
ORIGINAL PAPER

Half-Arc-Transitive Graphs and the Fano Plane

Martin Mačaj1 • Primož Šparl2,3,4

Received: 3 September 2020 / Revised: 9 March 2021 / Accepted: 10 March 2021 /
Published online: 22 March 2021
� The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2021

Abstract
A subgroup G of the automorphism group of a graph C acts half-arc-transitively on
C if the natural actions of G on the vertex-set and edge-set of C are both transitive,

but the natural action of G on the arc-set of C is not transitive. When G ¼ AutðCÞ
the graph C is said to be half-arc-transitive. Given a bipartite cubic graph with a

certain degree of symmetry two covering constructions that provide infinitely many

tetravalent graphs admitting half-arc-transitive groups of automorphisms are

introduced. Symmetry properties of constructed graphs are investigated. In the

second part of the paper the two constructions are applied to the Heawood graph, the

well-known incidence graph of the Fano plane. It is proved that the members of the

infinite family resulting from one of the two constructions are all half-arc-transitive,

and that the infinite family resulting from the second construction contains a

mysterious family of arc-transitive graphs that emerged within the classification of

tightly attached half-arc-transitive graphs of valence 4 back in 1998 and 2008.

Keywords Half-arc-transitive � Fano plane � Heawood graph � Construction

1 Introduction

The theory of half-arc-transitive graphs and graphs admitting half-arc-transitive

group actions (see Sect. 2 for definitions of these and most of the other terms

appearing in Introduction) started its development half a century ago when
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Tutte [25] showed that all such graphs are necessarily of even valence. Although

some papers in the literature deal with half-arc-transitive graphs of all possible

valences (see for instance [20] and the references therein) most of the work has

focused on graphs of the smallest interesting valence, namely 4 (see for

instance [1, 18, 21] and the references therein). The results from [1, 21] indicate

that (cyclic) covers of tetravalent half-arc-transitive graphs and graphs admitting

such group actions need to be thoroughly investigated if we are to make a significant

step forward in understanding the class of tetravalent half-arc-transitive graphs as a

whole. One of the goals of the present paper is to introduce and study two particular

covering constructions arising from cubic bipartite graphs with an appropriate

degree of symmetry. The constructed covers all admit a half-arc-transitive group of

automorphisms.

We believe the two constructions are interesting on their own but there is another

motivation for their study. In the long term program of trying to classify or at least

characterize all tetravalent half-arc-transitive graphs important steps forward were

obtained by investigating the local structure of such graphs via the so-called

alternating cycles and attachment sets. The foundations of this method, which are

based on a rather simple observation that a half-arc-transitive action of a group G on

a graph C gives rise to two paired G-induced orientations of edges of C, were laid

out by Marušič in 1998 [13]. The nicest possibility in this context occurs when two

non-disjoint alternating cycles meet in half of their vertices—such graphs are called

tightly-attached. The tightly-attached tetravalent half-arc-transitive graphs were

classified in papers [13] and [22] from 1998 and 2008, respectively. In the process

of obtaining this classification a very mysterious family of arc-transitive graphs

emerged. Except for the smallest example (of order 21) the mysterious graphs are all

of order divisible by 42 ¼ 6 � 7 but not by 72 and for each positive integer of the

form 42m, where 7 6j m, precisely one member of order 42m from this family exists.

We call these graphs mysterious due to the fact that at that time there did not seem

to be a very natural explanation for their arc-transitivity. The authors of [13, 22]

simply found one explicit ‘‘unexpected’’ automorphism (which does not respect the

‘‘tightly attached structure’’) that ensured arc-transitivity of the graphs in question.

They did not pursue the question of the ‘‘true’’ origin of these extra symmetries nor

the question of how many of these extra symmetries the graphs admit. For the

purposes of the above mentioned classification arc-transitivity of these graphs

sufficed for their elimination from the list of all tightly attached half-arc-transitive

graphs.

It turns out that tightly attached tetravalent half-arc-transitive graphs all admit

transitive metacyclic groups of automorphisms [13, 22] (such graphs are called

weak metacirculants). This is what led Marušič and Šparl to initiate a systematic

study of tetravalent half-arc-transitive weak metacirculants. In [15] they showed

that each such graph belongs to at least one of four (non-disjoint—see [24]) classes

of such graphs, where Class I coincides with the family of all tightly attached

graphs. While Class II was completely classified in [23] and Class III was studied

to some extent in [9], Class IV did not receive much attention thus far and seems to

be the hardest one to tackle. Investigation of this class of graphs was initiated in [2]
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where it was proved that each member of the class belongs to a certain 8-parametric

family of graphs denoted as X IVðm; n; r; t; a; p; b; qÞ (see Sect. 2 for the definition).

Nevertheless, the question of which members of the family are indeed half-arc-

transitive and which are arc-transitive remains largely open. In an ongoing process

of obtaining a better understanding of these graphs and perhaps classifying the half-

arc-transitive ones [10], (another) mysterious family of arc-transitive graphs

emerged. As with the above mentioned family from [13, 22] its members are all

of order divisible by 42. It is thus not so surprising that there is a very large

intersection of the two families. These facts thus call for a thorough investigation of

these mysterious families and raise the question of the origin of arc-transitivity of

their members.

In this paper we prove that, with the exception of the above mentioned graph of

order 21, the members of the mysterious family from [13, 22] all belong to the

above mentioned mysterious family of Class IV graphs and that they are all certain

cyclic covers of the dart graph (see Sect. 2 for the definition) of the Heawood graph,

the well-known incidence graph of the Fano plane. We prove that the full

automorphism group of the Heawood graph naturally lifts to the automorphism

groups of these graphs, which explains why their automorphism groups are rather

large. We also explain the following curiosity. It turns out that the dart graph of the

Heawood graph is isomorphic to the graph X IVð6; 7; 2; 0; 1; 0; 1; 1Þ ffi
X IVð6; 7; 3; 0; 1; 0; 1; 1Þ. However, letting m[ 1 be any integer coprime to 3 and

then choosing q to be the unique integer with 0\q\m and 3q � �1ðmod mÞ, it
turns out that the graph X IVð6m; 7; 2; 0; 1; 0; 6qþ 1; 1Þ is half-arc-transitive while

the graph X IVð6m; 7; 3; 0; 1; 0; 6qþ 1; 1Þ is arc-transitive and belongs to the above

mentioned mysterious family.

It should be mentioned that an interesting connection between the Fano plane and

a natural Z2-quotient graph of X IVð6; 7; 2; 0; 1; 0; 1; 1Þ ffi X IVð6; 7; 3; 0; 1; 0; 1; 1Þ
(via so-called dichotomies) was investigated in [26].

2 Preliminaries

Throughout the paper all graphs are assumed to be finite and simple. For a graph

C ¼ ðV;EÞ and its vertex v 2 V we denote the set of neighbors of v in C by NCðvÞ or
simply N(v) if the graph C is clear from the context. Throughout the paper we will

constantly be working with elements from the ring Zn of residue classes modulo n
and its group of units Z�

n.

2.1 Symmetries of Graphs

We first review some standard terminology pertaining to symmetries of graphs. Let

C ¼ ðV;EÞ be a graph. For a subgroup G�AutðCÞ we say that C is G-vertex-
transitive (G-edge-transitive, respectively) if the natural action of G on V (on E,
respectively) is transitive. For a given integer s� 0 an s-arc of C is a sequence of

vertices of C of length sþ 1 of the form ðv0; v1; . . .; vsÞ with the property that for

each 0� i� s� 1 we have viviþ1 2 E and for each 1� i� s� 1 we have
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vi�1 6¼ viþ1. The graph C is said to be G-s-arc-transitive if the natural action of G on

the set of all s-arcs of C is transitive. Therefore, 0-arc-transitivity corresponds to

vertex-transitivity. Instead of 1-arc-transitive we usually simply write arc-transitive.
In the case that G acts regularly on the set of all s-arcs of C we say that the group G
is s-regular on C. Finally, if C is G-vertex, G-edge, but not G-arc-transitive, we say
that it is G-half-arc-transitive. In all of the above definitions we omit the prefix

