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Abstract
A 1-planar graph is a graph which has a drawing on the plane such that each edge

has at most one crossing. Czap and Hudák showed that every 1-planar graph with n
vertices has crossing number at most n� 2. In this paper, we prove that every

maximal 1-planar graph G with n vertices has crossing number at most

n� 2 � ð2k1 þ 2k2 þ k3Þ=6, where k1 and k2 are respectively the numbers of 2-

degree and 4-degree vertices in G, and k3 is the number of odd vertices w in G such

that either dGðwÞ� 9 or G� w is 2-connected. Furthermore, we show that every 3-

connected maximal 1-planar graph with n vertices and m edges has crossing number

m� 3nþ 6.
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1 Introduction

All graphs considered here are simple, finite and undirected unless otherwise stated,

and all terminology not defined here are referred to [5]. A drawing of a graph

G ¼ ðV;EÞ is a mapping D that assigns to each vertex in V a distinct point in the

plane and to each edge uv in E a continuous arc connecting D(u) and D(v). We often

make no distinction between a graph-theoretical object (such as a vertex, or an edge)

and its drawing. All drawings considered here are good unless otherwise specified,

meaning that no edge crosses itself, no two edges cross more than once, and no two

edges incident with the same vertex cross each other.

For any drawing D, let cr(D) denote the number of crossings in D. The crossing
number of a graph G, denoted by cr(G), is the minimum value of cr(D)’s among all

drawings D of G.

A drawing D of a graph is called 1-planar if each edge in D is crossed at most

once. If a graph has a 1-planar drawing, then it is called 1-planar.
The notion of 1-planarity was introduced in 1965 by Ringel [13], and since then

many properties of 1-planar graphs have been studied (e.g. see the survey paper

[11]). It is known that any 1-planar graph on n vertices has at most 4n�8 edges

[10, 12, 14], and this bound is tight. A 1-planar graph with n vertices and 4n�8

edges is called optimal. A 1-planar graph G is maximal if adding any edge to

G yields a graph which is not 1-planar or not simple. A 1-planar drawing D is

maximal if no further edge can be added to D without violating 1-planarity or

simplicity. Clearly, a graph G is maximal 1-planar if and only if every 1-planar

drawing of G is maximal. In this article, we always assume that a 1-planar graph has

its order n at least 3.

Czap and Hudák [7] showed that for any 1-planar graph G on n vertices,

crðDÞ� n� 2 holds for each 1-planar drawing D of G, and thus crðGÞ� n� 2. In

this article, we will improve this result.

Theorem 1 Let G be a maximal 1-planar graph with n vertices. Then,

crðGÞ� n� 2 � 2k1 þ 2k2 þ k3ð Þ=6;

where, for i ¼ 1; 2, ki denotes the number of 2i-degree vertices of G, and k3 is the

number of odd vertices w in G such that either dGðwÞ� 9 or G�w is 2-connected.

For a maximal 1-planar graph G, if G is 3-connected, then cr(G) can be expressed

in terms of its vertex number and edge number.

Theorem 2 Let G be a maximal 1-planar graph with n vertices and m edges. If G is
3-connected, then crðGÞ ¼ m� 3nþ 6.

A graph is IC-planar if it has a 1-planar drawing so that each vertex is incident to

at most one crossed edge [1], and NIC-planar if it has a 1-planar drawing so that two

pairs of crossed edges share at most one vertex [16]. A IC-planar graph (resp. NIC-

planar) G is called maximal if adding any edge to G yields a graph which is not IC-

planar (resp. NIC-planar). We also show that the conclusion of Theorem 2 holds for
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every maximal IC-planar graph or maximal NIC-planar graph with at least 5

vertices (see Theorem 3).

For any drawing D, let D� denote the plane graph obtained by turning each

crossing of D into a new vertex. A vertex in D� is called false if it corresponds to

some crossing of D, and is true otherwise. For a 1-planar drawing D on n vertices, in

Sect. 2, we will show that cr(D) is equal to n� 2 � 1
2

P
f ð�ðf Þ � 2Þ, where the sum

runs over all faces f of D� and �ðf Þ is the number of true vertices on the boundary of

face f.
In Sect. 3, we consider the family M of maximal 1-planar drawings D with the

property that redrawing exactly one edge in D does not decrease the number of

crossings. We show that for any D 2 M and a vertex w in D, if dDðwÞ 2 f2; 4g, then

w is incident with at least two C-faces (i.e., faces f with �ðf Þ� 3) of D�; and if

dDðwÞ is odd and either dDðwÞ� 9 or D� w is 2-connected, then w is incident with

at least one C-face of D�. The results in Sects. 2 and 3 will be applied in Sect. 4 to

prove Theorems 1 and 2.

