are at least two, edge-disjoint, paths between x and y in

H � e, denote them by Q and Q0. Without loss of generality we assume that the total

length of Q and Q0 is minimized. Now suppose there exists vertices a and b that are

on both Q and Q0, but in opposite orders. That is, Q ¼ xQ1aQ2bQ3y and

Q0 ¼ xQ0
1bQ

0
2aQ

0
3y. We can then construct two new walks from x to y, xQ1aQ

0
3y and

xQ0
1bQ3y which have total shorter length. Thus, if x ¼ a0; a1; . . .; at�1; at ¼ y are the

intersection points of Q and Q0, they occur in the same order in both Q and Q0. As a
consequence, Q [ Q0 can be thought of as a series of vertex incident cycles

C0;C1; . . .;Ct such that aj; ajþ1 2 Cj and Ci�1 \ Ci ¼ aif g. Now for every vertex v
in H (except potentially x, y if t ¼ 1 and a1 if t ¼ 2), there is some cycle not

containing v and hence the degree of v is at least d
2

� �
� 3. As the degree of x and y

are at least 2 and the degree of a1 is at least 4, this implies that average degree of H
is at least 2þ � for some �[ 0.

As H has average degree 2þ � and girth at least g, by the Irregular Moore Bound,

we have that Xj j � n0ð2þ �; gÞ. But then, since G is d-regular and

eðX;XÞ\ðd � 2Þg, we have the average degree is at least
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d � ðd � 2Þg
n0ð2þ �; gÞ :

In particular, we have that � must satisfy that

ðd � 2� �Þn0ð2þ �; gÞ\ðd � 2Þg:

Consider first the case where g ¼ 2r� 4, and note that

ðd � 2� �Þn0ð2þ �; 2rÞ ¼ ðd � 2� �Þ 2
Xr�1

j¼0

ð1þ �Þj
 !

¼ 2ðd � 2� �Þ ð1þ �Þr � 1

�

� 2ðd � 2� �Þ r þ
r

2

� �
�

� �
:

Thus we need to have

2ðd � 2� �Þ r þ
r

2

� �
�

� �
\2rðd � 2Þ;

which can be rearranged to

r

2

� �
� d � 2� 2

r � 1
� �

� �
\0:

As we already have that �[ 0, this implies that �[ d � 2� 2
r�1

and thus

Xj j � n0 d � 2
r�1

; 2r
� 	

:

Finally consider the case where g ¼ 2r þ 1� 5: In this case we have that

ðd � 2� �Þn0ð2þ �; 2r þ 1Þ ¼ ðd � 2� �Þ 1þ ð2þ �Þ
Xr�1

j¼0

ð1þ �Þj
 !

�ðd � 2� �Þ 1þ ð2þ �Þ
Xr�1

j¼0

ð1þ j�Þ
 !

¼ ðd � 2� �Þ 1þ ð2þ �Þ r þ
r

2

� �
�

� �� �

¼ ðd � 2� �Þ 1þ 2r þ 2
r

2

� �
þ r

� �
�þ

r

2

� �
�2

� �

¼ ðd � 2� �Þ 1þ 2r þ r2�þ
r

2

� �
�2

� �

Thus, we have that � satisfies that
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� ðd � 2Þr2 � g
� 	

þ ðd � 2Þ
r

2

� �
� r2

� �
��

r

2

� �
�2

� �
\0:

Letting

f ð�Þ ¼ �
r

2

� �
�2 þ ðd � 2Þ

r

2

� �
� r2

� �
�þ ðd � 2Þr2 � g;

it is easy to see that

lim
�!�1

f ð�Þ ¼ �1;

f ð0Þ ¼ ðd � 2Þr2 � 2r � 1[ 0;

f ðd � 2Þ ¼ �g; and

lim
�!1

f ð�Þ ¼ �1

Thus f ð�Þ has one root in ð�1; 0Þ and one in ð0; d � 2Þ. Let �
 be the root of f ð�Þ in
ð0; d � 2Þ, then we have that �� �
 and Xj j � n0ð2þ �
; 2r þ 1Þ: Observing that,

f d � 2� 2

r � 1

� �
¼ �

r

2

� �
d � 2� 2

r � 1

� �2

þ ðd � 2Þ
r

2

� �
� r2

� �
d � 2� 2

r � 1

� �
þ ðd � 2Þr2 � g

¼
r

2

� �
� d � 2� 2

r � 1

� �2

þ d � 2� 2

r � 1

� �
d � 2� 2r

r � 1

� � 

þ 2ðd � 2Þr
r � 1

� g

r

2

� �

1

CCCA

¼
r

2

� �
d � 2� 2

r � 1

� �
2� 2r

r � 1
þ 2ðd � 2Þr

r � 1
� g

r

2

� �

0

BBB@

1

CCCA

¼
r

2

� �
2ðd � 2Þ
r � 1

þ 4r � 4

ðr � 1Þ2
� 4r þ 2

rðr � 1Þ

 !