AutðCÞ in the case that G ¼ AutðCÞ.
We now make a short review of the concepts concerning alternating cycles and

attachment sets in graphs admitting a half-arc-transitive group of automorphisms

(for details, see [13]). Let C be a tetravalent graph admitting a half-arc-transitive

group G of automorphisms. The action of G on C thus gives rise to two paired

orientations of the edges of C (choose an orientation of one edge and then use the

action of G to define the orientation of each of the remaining edges of C). Fixing one
of these two orientations we get an oriented graph with out-valence and in-valence

both equal to 2. This gives rise to G-alternating cycles of C on which every two

consecutive edges are oppositely oriented. Half of the length of these cycles is

called the G-radius of C and is denoted by radGðCÞ. The intersections of non-

disjoint G-alternating cycles are called G-attachment sets while their size is the G-
attachment number of C (denoted attGðCÞ). In the case that radGðCÞ ¼ attGðCÞ, the
graph C is said to be tightly G-attached. In all of the above terminology the prefix

AutðCÞ is omitted when G ¼ AutðCÞ.
Let C be a graph of order mn. An automorphism a of C is said to be (m, n)-

semiregular if the group hai has m orbits of length n in its natural action on the

vertex-set of C. If a graph C admits a semiregular automorphism q and another

automorphism r, normalizing q, such that the metacyclic group hq; ri is vertex-

transitive, the graph C is said to be a weak metacirculant [15]. A tetravalent weak

metacirculant C admitting a half-arc-transitive group of automorphisms is said to be

of Class IV [15] if it admits a transitive metacyclic group hq; ri such that each

vertex of C has its four neighbors in four different orbits of the subgroup generated

by the semiregular automorphism q. In [2] it was shown that each such graph

belongs to the following 8-parametric family of graphs.

Construction 2.1 Let m� 5 and n� 3 be integers, let 1� p\q\m� p be such that

gcdðp; q;mÞ ¼ 1 and let r; t; a; b 2 Zn be such that rm ¼ 1, tðr � 1Þ ¼ 0 and

ha; b; ti ¼ Zn, that is, gcdða; b; t; nÞ ¼ 1. The graph X IVðm; n; r; t; p; a; q; bÞ is then
the graph with vertex set fuji : i 2 Zm; j 2 Zng with adjacency given by

uji 	
ujþari

iþp ; ujþbri

iþq : 0� i\m� q; j 2 Zn;

ujþari

iþp ; ujþbriþt
iþq : m� q� i\m� p; j 2 Zn;

ujþariþt
iþp ; ujþbriþt

iþq : m� p� i\m; j 2 Zn:

8
>>><

>>>:

ð1Þ

Although the above definition of the X IVðm; n; r; t; p; a; q; bÞ graphs requires

p\q\m� p, we make an agreement to abuse this notation a bit in this paper and

allow 1 ¼ p ¼ q while still keeping the adjacencies from (1).
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2.2 Consistent Cycles

When studying graphs possessing a considerable degree of symmetry the concept of

consistent cycles proves to be very useful. This notion was introduced by Conway in

1971 and has been generalized [3, 16, 17] and successfully applied in the study of

symmetry properties of graphs several times in the last decade. Consistent cycles

also play a key role in one of the two constructions of tetravalent graphs admitting a

half-arc-transitive group of automorphisms presented in this paper. We therefore

recall the basic definitions and the result on the number of orbits of directed

consistent cycles in an arc-transitive graph.

Let C be a graph admitting an arc-transitive group of automorphisms

G�AutðCÞ. In what follows we will be working with directed cycles which we

think of as connected subgraphs of valence 2 together with one of the two possible

orientations. We represent a directed cycle of length s with any one of the s cyclic
rotations of the sequence of its s vertices, given in the order of the prescribed

orientation as they appear on the cycle. Therefore, the directed cycle C~ ¼
ðv0; v1; . . .; vs�1Þ is equal to its ‘‘shift’’ ðv1; v2; . . .; vs�1; v0Þ, but not to its reverse

C~
�1 ¼ ðv0; vs�1; vs�2; . . .; v1Þ. A directed cycle C~ ¼ ðv0; v1; . . .; vs�1Þ of C is said to

be G-consistent if there exists an automorphism a 2 G mapping each vi to viþ1

(where the indices are computed modulo s). In this case a is said to be a shunt of C~.

Of course, the reverse cycle C~
�1

is G-consistent if and only if C~ is G-consistent.
This is why an (undirected) cycle is said to be G-consistent if both of its two

corresponding directed cycles are G-consistent.

Suppose C~ is a G-consistent directed cycle. It may happen that there is an

automorphism in G, mapping C~ to C~
�1
. In such a case we say that the underlying

undirected cycle C of C~ is a G-symmetric consistent cycle. Otherwise it is a G-chiral
consistent cycle. It is well known and easy to see that G induces a natural action on

the set of all G-consistent (directed) cycles of C. The above remarks imply that each

G-orbit of G-symmetric consistent cycles corresponds to one G-orbit of G-
consistent directed cycles, while each G-orbit of G-chiral consistent cycles

corresponds to two G-orbits of G-consistent directed cycles. Moreover, the

following result [17, Corollary 5.2] is now well known.

Proposition 2.2 [17] Let C be a regular k-valent graph admitting an arc-transitive
group of automorphisms G�AutðCÞ and let s and c denote the numbers of G -orbits
of G-symmetric and G-chiral consistent cycles, respectively. Then sþ 2c ¼ k � 1.

In Sect. 3 we will be dealing with a very specific situation where the graph K
under consideration will be cubic and there will exist a 1-regular subgroup

G�AutðKÞ. In this case Proposition 2.2 implies that K has two G-orbits of G-
consistent directed cycles. Moreover, as G is 1-regular, no element of G can map a

cycle to its reverse (as no element of G can fix a vertex and interchange two of its

neighbors—it would have to fix the third neighbor). This implies the following

useful observation (see also [16, Corollary 2.3]).
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Lemma 2.3 Let K be a cubic graph admitting a 1-regular group of automorphisms
G�AutðKÞ. Then K has just one G-orbit of G-consistent cycles which are thus G-
chiral. Moreover, for any 2-arc (u, v, w) of K there is a unique G-consistent

directed cycle C~ passing through it, whose orientation is consistent with (u, v, w). In
addition, the unique G -consistent directed cycle passing through the reverse 2-arc

(w, v, u), whose orientation is consistent with (w, v, u), is the reverse C~
�1

of C~

which is not contained in the same G-orbit of G -consistent directed cycles of K as

C~.

2.3 Graph Covers

The results concerning lifts of automorphisms in (regular) graph covers are among

the most frequently used results in papers dealing with graph symmetries. The main

theory was developed two decades ago (see for instance [11, 12]), and so most

concepts and important results are well known. We therefore omit basic definitions

and only briefly recall the most important concepts. We also recall a necessary and

sufficient condition under which a given automorphism of the base graph lifts along

a regular covering projection that will be important for us. The reader is referred

to [11, 12] for details.

It is well known that every covering projection } : C0 ! C can be described in

terms of a voltage assignment f which is a mapping from the set of the arcs of C to a

given group acting on a set, called the abstract fibre. In the case that this action is

the (left) regular representation of the group under consideration we speak of a

regular voltage assignment. For the sake of completeness we recall how the

corresponding derived graph is constructed in such a situation. For simplicity we

restrict to covers of simple graphs here. Let C ¼ ðV ;EÞ be a graph and let f :
AðCÞ ! R be a voltage assignment, where AðCÞ is the set of arcs of C, R is a group

and fððu; vÞÞ ¼ ðfððv; uÞÞÞ�1
holds for all ðu; vÞ 2 AðCÞ. The derived graph

CovðC;R; fÞ is then the graph with vertex set V 
 R in which for each edge uv of

C and each r 2 R the vertex (u, r) is adjacent to ðv; fððu; vÞÞrÞ. Observe that in this

way the group R has a natural semiregular (right) action on the graph CovðC;R; fÞ
given by multiplication of the second component.

To state the result from [11] giving a necessary and sufficient condition for an

automorphism of the base graph C to lift to the derived graph CovðC;R; fÞ we need
just one more definition. Given a voltage assignment f : AðCÞ ! R and a walk

W ¼ ðv0; v1; . . .; vsÞ we let the voltage fðWÞ of W be the product

fððvs�1; vsÞÞfððvs�2; vs�1ÞÞ � � � fððv0; v1ÞÞ. Moreover, for an automorphism a of C
we let Wa ¼ ðva0; va1; . . .; vas Þ.