2 On The Plane Graph D·

Let D be a drawing. Clearly, D� is a plane graph. Recall that a vertex in D� is a

false vertex if it is a crossing of two edges in D and a true vertex otherwise. A face

or an edge of D� is called false if it is incident with some false vertex, and is true
otherwise.

A multi 1-planar drawing D is a drawing which may have parallel edges and each

edge in D may have at most one crossing. A face is called a triangle if its size is 3. A

triangulation is a plane graph whose all faces are triangle.

By the definition of multi 1-planar drawings, the following properties hold.

Lemma 1 For any multi 1-planar drawing D of order n and size m, the following
hold:

(i) cr(D) is the number of false vertices in D�;

(ii) each false vertex in D� is of degree 4 and is adjacent to true vertices only;

(iii) D� is of order nþ crðDÞ and size mþ 2crðDÞ; and

(iv) any two true vertices are adjacent in D� if and only if they are adjacent in D
and the edge joining them is a true edge of D�.

Recall that for any face f of D�, �ðf Þ is the number of true vertices on the

boundary of f. By Lemma 1, �ðf Þ� 2.

Proposition 1 Let D be a 1-planar drawing with at least 3 vertices. Then, D can be
extended to a multi 1-planar drawing T by adding some non-crossed edges such
that T � is a triangulation and for each face f of D�, T � has �ðf Þ � 2 true faces
within f, and when �ðf Þ� 3, each true vertex of D� on the boundary of f is incident
with at least one of these true faces of T �.
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Proof The multi 1-planar drawing T is obtained from D by turning each face of D�

bounded by more than three edges into many triangles.

Let f be any face of D� with exactly s vertices on its boundary. As D is simple

and good, s� 3. Assume that t ¼ �ðf Þ and v1; v2; . . .; vt are the true vertices of D�

which are on the boundary of f in the clockwise direction. By Lemma 1, any two

false vertices of D� are not adjacent, implying that t� s=2.

If s ¼ 3, no edge is added within face f. Now assume that s� 4. Then t� 2. Face f
of D� is turned into many triangles by adding some new non-crossed edges as stated

below (see Fig. 1):

(i) for i ¼ 1; 2; . . .; t, if viviþ1 is not an edge of D�, add a new edge within f
joining vi and viþ1, where vtþ1 is v1; and

(ii) for i ¼ 3; . . .; t � 1, add a new edge within f joining v1 and vi.

Observe that, for i ¼ 2; 3; . . .; t � 1, v1viviþ1v1 is the boundary of some face of T �.

Thus, T � has t � 2 true faces (i.e.,triangles) within f, and when t� 3, each vertex in

the set fv1; v2; . . .; vtg is incident with at least one true face of T �.

The result holds. h

The following result was recently obtained by Biedl [4].

Proposition 2 [4] Let D be a multi 1-planar drawing with n vertices. If D� is a
triangulation, then crðDÞ ¼ n� 2 � s=2, where s is the number of true faces of D�.

By applying Propositions 1 and 2, we obtain the following result which will be

applied in the proof of Theorem 1.

Corollary 1 Let D be a 1-planar drawing with n vertices. Then

crðDÞ ¼ n� 2 � 1

2

X

f

�ðf Þ � 2ð Þ;

where the sum runs over all faces f of D�.

Proof By Proposition 1, D can be extended to a multi 1-planar drawing T with

crðT Þ ¼ crðDÞ such that T � is a triangulation with the following number of true

faces:

(I) (II)

v1
v2

v3

v4

v5

v6

v7

v1

v2

Fig. 1 Triangulating a face
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X

f

ð�ðf Þ � 2Þ;

where the sum runs over all faces f of D�. By Proposition 2, the result holds. h

By Corollary 1, for any 1-planar drawing D of order n, if D� has at least one true

face, then crðDÞ� n� 3. This conclusion holds for any straight-line 1-planar

drawing D with n vertices. A straight-line 1-planar drawing is a 1-planar drawing in

which the edges are straight-line segments.