¼ 2ðd � 2Þðr � 1Þr þ ð4r � 4Þr � ð4r þ 2Þðr � 1Þ
2ðr � 1Þ

¼ 2ðd � 2Þðr � 1Þr þ 2� 2r

2ðr � 1Þ
¼ ðd � 2Þr � 1

[ 0

Thus �
 [ d � 2� 2
r�1

and Xj j[ n0 d � 2
r�1

; 2r þ 1
� 	

.

Finally, the case for g ¼ 3 proceeds similarly as above except that n0ð2þ �; 3Þ ¼
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3þ � and thus �
 can be determined to be exactly d � 5, yielding j0� ðGÞ� 3d � 6.

The matching upper bound on j0� ðGÞ for girth 3 follows immediately by applying

Lemma 1 from [20]. h

Given the relatively weak spectral condition required in Theorem 2 and the

extensive use of the Irregular Moore Bound in the proof, one might naturally

wonder whether any spectral condition is required at all. Here we briefly provide a

family of d-regular examples (for d� 5) showing that, for girth 4 at least, the

spectral condition is required.

Example 1 We first note that for a d-regular graph with girth g ¼ 4,

n0 d � 2

r � 1
; g

� �
¼ n0ðd � 2; 4Þ ¼ 2 1þ ðd � 3Þð Þ ¼ 2d � 4;

and thus if k2 � d � 4d�8
d�2

¼ d � 4 then the cyclic edge connectivity is 4d � 8. In

contrast to this, our family of examples has second largest eigenvalue at least

d � 5�
ffiffiffiffi
17

p

2
[ d � 4 and has cyclic edge connectivity 2d � 6.

We begin our construction with the odd case. In this case the graph can be

partitioned into 4 sets,

A ¼ a1; . . .; a4d�12f g
B ¼ b1; . . .; b2d�6f g
C ¼ c1; . . .; c2d�6f g
D ¼ d1; . . .; d4d�12f g:

Two vertices ai; aj 2 A are adjacent if i and j differ (cyclically) by one of

1; 3; . . .; d � 2. A similar relation holds for pairs of vertices in D. Two vertices bi
and bj are adjacent if i and j differ (cyclically) by one of 1; 3; . . .; d � 4. All

remaining edges are between A and B, B and C, or C and D. Specifically, bi is
adjacent to ai, aiþd�3, and ci. A analogous relationship holds for vertices in C. It
easy to verify that this graph has degree d and girth 4. Furthermore, the edge cut

between B and C has size d � 1 with both components containing many cycles. The

d ¼ 5 case is depicted in Fig. 2.

In the case that d is even, we first generate the graph for degree d þ 1 and then

remove a perfect matching contained in each of the sets A, B, C, and D. The
existence of such a perfect matching is easily observed by noting that each set

contains a even-length cycle through all the vertices.

Finally we turn to the second largest eigenvalue of each of these graphs. We note

that in both the odd and even cases the sets A, B, C, and D form an equitable par-

tition of the graph with associated equitable partition matrix
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E ¼

d � 1 1 0 0

2 d � 3 1 0

0 1 d � 3 2

0 0 1 d � 1

2
6664

3
7775:

The spectrum of E is d; d � 5�
ffiffiffiffi
17

p

2
; d � 3

n o
. Since this is an equitable partition of

the graph, the spectrum of the graph includes d � 5�
ffiffiffiffi
17

p

2
. Furthermore, as the

eigenvalues not associated with E are orthogonal to the indicator vector for each part

in the partition (see for instance Section 9.3 of [14]), the largest eigenvalue not

induced by E is bounded above by the maximum eigenvalue of

k2ðAÞ 1 0 0

2 k2ðBÞ 1 0

0 1 k2ðCÞ 2

0 0 1 k2ðDÞ

2

6664

3

7775;

where A, B, C, and D are the subgraphs induced by the respective sets.

In the case that d is odd, A, B, C, and D are all Abelian Cayley graphs over a

cyclic group and so it straightforward to derive that

k2ðAÞ ¼ k2ðDÞ ¼
Xd�1

2

j¼1

2 cos
ð2j� 1Þp
2d � 6

� �
¼

sin
ðd�1Þp
2d�6

 �

sin p
2d�6

� 	 \d � 1

k2ðBÞ ¼ k2ðCÞ ¼
Xd�3

2

j¼1

2 cos
ð2j� 1Þp
d � 3

� �
¼ 0:

The largest eigenvalue of

Fig. 2 The 5-regular graph from
Example 1. The edge cut of size
4 is bolded and highlighted in
red
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d � 1 1 0 0

2 0 1 0

0 1 0 2

0 0 1 d � 1

2

6664

3

7775

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2�4dþ12

p
þd

2
which is equal to d � 5�

ffiffiffiffi
17

p

2
when d ¼ 5 and strictly smaller for larger

values of d.
As the example for even d results from removing a repeated matching, the

Courant-Weyl inequalities gives that k2ðBÞ; k2ðCÞ� 1 while maintaining that

k2ðAÞ; k2ðDÞ\d � 2. Thus, a similar argument as above yields that for all even

d� 4, the second eigenvalue of every graph in the family is d � 5�
ffiffiffiffi
17

p

2
:

We note that the while the above example does not show that Theorem 2 is tight,

it does however show that (at least for girth 4) the bound is of the correct order.
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