Proposition 2.4 [11, Corollary 4.3] Let C be a graph, let R be an abelian group
with additive operation and let f : AðCÞ ! R be a regular voltage assignment. Then
an automorphism a of C lifts to the derived graph CovðC;R; fÞ if and only if for
every closed walk W we have that fðWÞ ¼ 0 if and only if fðWaÞ ¼ 0.

123

992 Graphs and Combinatorics (2021) 37:987–1012



2.4 The Dart Graph Construction

Before we can start describing our two constructions of covers we need to review

one more concept. In [8] Hill and Wilson introduced two constructions that, given a

cubic graph admitting a large enough degree of symmetry, produce a tetravalent

vertex- and edge-transitive graph. In this paper we will be interested in one of their

constructions, namely the dart graph construction (we remark that this construction

can also be viewed as a special kind of the arc graph construction from [7]). We

recall the definition and some basic properties of the construction here, but

see [8, 19] for more details.

Let K be a cubic graph and let AðKÞ be the set of its arcs. The dart graph DðKÞ of
K is then the graph with vertex set AðKÞ in which vertices (u, v) and (x, y) are

adjacent whenever either v ¼ x and u 6¼ y or u ¼ y and v 6¼ x. In other words, we

require (u, v) and (x, y) to form a 2-arc of K. Of course, each automorphism of K
has a natural action on DðKÞ and DðKÞ also admits the canonical involution s,
interchanging each (u, v) with its reverse (v, u), as an automorphism. It was proved

in [8] that the dart graph DðKÞ of a cubic graph K is bipartite if and only if K is

bipartite and that (with the above mentioned natural embedding of AutðKÞ into

AutðDðKÞÞ) we have that AutðDðKÞÞ ¼ AutðKÞ 
 hsi, unless K is the graph of the

cube. Moreover, it was proved that DðKÞ is half-arc-transitive if and only if AutðKÞ
is 1-regular, while DðKÞ is arc-transitive if and only if AutðKÞ is at least 2-arc-

transitive. We also recall the following result from [19].

Proposition 2.5 [19, Theorem 3] Let C be a connected tetravalent graph. Then C is
G-half-arc-transitive for some G�AutðCÞ with radGðCÞ ¼ 3 and attGðCÞ ¼ 2 if and
only if C ¼ DðKÞ for some 2-arc-transitive cubic graph K.

3 The Two Constructions

Throughout this section let K be a connected cubic bipartite and vertex-transitive

graph. We first present a construction of cyclic covers of the dart graph DðKÞ of K
such that all the (natural) automorphisms of DðKÞ lift. As we show in Theorem 3.3,

the corresponding covers admit a half-arc-transitive group of automorphisms

relative to which they are loosely-attached with radius 3, provided that the graph K
is at least 2-arc-transitive.

Construction 3.1 Let m� 1 be an integer and let K be a connected cubic bipartite

and vertex-transitive graph. Let VðKÞ ¼ V0 [ V1 be the bipartition of its vertices.

We say that the vertices from V0 are white while those from V1 are black. Let
C ¼ DðKÞ be the dart graph of K. Orient the edges of C in the natural way, that is,

the edge (u, v)(v, w) of C, where u and w are two distinct neighbors of v in K, is
oriented from (u, v) to (v, w). This edge is said to be white or black depending on

whether v is white or black, respectively. Finally, assign voltage 0 2 Zm to all the

arcs of C, corresponding to the white edges of C, and assign voltage 1 or �1 in Zm

to the arcs corresponding to the black edges of C, depending on whether their

direction is consistent with the above mentioned natural orientation or not,
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respectively. The corresponding derived graph of C with respect to this voltage

assignment in Zm is denoted by CbDðK;mÞ, where the symbol D indicates that we are

making covers of DðKÞ and b indicates that we require K to be bipartite.

We first show that the graph CbDðK;mÞ from the above construction is well

defined.

Lemma 3.2 Use the assumptions and notation from Construction 3.1. Then, up to

isomorphism, the graph CbDðK;mÞ does not depend on the choice of which part of the
bipartition of VðKÞ is considered as the set of white vertices and which as the set of
black vertices.

Proof Since the graph K is assumed to be vertex-transitive, there exists an

automorphism a of K exchanging the sets V0 and V1, and so exchanging the roles of

V0 and V1 in Construction 3.1 results in an isomorphic graph. h

In Fig. 1 the dart graph of the complete bipartite graph K3;3 together with the

indication of which arcs receive voltage 1 (the corresponding arcs have arrows) is

depicted. The reader will observe that, since K is bipartite, its dart graph DðKÞ has
white 6-cycles (which consist of 6 white edges) corresponding to the white vertices

of K, and black 6-cycles corresponding to the black vertices of K. This simple

observation can be of help when one considers the automorphism group of DðKÞ
and of CbDðK;mÞ. We now determine some properties of the covers CbDðK;mÞ.

Theorem 3.3 Let K be a connected cubic bipartite and vertex-transitive graph, let

m[ 1 be an integer and let Cm ¼ CbDðK;mÞ from Construction 3.1. Then Cm is a
connected bipartite tetravalent graph. Moreover, the natural subgroup AutðKÞ 

hsi of AutðDðKÞÞ, where s is the canonical involution interchanging each vertex

Fig. 1 The graph DðK3;3Þ with
the arcs carrying voltage 1
indicated by arrows
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(u, v) of DðKÞ with (v, u), lifts to AutðCmÞ. In particular, if G�AutðKÞ is s-arc-
regular for some s� 2, then Cm is an arc-transitive graph admitting a half-arc-

transitive group of automorphisms with vertex stabilizers of order 2s�1, relative to
which the radius is 3 and the attachment number is 1.

Proof Throughout the proof we adopt the notation and terminology from

Construction 3.1. Since K is bipartite, so is DðKÞ (simply call the vertex (u, v)
white or black depending on whether u is white or black, respectively), and so Cm is

also bipartite. We proceed by proving a series of claims.

Claim 1 Cm is connected.

Connectedness of K ensures that DðKÞ is connected, and so it suffices to prove

that for a vertex (u, v) of DðKÞ there is a closed walk at (u, v) in DðKÞ with voltage

1. Since K is cubic NKðvÞ n fug ¼ fx1; x2g for some x1 and x2, and similarly

NKðuÞ n fvg ¼ fy1; y2g for some y1 and y2. The closed walk

ððu; vÞ; ðv; x1Þ; ðx2; vÞ; ðv; uÞ; ðu; y1Þ; ðy2; uÞ; ðu; vÞÞ consists of three consecutive

edges of one color and then three consecutive edges of the other color. Regardless

of whether u is white or black the first black edge on this walk is traversed in the

direction that carries voltage 1, and so the voltage of this walk is 1� 1þ 1 ¼ 1,

completing the proof of Claim 1.

To analyze the automorphisms of DðKÞ that lift to AutðCmÞ we first introduce the
following additional notation, which is based on the distinction of white and black

edges of DðKÞ from Construction 3.1. For each walk W in DðKÞ let the white weight
f0ðWÞ of W be the number of white edges of W traversed in the direction of their

natural orientation in DðKÞ, minus the number of white edges ofW traversed against

their natural orientation in DðKÞ. The black weight f1ðWÞ of W is defined

analogously.

Claim 2 For each walk W in DðKÞ we have that

jf0ðWÞ � f1ðWÞj ¼
0 : jW jeven
1 : jW jodd:

�

We prove the claim by induction on the length of W. For trivial walks and walks of

length 1 the claim clearly holds. Suppose now that W is a walk of length 2 in DðKÞ.
Observe that each vertex of DðKÞ is incident to two white and two black edges and

that with respect to the natural orientation of the edges of DðKÞ the white and black

6-cycles are alternating. It thus follows that in the case that the two edges of W are

of the same color, f0ðWÞ ¼ f1ðWÞ ¼ 0 holds. If however the two edges of W are of

different colors, then onW they are either both traversed with the natural orientation

or both against it. Since one is white and the other is black it follows that

f0ðWÞ ¼ f1ðWÞ, and so our claim holds for all walks of length at most 2. Using

induction on the length of W it now easily follows that the claim holds for all walks.