Corollary 2 Every straight-line 1-planar drawing with n vertices has at most n� 3

crossings.

Proof Let D be a maximal straight-line 1-planar drawing such that no non-crossed

straight-line edges can be added to D (otherwise, we add them). Let f denote the

exterior face of D�. As no more non-crossed straight-line edges can be added to D,

the boundary of f is a convex polygon. Since the segments of this convex polygon

correspond to true edges of D�, f is a true face of D�, i.e., �ðf Þ� 3. By Corollary 1,

crðDÞ� n�3. h

Recall that every planar graph with n vertices has at most 3n�6 edges. The

following corollary follows immediately from Corollary 2.

Corollary 3 [8] Every straight-line 1-planar drawing with n vertices has at most
4n� 9 edges.

3 Maximal 1-Planar Drawings

3.1 Basic Properties of Maximal 1-Planar Drawings

In the following are two properties on maximal 1-planar drawings from [3, 6].

Proposition 3 [3, 6] Let D be a maximal 1-planar drawing. For any face f of D�,
any two vertices of D on the boundary of f are adjacent in D.

Proposition 4 [3, 6] Let D be a maximal 1-planar drawing. If u1u2 and v1v2 are a
pair of crossing edges in D, then, the subgraph of D induced by fu1; u2; v1; v2g is the
complete graph K4.

By Proposition 4, any pair of edges e1 and e2 in a maximal 1-planar drawing D
which cross each other is covered by a complete graph K4, which is called a kite of

D corresponding to e1 and e2.

Let M denote the set of maximal 1-planar drawings D such that crðDÞ� crðD0Þ
holds for any 1-planar drawing D0 which is obtained from D by redrawing exactly

one edge of D. More properties on kites in D 2 M are given below.

Lemma 2 Let D 2 M and W be a kite of D. If W corresponds to edges e1 and e2 of
D, then e1 and e2 are the only edges in W which are crossed edges of D.
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Proof Assume that e ¼ uv is a crossed edge in W and e 6¼ e1; e2. Then, one can

redraw a curve e0 to represent e which does not cross with any other edge of D, as

shown in Fig. 2. The resulting drawing is 1-planar and has lower crossing number

than D, contradicting assumption that D 2 M. Hence the result holds. h

For any graph G and any vertex w in G, let EGðwÞ denote the set of edge in

G which are incident with w.

Lemma 3 Let D 2 M and, let W and W 0 be different kites of D. Then

(i) W and W 0 do not contain any common crossed edge of D; and

(ii) for any vertex w in W and any vertex w0 in W 0, jEWðwÞ \ EW 0 ðw0Þj � 1 holds.

Proof (i) Assume that W corresponds to edges wv and u1u2, and W 0 corresponds to

edges w0v0 and u01u
0
2. By Lemma 2, wv and u1u2 are the only crossed edges of D in W

and w0v0 and u01u
0
2 are the only crossed edges of D in W 0.

Assume that c is the false vertex of D� at which wv and u1u2 cross each other,

and c0 is the false vertex of D� at which w0v0 and u01u
0
2 cross each other.

Claim 1 fwv; u1u2g \ fw0v0; u01u
0
2g ¼ ;.

Suppose that wv and w0v0 are the same edge of D. Then c and c0 are the same
vertex, implying that u1u2 and u01u

0
2 are the same edge of D. Thus W and W 0 must be

the same kite, a contradiction.

So Claim 1 holds and (i) also holds.

(ii) We will prove it by showing the following claims.

Claim 2 wv 62 EW 0 ðw0Þ and w0v0 62 EWðwÞ.
As wv is a crossed edge of D and both w0u01 and w0u02 are non-crossed edges of D,

fwvg \ EW 0 ðw0Þ � fwvg \ fw0v0g. But, by Claim 1, fwvg \ fw0v0g ¼ ;. The same
thing happens for w0v0. Thus, Claim 2 holds.

Claim 3 fwu1;wu2g 6¼ fw0u01;w
0u02g.