Namely, let W be a walk of length d� 3. Split the walk W into walks W1 and W2,

where W2 consists of the last two edges of W. Since f0ðWÞ ¼ f0ðW1Þ þ f0ðW2Þ and
f1ðWÞ ¼ f1ðW1Þ þ f1ðW2Þ, the fact that f0ðW2Þ ¼ f1ðW2Þ implies that

jf0ðWÞ � f1ðWÞj ¼ jf0ðW1Þ � f1ðW1Þj, and so we can apply the induction hypoth-

esis. This proves Claim 2.
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Claim 3 For each c 2 AutðKÞ the corresponding automorphism of DðKÞ lifts to
AutðCmÞ.

Let c 2 AutðKÞ be an automorphism of K. Abusing the notation a bit we let the

natural action of c on DðKÞ again be denoted by c. Proposition 2.4 implies that c
lifts to AutðCmÞ if and only if the set of all closed walks in DðKÞ with voltage 0 is

preserved by c. Observe that fðWÞ ¼ f1ðWÞ for any walk W in DðKÞ. Since DðKÞ is
bipartite, any closed walk W in DðKÞ is of even length, and so Claim 2 shows that

fðWÞ ¼ 0 if and only if f0ðWÞ ¼ 0. Now, c preserves the natural orientation of the

edges of DðKÞ and it either fixes setwise the set of all white edges of DðKÞ or

interchanges it with the set of all black edges of DðKÞ. It thus follows that fðWÞ ¼ 0

if and only if fðWcÞ ¼ 0, proving that c lifts to AutðCmÞ, as claimed.

Claim 4 The natural subgroup AutðKÞ 
 hsi of AutðDðKÞÞ lifts to AutðCmÞ.
In view of Claim 3 it suffices to show that the canonical involution s lifts to

AutðCmÞ. But as s fixes setwise the set of white edges and maps each (black) arc

with voltage 1 to a (black) arc with voltage �1 and vice versa, fðWsÞ ¼ �fðWÞ
holds for each walk W of DðKÞ. It follows that the set of all closed walks with

voltage 0 is preserved by s, implying that s lifts to AutðCmÞ.
To prove the last part of the theorem let G�AutðKÞ be s-arc-regular on K for

some s� 2. By [19, Proposition 5] the natural (faithful) action of G on DðKÞ is half-
arc-transitive with the corresponding radius 3 and attachment number 2 (the cor-

responding alternating cycles are the white and black 6-cycles). Moreover, the

group AutðKÞ 
 hsi acts arc-transitively on DðKÞ. Observe that an s-arc of K cor-

responds to an ðs� 1Þ-arc of DðKÞ (having the direction which is consistent with the
natural orientation of DðKÞ). The fact that vertex-stabilizers for the action of G on K
are of order 3 � 2s�1 thus implies that the vertex-stabilizers of the action of G on

DðKÞ are of order 2s�1. Since we have already proved that the entire group

G�AutðDðKÞÞ lifts to a subgroup ~G�AutðCmÞ, it is now clear that the action of ~G

on AutðCmÞ is half-arc-transitive with vertex-stabilizers of order 2s�1. Moreover,

since the G-alternating cycles of DðKÞ are precisely the white and black 6-cycles of

DðKÞ which all receive voltage 0, the ~G-radius of Cm is 3. Finally, let u; v; x1; x2; y1
and y2 be as at the beginning of this proof, where we assume that v is black. Then

the intersection of the G-alternating cycles of DðKÞ corresponding to u and v is

fðu; vÞ; ðv; uÞg. But since the voltage of the walk ððu; vÞ; ðv; x1Þ; ðx2; vÞ; ðv; uÞÞ is 1,
while on the other hand the voltage of the walk ððu; vÞ; ðy1; uÞ; ðu; y2Þ; ðv; uÞÞ is 0,
the intersection of the lifts of these two G-alternating cycles is trivial (recall that

m[ 1). h

We now describe another construction of cyclic covers of the dart graph DðKÞ of
a cubic bipartite and vertex-transitive graph K where in this case we assume in

addition that AutðKÞ contains a 1-regular group.

Construction 3.4 Let m� 1 be an integer and let K be a connected cubic bipartite

graph admitting a 1-regular group of automorphisms G�AutðKÞ. Let VðKÞ ¼
V0 [ V1 be the bipartition of VðKÞ. We call the vertices from V0 white and the ones

from V1 black. Choose one of the two paired orbits of G-consistent directed cycles

of K and denote it byO. For each arc ((u, v), (v, w)) of C ¼ DðKÞ assign the voltage
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from Zm to it as follows. If the unique G-consistent directed cycle of K containing

the 2-arc (u, v, w) is not contained in O, assign voltage 0 to ((u, v), (v, w)).
Otherwise, assign voltage 1 or �1 to ((u, v), (v, w)) according to whether v is white
or black, respectively. The arc ((v, w), (u, v)) of course receives voltage �1, 1 or 0,

according to whether ((u, v), (v, w)) receives 1, �1 or 0, respectively. The

corresponding derived graph of C with respect to this voltage assignment in Zm is

denoted by Cb;1D ðK;G;mÞ, where D indicates that we are making covers of the dart

graph of K, and the pair b, 1 indicates that we require K to be bipartite and G to be

1-regular on K.

In Fig. 2 the voltage assignment of the dart graph of K3;3 is depicted, where we

have chosen the 1-regular group hð1 3 5Þ; ð0 3Þð1 4Þð2 5Þi and the corresponding

orbit of consistent directed cycles consisting of the 6-cycles

(0, 1, 2, 3, 4, 5), (0, 3, 2, 5, 4, 1) and (0, 5, 2, 1, 4, 3). The arcs receiving voltage

1 have arrows (while those receiving voltage 0 have no arrows).

As with the first construction, we first show that Cb;1D ðK;G;mÞ does not depend on

the choice of which part of the bipartition of VðKÞ is considered as the set of white

vertices, nor on the choice of the orbit O of G-consistent cycles of K.

Lemma 3.5 Use the assumptions and notation from Construction 3.4. Then, up to

isomorphism, the graph Cb;1D ðK;G;mÞ does not depend on the choice of which part
of the bipartition of VðKÞ is considered as the set of white vertices and which as the
set of black vertices, nor on the choice of the orbit of G-consistent cycles of K.

Proof To see that the choice of which vertices are called white and which black is

not important, observe that mapping each vertex ((u, v), i) to ððu; vÞ;�iÞ (recall that
i 2 Zm) we obtain an isomorphism of graphs where we keep the chosen orbit O
while exchanging the roles of white and black vertices. To see that the graph

Cb;1D ðK;G;mÞ also does not depend on the choice of O, let a 2 G be any

automorphism of K interchanging the sets of white and black vertices of K. By

Fig. 2 A voltage assignment on
DðK3;3Þ corresponding to

Construction 3.4
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Lemma 2.3 there exists a G-consistent directed cycle C~ 2 O through a given 2-arc

(u, v, w) of K if and only if there does not exist a G-consistent directed cycle from

O through the 2-arc (w, v, u). Denote by Cm the graph obtained from Construc-

tion 3.4 with respect to O and by C0
m the one obtained with respect to the other orbit

O0 of G-consistent directed cycles of K (the choice of which vertices of K are called

white is the same in both cases). Consider now the mapping from Cm to C0
m, given

by the rule:

ððu; vÞ; iÞ7!
ððua; vaÞ; iÞ : u 2 V0

ððua; vaÞ; iþ 1Þ : u 2 V1:

�

It is clear that this mapping is bijective. To see that it also preserves adjacency, let

ðu; vÞ 2 VðDðKÞÞ and i 2 Zm. Let w1;w2 be the two neighbors of v in K, different
from u. With no loss of generality assume there is a G-consistent directed cycle

C~ 2 O through ðu; v;w1Þ (which implies there is no directed cycle from O through

ðu; v;w2Þ, but there is one from O0). We consider the case when u 2 V0 and leave

the similar case of u 2 V1 to the reader. Since u 2 V0 (and thus v 2 V1) and there is a

cycle from O through ðu; v;w1Þ, we have that ððu; vÞ; iÞ	 ððv;w1Þ; i� 1Þ;
ððv;w2Þ; iÞ. As u 2 V0, the vertex ((u, v), i) is mapped to ððua; vaÞ; iÞ, while

ððv;w1Þ; i� 1Þ and ððv;w2Þ; iÞ are mapped to ððva;wa
1Þ; iÞ and ððva;wa

2Þ; iþ 1Þ,
respectively. Since there is a directed cycle from O through ðua; va;wa

1Þ, there is no
directed cycle from O0 through ðua; va;wa

1Þ, but there is one through ðua; va;wa
2Þ.

Thus, as va 2 V0 (recall that a interchanges all white vertices with black ones), the

above corresponding edges of Cm are mapped to edges of C0
m. h

Note that, since the graph Cb;1D ðK;G;mÞ is a covering graph of DðKÞ, we can

again speak of white and black 6-cycles of DðKÞ. However, this time every other

edge of each of these 6-cycles has trivial voltage and the total voltage of a

corresponding directed 6-cycle is 3 (or �3, depending on the direction of the

traversal of the 6-cycle). This fact can be useful in the investigation of

automorphisms of Cb;1D ðK;G;mÞ and in fact proves the first claim of the following

theorem.

Theorem 3.6 Let K be a connected cubic bipartite graph admitting a 1-regular

group G�AutðKÞ, let m� 1 be an integer coprime to 3, and let Cm ¼ Cb;1D ðK;G;mÞ
from Construction 3.4. Then Cm is a connected bipartite tetravalent graph.
Moreover, the natural subgroup G
 hsi of AutðDðKÞÞ, where s is the canonical
involution interchanging each vertex (u, v) of DðKÞ with (v, u), lifts to AutðCmÞ and
acts half-arc-transitively on Cm. Moreover, if H is a subgroup of AutðKÞ with GflH
such that the subgroup of AutðDðKÞÞ corresponding to H lifts to AutðCmÞ, then
½H : G� ¼ 2. In other words, H is 2-regular on K. Conversely, if K�AutðKÞ is such
that G�K with ½K : G� ¼ 2, then the subgroup of AutðDðKÞÞ corresponding to K
lifts to AutðCmÞ and Cm is arc-transitive.

Proof That Cm is a tetravalent bipartite graph follows from the fact that DðKÞ is

tetravalent and bipartite, while the fact that Cm is connected was implicitly

123

998 Graphs and Combinatorics (2021) 37:987–1012



established in the paragraph preceding the statement of this proposition (recall that

DðKÞ is connected and that m is coprime to 3). We proceed by proving a series of

claims.

Claim 1 For each c 2 G the corresponding automorphism of DðKÞ lifts to

AutðCmÞ.
Let c 2 G and, as in the proof of Theorem 3.3, let the natural action of c on DðKÞ

again be denoted by c. Proposition 2.4 implies that it suffices to verify that c
preserves the set of closed walks of DðKÞ with trivial voltage. Since the set O from

Construction 3.4 is a G-orbit (of G-consistent directed cycles) it is preserved by c.
Therefore, if c (viewed as an automorphism of K) preserves the set V0 of white

vertices of K, it maps each arc of DðKÞ to an arc with the same voltage, and so

fðWcÞ ¼ fðWÞ for each walk W in DðKÞ. If however c interchanges the sets V0 and

V1 of K, it maps each arc of DðKÞ to an arc with the opposite voltage, and so

fðWcÞ ¼ �fðWÞ for each walk W in DðKÞ. In any case, c preserves the set of all

closed walks with trivial voltage and thus lifts to AutðCmÞ.
Claim 2 The canonical involution s lifts to AutðCmÞ.
It clearly suffices to prove that fðWÞ ¼ fðWsÞ for any walk W of length 2 (recall

that DðKÞ is bipartite, implying that all closed walks are of even length). Now,

observe that s interchanges the set of arcs of DðKÞ with trivial voltage with the set

of arcs of DðKÞ with nontrivial voltage. Moreover, by construction any walk of

length 2, both of whose corresponding arcs have a nontrivial voltage, has total

voltage 0. To prove the above claim regarding the walks of length 2 it thus suffices

to consider walks W of length 2 with fðWÞ 2 f�1g. There are two essentially

different types of such walks, namely the ones for which the two edges belong to a

single 6-cycle corresponding to a vertex of K, and the ones where the two edges

belong to different 6-cycles corresponding to vertices of K. The walks of the first

type are easy to deal with as s acts as a 3-step rotation on each of the 6-cycles of

DðKÞ corresponding to vertices of K, and so we can simply use the remark from the

paragraph preceding the statement of Theorem 3.6. As for the walks of the second

kind we consider one such possibility and leave the others to the reader. Suppose

W ¼ ððu; vÞ; ðv;wÞ; ðw; xÞÞ with fððu; vÞ; ðv;wÞÞ ¼ 1 and fððv;wÞ; ðw; xÞÞ ¼ 0. By

definition v 2 V0, there is a directed cycle from O through (u, v, w) and there is no

directed cycle from O through (v, w, x). Since this implies there is no directed cycle

from O through (w, v, u) while there is one through (x, w, v), it thus follows that

fððv; uÞ; ðw; vÞÞ ¼ 0 and fððx;wÞ; ðw; vÞÞ ¼ �1 (note that w 2 V1). Consequently,

fððw; vÞ; ðx;wÞÞ ¼ 1, and so fðWsÞ ¼ 1 ¼ fðWÞ. As said, we leave the other

possibilities for walks W of length 2 with fðWÞ 2 f�1g of the second kind to the

reader. The automorphism s thus preserves the voltage of any closed walk, and thus

lifts to AutðCmÞ, as claimed.

Claims 1 and 2 thus ensure that the natural subgroup G
 hsi of AutðDðKÞÞ lifts
to AutðCmÞ. Clearly, the action of this lift on Cm is half-arc-transitive. To prove the

last part of the theorem let H be a subgroup of AutðKÞ containing G such that the

corresponding subgroup of AutðDðKÞÞ lifts to AutðCmÞ.
Claim 3 The action of H on K is at most 2-arc-transitive.

By way of contradiction suppose H acts 3-arc-transitively on K and let v 2 V0 be

a white vertex of K, let NðvÞ ¼ fu;w; xg and let NðwÞ n fvg ¼ fy1; y2g. Since K is
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bipartite the vertices u; v;w; x; y1; y2 are pairwise distinct. With no loss of generality

assume that each of the 2-arcs (u, v, w) and ðv;w; y1Þ lies on a directed cycle from

O. Since H acts 3-arc-transitively on K, there is an automorphism g 2 H fixing

pointwise each of u, v and w (and thus also x) but interchanging y1 with y2. In the

natural action of g on DðKÞ the 6-cycle ððw; vÞ; ðv; xÞ; ðu; vÞ; ðv;wÞ; ðw; y1Þ; ðy2;wÞÞ,
which has voltage 0, is thus mapped to the 6-cycle ððw; vÞ; ðv; xÞ; ðu; vÞ; ðv;wÞ;
ðw; y2Þ; ðy1;wÞÞ, which has voltage 3. Since m 6¼ 3, the automorphism g of DðKÞ
thus maps a closed walk with trivial voltage to a closed walk with a nontrivial

voltage, which contradicts Proposition 2.4. This shows that the group H indeed acts

at most 2-arc-transitively on K, and consequently ½H : G� � 2.

Finally, suppose that there exists a subgroup K of AutðKÞ with G�K and

½K : G� ¼ 2. Then K acts regularly on the set of 2-arcs of K and G is a normal

subgroup of K. Denote the two G-orbits of G-consistent directed cycles of K by O
and O0 and recall that the reverse of each directed cycle from O is in O0 and vice

versa.

Claim 4 O [O0 is a single K-orbit of K-consistent directed cycles of K.
Since K acts regularly on the set of 2-arcs of K and ½K : G� ¼ 2, the group G has

two orbits on the set of 2-arcs of K, say A and A0, and each b 2 K n G interchanges

A and A0. Observe that, as G is 1-regular, for any 2-arc ðx; y; zÞ 2 A, letting w be the

unique neighbor of y, different from x and z, the 2-arcs (z, y, x), (x, y, w), (w, y, z)

all belong to A0. Consider now a G-consistent directed cycle, say

C~ ¼ ðv0; v1; . . .; v‘�1Þ. Since C~ is G-consistent, there is a shunt a 2 G, mapping

each vi to viþ1, where indices are computed modulo ‘. It thus follows that the 2-arcs
ðvi; viþ1; viþ2Þ, i 2 Z‘, are all in the same G-orbit. With no loss of generality assume

they are in A. Since K acts 2-arc-transitively on K there exists b 2 K fixing v0 and

interchanging v1 and v‘�1. As ðv1; v0; v‘�1Þ 2 A0, b interchanges A and A0, and so

the argument from the first part of this paragraph shows that b maps C~ to its reverse

C~
�1
. It now follows that b interchanges O and O0, which finally proves Claim 4.