Suppose that fwu1;wu2g ¼ fw0u01;w
0u02g. Then u1u2 and u01u

0
2 are the same edge

in D, contradicting Claim 1.
Thus, Claim 3 holds. By Claims 2 and 3, (ii) holds. h

v

· · · · · ·

· · ·
u

· · ·

e1
e2

e

v

· · · · · ·

· · ·
u

· · ·

e1
e2

e

Fig. 2 Redrawing an edge joining u and v without a crossing
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3.2 C-Faces

Recall that for a 1-planar drawing D, a face f of D� is a C-face if �ðf Þ� 3.

Obviously, each true face of D� is a C-face. Some basic properties on C-faces

follow from the definition.

Lemma 4 Let D be a 1-planar drawing. For any face f of D�, if one of the
following conditions hold, then f is a C-face of D�:

(i) the boundary of f contains more than 4 vertices of D�;

(ii) the boundary of f contains 4 vertices of D� and two consecutive vertices on

this boundary are true vertices of D�; or

(iii) the boundary of f contains at least two true edges.

Proof (i) and (ii) follow from the fact that any two false vertices of D� are not

adjacent, while (iii) follows from the definition. h

A drawing of a graph implies a rotation system. The rotation at a vertex is the

clockwise order of its incident edges. In a drawing, two edges incident with some

vertex w are called to be consecutive if they appear in sequence in the cyclic

ordering at w. In the following, we study vertices w in D 2 M which are incident

with C-faces of D�.

Lemma 5 Let D 2 M and w be a vertex in D. Then dDðwÞ� 2 and

(i) if dDðwÞ ¼ 2, then w is incident with two C-faces of D�; and

(ii) if 3� dDðwÞ� 4, then w is incident with at least ðdDðwÞ � 2Þ C-faces of D�.

Proof It is known that every maximal 1-planar drawing is 2-connected [9, 15]. This

implies that dDðwÞ� 2.

(i) Assume that dDðwÞ ¼ 2 and w is incident with edges e1 and e2. If both e1 and

e2 are true edges of D�, by Lemma 4 (iii), w is incident with two C-faces of D�.

Suppose that some edge ei is not a true edge in D�, where 1� i� 2. By

Proposition 4, dDðwÞ� 3, a contradiction. Thus, (i) holds.

(ii) Assume that 3� dDðwÞ� 4.

Claim 1: w is incident with at most one crossed edge of D.

Suppose that e1 and e2 be two crossed edges of D which are incident with w.

Then w is a common vertex in two kites W and W 0 of D. By Lemma 3,

dDðwÞ� dWðwÞ þ dW 0 ðwÞ � 1� 5;

contradicting the condition that dDðwÞ� 4. Thus Claim 1 holds.

As 3� dDðwÞ� 4, Claim 1 implies that w is incident with at least dDðwÞ � 2 pairs

of consecutive true edges of D. By Lemma 4 (iii), w is incident with at least

dDðwÞ � 2 faces which are C-faces of D�.

Hence (ii) holds. h
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Note that an even-degree vertex w in D with dDðwÞ[ 4 may be not incident with

any C-face of D�. For an odd vertex w in D 2 M, we can show that w is incident

with some C-face of D� under certain condition.

Lemma 6 Let D 2 M and w be an odd vertex in D. If either dDðwÞ� 9 or D� w is
2-connected, then w is incident with at least one C-face of D�.

Proof Let w be an odd vertex in D such that dDðwÞ� 9 or D� w is 2-connected.

We may assume that the conclusion holds whenever such an odd vertex is of degree

less than dDðwÞ.
Suppose that the conclusion fails for w. By Lemma 5, dDðwÞ� 5. By Lemma 4

(iii), any two consecutive edges at w cannot be both true edges of D�. As dDðwÞ is

odd, w is incident with two consecutive edges wc1 and wc2 of D� which are both

false edges of D�, where c1 and c2 are false vertices of D�. Let a denote the face of

D� whose boundary contains vertices w; c1 and c2, as shown in Fig. 3a. As a is not a

C-face, by Lemma 4 (i), its boundary contains at most 4 vertices. As the boundary

of a has two false vertices c1 and c2, it contains two true vertices of D�, i.e., w and

u as shown in Fig. 3a.

Since D 2 M, by Proposition 4 and Lemma 2, w and u are adjacent in D, and the

edge joining w and u, denoted by e, is a true edge of D�, as shown in Fig. 3a.