To see that K lifts to AutðCmÞ let b 2 K be such that it preserves the set of white

vertices of K but interchanges the two G-orbits of G-consistent directed cycles of K
(and thus also the two G-orbits of 2-arcs of K). It is not difficult to verify that then

bs preserves the set of arcs with trivial voltage and interchanges the set of arcs with

voltage 1 with the set of arcs with voltage �1. Consequently, bs preserves the set of
closed walks with trivial voltage. Therefore, b and thus also all of K lifts to

AutðCmÞ. Since K acts 2-arc-transitively on K, it is clear that K 
 hsi acts arc-

transitively on DðKÞ, and so the lift of K 
 hsi to AutðCmÞ also acts arc-transitively

on Cm. h

The above theorem gives a nice tool enabling a search for new half-arc-transitive

tetravalent graphs. Namely, if we take any connected bipartite cubic graph K
admitting a 1-regular group G�AutðKÞ which is not contained in some 2-regular

subgroup of AutðKÞ, then by Theorem 3.6 the graph Cb;1D ðK;G;mÞ, where m is

coprime to 3, is a good candidate for a tetravalent half-arc-transitive graph (the only

thing that could prevent it from being half-arc-transitive are potential ‘‘unexpected

automorphisms’’ that do not come from AutðDðKÞÞ). One may thus use the results
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of [5], where the 17 types of cubic arc-transitive graphs were characterized, to make

the search for potential good candidates for K easier. The following straightforward

observation may also be of use (in what follows we say that a subgroup G of a group

K is self-normalizing in K if G equals its normalizer in K).

Lemma 3.7 Let K be a cubic graph admitting a 1-regular group G�AutðKÞ. Then
G is not contained in a 2-regular subgroup of AutðKÞ if and only if G is self-
normalizing in AutðKÞ.

Proof If G is a subgroup of some 2-regular group K, then of course ½K : G� ¼ 2,

and so G is not self-normalizing in AutðKÞ. Conversely, suppose G is a proper

subgroup of its normalizer K in AutðKÞ. Then K acts transitively on the set of all 2-

arcs of K and since G is normal in K, the two G-orbits on 2-arcs of K are blocks of

imprimitivity for the action of K on this set. If K was 3-arc-transitive then one could

fix a given 2-arc (x, y, z) (and thus fix setwise the two G-orbits on 2-arcs) while

interchanging the two neighbors (say w1 and w2) of z, different from y. As ðy; z;w1Þ
and ðy; z;w2Þ are in different G-orbits, this is impossible, showing that ½K : G� ¼ 2,

so that G is contained in some 2-regular subgroup of AutðKÞ. h

Determining whether the obtained covering graph Cb;1D ðK;G;mÞ, where G is a

self-normalizing 1-regular subgroup of AutðKÞ, admits any ‘‘unexpected’’ auto-

morphisms which do not come from DðKÞ, may of course in general be a difficult

question. Nevertheless, it seems reasonable to expect that this construction will most

often result in a half-arc-transitive graph. Some evidence that this might indeed be

the case can be obtained by simply taking the graphs from the list of all cubic arc-

transitive graphs up to order 2048 constructed by Conder [4], filter out the bipartite

ones of the appropriate types and then construct all corresponding covers as in

Construction 3.4 for small values of m and check whether they are half-arc-

transitive or not. Using a computer, all suitable cubic arc-transitive graphs up to

order 80 (in the notation from [4] they are C14.1, C26.1, C38.1, C42.1, C56.1,

C62.1, C74.1 and C78.1) were checked for all m\30, coprime to 3. It turned out

that all of the constructed covers are half-arc-transitive (see the next section where

all such covers, regardless of the value of m, are considered for the Heawood graph

C14.1). Moreover, for each of these suitable cubic graphs (except for C56.1) almost

all of the constructed covers are tightly-attached, but not all. There are thus some

interesting questions to consider here.

Question 3.8 If K is a connected bipartite cubic graph admitting a self-normalizing
1-regular subgroup G of AutðKÞ, is it true that for any m� 1 coprime to 3 the graph

Cb;1D ðK;G;mÞ is half-arc-transitive? If this is not always the case, can we classify all
triples ðK;G;mÞ where the resulting graph is arc-transitive?

Question 3.9 Suppose K is a connected bipartite cubic graph admitting a self-
normalizing 1-regular subgroup G of AutðKÞ and let m� 1 be coprime to 3 and

such that the graph Cb;1D ðK;G;mÞ is half-arc-transitive. What can be said about the
radius and the attachment number of this graph?
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Of course, something can be said about Question 3.9, as one can easily show that

the corresponding alternating cycles in DðKÞ are obtained by starting with a given

arc corresponding to a 2-arc (x, y, z) of K and then at each next step continue along

the arc corresponding to the unique 2-arc (y, z, w) of K such that (x, y, z) and

(y, z, w) are in different G-orbits of 2-arcs on K (in other words, we never follow the

current G-consistent directed cycle of K). Also, the voltage of such an alternating

cycle can be seen to equal the radius of the cycle (and thus of DðKÞ). But in order

not to make this paper any longer, we do not pursue these questions here but instead

focus on the covers of the Heawood graph obtained by our two constructions.

4 The graphs arising from the Fano plane

In this section we apply the results from the previous section to the Heawood graph,

the well-known incidence graph of the Fano plane. Both the Fano plane and the

Heawood graph, as well as most of their properties are well known, but since they

play a central role in this section we provide some details.

4.1 The Fano Plane and the Heawood Graph

In this paper we work with the following definition of the Fano plane. Its point-set

and its line-set consist of the 7 nonzero vectors in Z3
2, where the points are written as

triples (i, j, k) and the lines as triples [i, j, k]. The point (i, j, k) is then incident to

the line ½i0; j0; k0� whenever the corresponding scalar product is 0, that is when

ii0 þ jj0 þ kk0 ¼ 0 (in Z2). The resulting incidence structure is depicted on the left-

hand side of Fig. 3.

The Heawood graph, denoted throughout Sect. 4 by K, is defined as the incidence
graph (also called the Levi graph [6]) of the Fano plane. It is well known that the

Heawood graph is a cubic bipartite graph of order 14, diameter 3 and girth 6, and

that its automorphism group acts 4-arc-transitively on it and is isomorphic to a

Fig. 3 The Fano plane and its incidence graph—the Heawood graph
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semidirect product of GLð3; 2Þ by Z2 (which is isomorphic to PGLð2; 7Þ). The
group GLð3; 2Þ has the following natural action on the Fano plane (and thus on the

Heawood graph). For a matrix A 2 GLð3; 2Þ its action on the set of points of the

Fano plane is given by multiplication by A�T (the transpose of the inverse matrix

A�1) and its action on the set of lines by multiplication by A. More precisely, for a

point (i, j, k) and a line [i, j, k] of the Fano plane we set

ði; j; kÞ 
 A ¼ ði; j; kÞA�T and ½i; j; k� 
 A ¼ ½i; j; k�A:

Throughout the rest of this section we shorten the notation for points and lines of the

Fano plane—instead of (i, j, k) and [i, j, k] we simply write (ijk) and [ijk],
respectively. We also make the agreement that the vertices of K corresponding to

points of the Fano plane are black, while the ones corresponding to lines of the Fano

plane are white.
To illustrate the above described action of GLð3; 2Þ on the Fano plane and K let

R ¼
1 1 1

1 0 0

1 0 1

2

6
4

3

7
5 and B ¼

0 0 1

1 0 0

0 1 0

2

6
4

3

7
5: ð2Þ

Then R moves the point (001) to the point (011) and the line [001] to the line [101],

while B moves the point (001) to the point (010) and the line [001] to the line [010].

We denote the automorphism of the Fano plane (as well as the corresponding

automorphism of K) corresponding to R by q. The reader will notice that the action
of q on K corresponds to the 2-step clockwise rotation in the presentation of K as

given on the right-hand side of Fig. 3. The polarity p of the Fano plane,

interchanging each point (ijk) with the line [ijk], of course preserves incidence and is
thus also an automorphism of K (it corresponds to the reflection of the presentation

of K from the right-hand side of Fig. 3 with respect to the line through the midpoint

of the edge (101)[101] and the midpoint of the edge (100)[110]). It is easy to see

that pqp ¼ q�1. Let b be the automorphism corresponding to the matrix B from (2).

Since B�T ¼ B, it follows that pb ¼ bp, and so r ¼ pb is of order 6. One can also

verify that b�1qb ¼ q4, and so

r�1qr ¼ q3: ð3Þ

The group G1 ¼ hq; ri is then a 1-regular subgroup of AutðKÞ (note that r2 ¼ b�1

fixes the vertex (111) and cyclically permutes its three neighbors in K). Conse-
quently, its natural action on the vertex-set of the dart graph DðKÞ is regular,

implying that DðKÞ is a Cayley graph of G1. Since the group G1 is metacyclic, the

graph DðKÞ is a tetravalent weak metacirculant (see Sect. 2 for the definition). It is

not difficult to see (consider the vertex ([100], (001)) and apply r, rq, r2 and r2q3)
that it is in fact isomorphic to X IVð6; 7; 3; 0; 1; 0; 1; 1Þ.

We now show that DðKÞ admits another regular metacyclic group of automor-

phisms giving rise to a slightly different presentation of DðKÞ as a weak

metacirculant. Since K is not the underlying graph of the cube, the results of [8]

imply that AutðDðKÞÞ ffi AutðKÞ 
 hsi, where s 2 AutðDðKÞÞ is the canonical
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involution exchanging each dart with its reverse. Set r0 ¼ sb�1. Then r0 is of order
6 and

r0�1qr0 ¼ bqb�1 ¼ q2: ð4Þ

Observe that r0 maps the vertex ((110), [111]) of DðKÞ to its neighbor

([111], (011)). The corresponding consistent directed cycle is

ððð110Þ; ½111�Þ; ð½111�; ð011ÞÞ; ðð101Þ; ½111�Þ; ð½111�; ð110ÞÞ; ðð011Þ; ½111�Þ; ð½111�; ð101ÞÞÞ;

which is the 6-cycle of DðKÞ corresponding to the (white) vertex [111] of K. The
hqi-orbit of this 6-cycle thus consists of the seven 6-cycles of DðKÞ corresponding
to the seven lines of the Fano plane. This shows that the group G2 ¼ hq; r0i is

transitive and in fact regular on DðKÞ. Moreover, the graph DðKÞ is isomorphic to

X IVð6; 7; 2; 0; 1; 0; 1; 1Þ. The corresponding presentation of DðKÞ (with labels of

some of the vertices) is given in Fig. 4.

We want to point out that (3) and (4) imply that the groups G1 and G2 are not

isomorphic. Moreover, the group G ¼ hq; b; s; pi ¼ G1hsi ¼ G1G2 ¼ hpiG2 acts

half-arc-transitively on DðKÞ with vertex-stabilizers of order 2. Since the

automorphism spq�1 fixes the vertex ((110), [111]) and interchanges

([111], (011)) with ð½110�; ð110ÞÞ ¼ ð½111�; ð011ÞÞq, we see that the G-alternating
cycles correspond to the induced subgraphs between two ‘‘consecutive’’ hqi-orbits.
Therefore, radGðDðKÞÞ ¼ 7 ¼ attGðDðKÞÞ and the graph DðKÞ is tightly G-attached.
Of course, the full automorphism group AutðDðKÞÞ acts arc-transitively on DðKÞ
(with vertex-stabilizers of order 16). In the next subsection we analyze the cyclic

covers of DðKÞ arising from Constructions 3.1 and 3.4. Before doing so we

Fig. 4 The dart graph of the
Heawood graph
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introduce the following additional terminology. We call the edges of DðKÞ of the
form ððijkÞ; ½i0j0k0�Þð½i0j0k0�; ði00j00k00ÞÞ (the ones ‘‘sharing’’ a common line of the Fano

plane) flat and those of the form ð½ijk�; ði0j0k0ÞÞðði0j0k0Þ; ½i00j00k00�Þ non-flat. Observe that
each vertex of DðKÞ is incident to two flat and to two non-flat edges and that the

6-cycles consisting of six ‘‘consecutive’’ flat edges correspond to the seven lines of

the Fano plane while the 6-cycles consisting of six ‘‘consecutive’’ non-flat edges

correspond to the seven points of the Fano plane.

4.2 The Two Families of Covers

Let m� 2 be an integer. In light of the observations from the previous subsection the

two voltage assignments from Constructions 3.1 and 3.4 can be described very

easily (where for Construction 3.4 we take G1 as the corresponding 1-regular

subgroup of AutðKÞ). Observe first that q preserves the bipartition of K and q 2 G1.

Therefore, for each of the two constructions all of the arcs of DðKÞ in a given hqi-
orbit receive the same voltage. The given voltage assignment is thus completely

determined by the voltage assignment on six flat edges (on one from each hqi-orbit)
and on six non-flat edges (on one from each hqi-orbit). It can thus be given in a

compact way by a diagram on a ‘‘doubled 6-cycle’’ (a multigraph obtained by

replacing each edge of a 6-cycle by a pair of parallel edges) where we simply

indicate the voltage on each ‘‘flat’’ edge (represented on Fig. 5 as a straight edge)

and on each ‘‘non-flat’’ edge. We make the agreement that the edges having no

indication of the voltage receive voltage 0.

It is not difficult to verify that the voltage assignment from Construction 3.1 is as

given by the diagram from the left-hand side of Fig. 5 (note that the ‘‘white’’ edges

from Construction 3.1 are precisely the flat edges) while the voltage assignment

from Construction 3.4 is as given by the diagram from the right-hand side of Fig. 5,

where we have chosen the orbit O to be the one containing the directed G1-

consistent 6-cycle through ([100], (001), [010]). Here the ‘‘top’’ vertex of the

doubled 6-cycle corresponds to the hqi-orbit of the vertex ((110), [111]) and the one

following it in the clockwise direction corresponds to the hqi-orbit of the vertex

([111], (011)). The reader will notice that this implies that our covers of DðKÞ could
actually be described as ðZ7 
 ZmÞ-covers of the doubled 6-cycle. To simplify

notation in the rest of this section we make the following agreement. In both

constructions the vertices of the Zm-cover of DðKÞ are denoted by ordered triples

Fig. 5 The diagrams for the two
voltage assignments on the dart
graph of the Heawood graph

123

Graphs and Combinatorics (2021) 37:987–1012 1005



(i, j, k), where i 2 Z6, j 2 Z7 and k 2 Zm, and where (i, j, k) represents the vertex

ððð110Þ; ½111�Þr0iqj; kÞ.
Let us first analyze the covers from Construction 3.1. To this end let m� 1 and

let C1
m ¼ CbDðK;mÞ, where we retain the agreement from Sect. 4.1 that the black

vertices of K are the ones corresponding to the points of the Fano plane. By the

arguments from Sect. 4.1 the adjacency in C1
m is as follows:

ði; j; kÞ	 ðiþ 1; j; kÞ; ðiþ 1; jþ 2i; k þ ð�1Þiþ1Þ; i 2 Z6; j 2 Z7; k 2 Zm:

It is thus clear that the permutations qm and hm of the vertex-set of C1
m, given by the

rules

ði; j; kÞqm ¼ ði; j� 1; kÞ; i 2 Z6; j 2 Z7; k 2 Zm; ð5Þ

ði; j; kÞhm ¼ ði; j; k � 1Þ; i 2 Z6; j 2 Z7; k 2 Zm; ð6Þ

are automorphisms of C1
m with qm being (6m, 7)-semiregular, hm being (42, m)-

semiregular and hqm; hmi ffi Z7 
 Zm. Let f : Z6 ! Z7 be the function defined

inductively by setting f ð0Þ ¼ 3 and f ðiþ 1Þ ¼ f ðiÞ þ 2iþ2 for each i 2 Z6. It is not

difficult to verify that the permutation rm, given by the rule

ði; j; kÞrm ¼
ði� 1; 3jþ f ðiÞ; k � 1Þ : ieven;

ði� 1; 3jþ f ðiÞ; kÞ : iodd;

�

i 2 Z6; j 2 Z7; k 2 Zm;

ð7Þ

is an automorphism of C1
m. For instance, for each j 2 Z7 and k 2 Zm the vertex

(0, j, k) is mapped to ð5; 3jþ 3; k � 1Þ and its neighbors (1, j, k) and ð1; jþ 1; k �
1Þ are mapped to (0, 3j, k) and ð0; 3jþ 3; k � 1Þ, respectively, both of which are

neighbors of ð5; 3jþ 3; k � 1Þ. A straightforward computation also shows that

r�1
m qmrm ¼ q3m; rmhm ¼ hmrm and r6m ¼ h3m: ð8Þ

The group G1
m ¼ hrm; qm; hmi is thus clearly regular on C1

m. This proves half of the

following theorem.