For i ¼ 1; 2, let vi be the vertex of D which is adjacent to w and ci be on the edge

viw. Observe that any path in D connecting v1 and v2 contains either w or u,

implying that D� w is not 2-connected. Thus, by the given condition, dDðwÞ� 9

holds.

For i ¼ 1; 2, let Ci denote the cycle formed by edges wu (¼ e), wci and uci. As

D� is a plane graph, each Ci partitions D� into three subsets Vi;0;Vi;1 and Vi;2, where

(i) Vi;0 ¼ fw; u; cig, i.e., the set of vertices on Ci;

(ii) Vi;1 is the set of vertices of D which are in the interior regions of Ci; and

(iii) Vi;2 is the set of vertices of D which are in the exterior regions of Ci.

Observe that either c1 2 V2;1 or c2 2 V1;1. Without loss of generality, assume that

c1 2 V2;1.

Let D1 be the 1-planar drawing obtained from D by removing all vertices of D in

V1;2, and D2 be the 1-planar drawing obtained from D by removing all vertices of D

u

e α

v1 v2

w

c1 c2

......

... ...
u

e

v1

w

c1

...

... u

e

v2

w

c2

...

...

)b()a( D1 (c) D2

Fig. 3 1-planar drawing D
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in V2;1, as shown in Fig. 3b and c. It can be verified that both D1 and D2 belongs to

M.

Note that dD1
ðwÞ þ dD2

ðwÞ ¼ dDðwÞ þ 1 and dDi
ðwÞ\dDðwÞ for both i ¼ 1; 2.

By the assumption on the minimality of dDðwÞ, if dDi
ðwÞ is odd for some i, then w is

incident with some C-face of D�
i . Such a C-face of D�

i is also a C-face of D�, a

contradiction. Thus, both dD1
ðwÞ and dD2

ðwÞ are even.

Without loss of generality, assume that dD1
ðwÞ� dD2

ðwÞ. Thus

dD1
ðwÞ� ðdDðwÞ þ 1Þ=2� 5. As dD1

ðwÞ is even, we have dD1
ðwÞ 2 f2; 4g. By

Lemma 5, w is incident with some C-face f of D�
1 . Clearly, f is also a C-face of D�.

Thus the result holds. h

4 The Main Results

4.1 Proving Theorem 1

We can now apply Lemmas 5 and 6 to prove Theorem 1.

Proof of Theorem 1 Let D be a 1-planar drawing of G and D 2 M. By Lemma 5,

each 2-degree or 4-degree vertex in D is incident with at least two C-faces of D�.

Let V� denote the set of odd vertices v in D such that either dGðvÞ� 9 or G� v is 2-

connected. By Lemma 6, each vertex v in V� is incident with at least one C-face of

D�.

We will complete the proof by applying Corollary 1.

Let FD denote the set of faces in D�, and for any vertex v in D, let FDðvÞ denote

the set of faces in D� which are incident with v. Recall that for each f of D�, �ðf Þ is

the number of true vertices on the boundary of f. Then

X

f2FD

ð�ðf Þ � 2Þ ¼
X

v2VðDÞ

X

f2FDðvÞ

�ðf Þ � 2

�ðf Þ

� �

�
X

v 2 VðDÞ
dGðvÞ 2 f2; 4g

X

f2FDðvÞ

�ðf Þ � 2

�ðf Þ

� �

þ
X

v2V�

X

f2FDðvÞ

�ðf Þ � 2

�ðf Þ

� �

� 2ðk1 þ k2Þ=3 þ k3=3;

ð1Þ

where the last expression follows from the fact that
�ðf Þ�2

�ðf Þ � 1=3 holds for each C-

face f.
Thus, by (1) and Corollary 1, crðGÞ� crðDÞ� n� 2 � ð2k1 þ 2k2 þ k3Þ=6. h

Remark The maximal 1-planar graph depicted in Fig. 4 is 7-regular and of order

24. By Lemma 8 in Sect. 4.2, we know that it has crossing number 18. This implies

that the upper bound in Theorem 1 is tight.

From [4], we know that any 1-planar graph with minimum degree 7 has at least

24 vertices of degree 7. It is known that 1-planar graphs have minimum degree at

most 7 and every 1-planar graph can be extended to a maximal 1-planar graph by
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adding some edges without reducing the crossing number. Thus, the following

conclusion follows immediately from Theorem 1.

Corollary 4 Any 1-planar graph with n vertices and minimum degree 7 has crossing
number at most n�6.

It is well-known that any graph with n vertices and m edges has crossing number

at least m� 3nþ 6. Hence, any optimal 1-planar graph has crossing number at least

n�2. Thus, the following result holds by Theorem 1.

Corollary 5 Any optimal 1-planar graph has minimum degree 6.

4.2 Proving Theorem 2

We need to establish two results for proving Theorem 2.

Lemma 7 Let D 2 M with at least 5 vertices. If D is 3-connected, then D� is a
triangulation.

Proof Suppose that D� is not a triangulation. Then D� has a face f bounded by a

cycle C with at least 4 vertices. As any two false vertices in D� are not adjacent, D�

has two true vertices u and v in C which are not adjacent in C. As D 2 M, by

Proposition 3, u and v must be adjacent in D.

Let e denote the edge in D joining u and v. We claim that e is non-crossed in

D. Otherwise, we can redraw a curve within face f to represent edge e and the new

1-planar drawing has less crossings than D, a contradiction.

Note that C can be divided into two paths, denoted by P1 and P2, with end u and

v. As u and v are not adjacent in C, each Pi contains an internal vertex zi, as shown

in Fig. 5.

As D� is a plane graph, it can be verified that any path in D� connecting z1 and z2

must pass through u or v, implying that z1 and z2 are in different components D1 and

D2 of D� � fu; vg. As each false vertex in D� is adjacent to 4 true vertices, both D1

Fig. 4 A graph which shows
that the upper bound in
Theorem 1 is tight
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and D2 contain true vertices. Thus, D� fu; vg is disconnected, contradicting the

given condition.

Hence the result holds. h

Lemma 8 Let G be a graph with n vertices and m edges. Then, there exists a
drawing D of G with each face in D� being a triangle if and only if
crðGÞ ¼ m� 3nþ 6.

Proof (Necessity) Suppose that D is a drawing of G with c crossings and each face

of D� is a triangle. Then, D� has nþ c vertices and mþ 2c edges. Let / be the

number of faces of D�. Then, 3/ ¼ 2ðmþ 2cÞ: By Eular’s formula, we have

nþ c� ðmþ 2cÞ þ 2ðmþ 2cÞ=3 ¼ 2;

which implies that crðGÞ� c ¼ m� 3nþ 6.

As each maximal plane graph on n vertices has exactly 3n� 6 edges,

crðGÞ�m� 3nþ 6 holds. Thus the necessity holds.

(Sufficiency) Assume that crðGÞ ¼ m� 3nþ 6. Then, there is a drawing D of G
with exactly m� 3nþ 6 crossings. So D� has exactly m� 2nþ 6 vertices and

3ðm� 2nþ 4Þ edges, i.e, jEðD�Þj ¼ 3jVðD�Þj � 6. This implies that each face of

D� is a triangle. h

By Lemmas 7 and 8, we can now prove Theorem 2 easily.

Proof of Theorem 2: Let D be a 1-planar drawing of G and D 2 M. As G is 3-

connected, D is also 3-connected. By Lemma 7, D� is a triangulation. Then, by

Lemma 8, crðGÞ ¼ m� 3nþ 6. h

The conclusion of Theorem 2 also holds for IC-planar and NIC-planar graphs.

Bachmaier et al. [2] has showed that a NIC-planar drawing of any maximal NIC-

planar graph with at least 5 vertices is a triangulation. By applying a similar

argument, one can show that an IC-planar drawing of any maximal IC-planar graph

with at least 5 vertices is a triangulation. Thus, by Lemma 8, the following

conclusion holds.

Theorem 3 Let G be a maximal IC-planar (or NIC-planar) graph with n� 5

vertices and m edges. Then, crðGÞ ¼ m� 3nþ 6.

f
e

u

v

z1 z2

P1 P2

Fig. 5 A face in D� bounded by
at least four edges
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5 Unsolved Problems

We wonder if the conclusion of Theorem 1 holds if k3 is changed to be the number

of all odd vertices.

Problem 1 For any maximal 1-planar graph G with n vertices, does

crðGÞ� n� 2 � ð2k1 þ 2k2 þ k3Þ=6, where, for i ¼ 1; 2, ki denotes the number of

2i-degree vertices of G, and k3 is the number of odd vertices in G?
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