Theorem 4.1 Let K denote the Heawood graph, let m� 1 be an integer and let

C ¼ CbDðK;mÞ. Then C is a connected arc-transitive tetravalent Cayley graph with
vertex-stabilizers of order at least 16. Moreover, writing m ¼ 3sm0 with 3 6j m0 let
r, t, q, b be the unique integers with 0� r; t; b\7 � 3s and 0� q\m0 such that all of
the following hold:

3q � �1ðmod m0Þ;
r � 3ðmod 7Þand r � 1ðmod 3sÞ;
t � 0ðmod 7Þ and t � 3ðmod 3sÞ;
b � 1ðmod 7Þand bm0 � �1� 3qðmod 3sÞ:

Then C ffi X IVð6m0; 7 � 3s; r; t; 1; 0; 6qþ 1; bÞ. Furthermore, if m is not divisible by
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7 then C admits a half-arc-transitive group of automorphisms relative to which it is
tightly-attached with radius 7m.

Proof By Theorem 3.3 the natural subgroup AutðKÞ 
 hsi of AutðDðKÞÞ lifts to

AutðCÞ, and so C is an arc-transitive tetravalent graph with vertex-stabilizers of

order at least 16. By the above arguments the group G1
m ¼ hrm; qm; hmi acts

regularly on the vertex-set of C, and so C is a Cayley graph. Moreover, the lift of the

group G ¼ hq; r; si from Sect. 4.1 acts half-arc-transitively on C with the G-
alternating cycles of DðKÞ receiving voltage 7, which clearly shows that when 7 6j m
the corresponding radius and attachment number are both 7m.

To prove that C ffi X IVð6m0; 7 � 3s; r; t; 1; 0; 6qþ 1; bÞ observe first that the

integers r, t, b and q indeed exist and are uniquely determined by the conditions

from the statement of the theorem. Set um ¼ qmh
m0

m . Since qm and hm commute the

automorphism um is ð6m0; 7 � 3sÞ-semiregular and by definition of r we also have

that r�1
m umrm ¼ q3mh

m0

m ¼ ur
m. Thus hrm;umi ¼ G1

m is metacyclic and is transitive

on C. By definition of the parameter t we have that r6m0
m ¼ h3m0

m ¼ ut
m. Note that the

two neighbors of the vertex (1, 0, 0) of C of the form (0, j, k) are ð0; 0; 0Þ ¼
ð1; 0; 0Þrm and ð0;�1; 1Þ. By definition of the parameters b and q we have that

ð1; 0; 0Þr6qþ1
m ub

m ¼ ð0; 0; 0Þqbmh3qþbm0

m ¼ ð0; 0; 0Þqmh�1
m ¼ ð0;�1; 1Þ, and so

C ffi X IVð6m0; 7 � 3s; r; t; 1; 0; 6qþ 1; bÞ. h

The reader will note that if 3 6j m the parameters r, t and b from Theorem 4.1 do

not depend on m and one obtains that C ffi X IVð6m; 7; 3; 0; 1; 0; 6qþ 1; 1Þ.
Therefore, in this particular case C is a very natural generalization of the dart

graph of the Heawood graph, namely of X IVð6; 7; 3; 0; 1; 0; 1; 1Þ.

Remark As we mentioned in the Sect. 1 a mysterious family of arc-transitive

graphs emerged when the classification of tetravalent tightly attached half-arc-

transitive graphs was obtained in [13, 22]. At that time the authors of [13, 22] did

not investigate the origin of this family of graphs, whether there is a natural reason

for their arc-transitivity, nor how big their automorphism group really is. Using

Theorem 4.1 and the results of [13, 22] it is not difficult to confirm that when 7 6j m
the graphs X IVð6m0; 7 � 3s; r; t; 1; 0; 6qþ 1; bÞ from Theorem 4.1 all belong to this

mysterious family and in fact almost all of the examples from the mysterious family

are of this kind (the sole exception is the graph of order 21 which is a Z2-quotient of

X IVð6; 7; 2; 0; 1; 0; 1; 1Þ). Therefore, the natural reason for their arc-transitivity and

their rather large automorphism group is that they arise from the Fano plane and the

corresponding Heawood graph.

Remark Let us also mention the following. Regarding Theorem 4.1 a natural

question arises. Is the automorphism group of C ¼ CbDðK;mÞ equal to the lift of the

automorphism group of DðKÞ (and so the vertex-stabilizers are of order 16) or does

C admit additional automorphisms which do not project to DðKÞ? Not to make the

paper any longer than it already is we do not pursue this question in detail here.

Nevertheless, we strongly believe there are no such additional automorphisms

(which can be confirmed at least for the relatively small examples using a

computer). A possible approach to proving this conjecture is using the fact that the
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6-cycles of DðKÞ corresponding to the points and lines of the Fano plane receive

voltage 0 and thus lift to 6-cycles. It is not difficult to see that, unless m ¼ 3, these

are in fact the only 6-cycles of C, so that there is a unique 6-cycle through each edge
of C. With a bit more work one should then be able to limit the order of the vertex-

stabilizers to 24.

We now turn to the covers of the dart graph DðKÞ of the Heawood graph from

Construction 3.4. Let m� 1 be an integer coprime to 3 and let C2
m ¼ Cb;1D ðK;G1;mÞ,

where K is the Heawood graph and G1 ¼ hq; ri is the 1-regular subgroup of AutðKÞ
from Sect. 4.1. It is easy to verify that the adjacency in C2

m is then as follows (recall

our agreement that we identify the vertex-set of C2
m by Z6 
 Z7 
 Zm):

ði; j; kÞ	 ðiþ 1; j; kÞ; ðiþ 1; jþ 2i; k þ 1Þ : ieven;

ðiþ 1; j; k � 1Þ; ðiþ 1; jþ 2i; kÞ : iodd;

�

i 2 Z6; j 2 Z7; k 2 Zm:

Similarly as with the covers C1
m, the permutations q0m and h0m of the vertex-set of C2

m,

given by the rules

ði; j; kÞq0m ¼ ði; jþ 1; kÞ; i 2 Z6; j 2 Z7; k 2 Zm; ð9Þ

ði; j; kÞh0m ¼ ði; j; k þ 1Þ; i 2 Z6; j 2 Z7; k 2 Zm; ð10Þ

are automorphisms of C2
m, generating a group isomorphic to Z7 
 Zm with q0m being

(6m, 7)-semiregular. It is not difficult to verify that the permutation r0m, given by the

rule

ði; j; kÞr0m ¼
ðiþ 1; 2j; kÞ : ieven;

ðiþ 1; 2j; k � 1Þ : iodd;

�

i 2 Z6; j 2 Z7; k 2 Zm; ð11Þ

is an automorphism of C2
m and that

r0m
�1q0mr

0
m ¼ q0m

2
; r0mh

0
m ¼ h0mr

0
m and r0m

6 ¼ h0m
�3 ð12Þ

holds. Since m is coprime to 3 it is clear that the metacyclic group hr0m; q0mi is

transitive on C2
m (in fact, it is regular), and so C2

m is a weak metacirculant. Let q be

the unique integer with 0\q\m such that 3q � �1ðmod mÞ. Since the vertex

(0, 0, 0) is adjacent to both ð1; 0; 0Þ ¼ ð0; 0; 0Þr0m and ð1; 1; 1Þ ¼ ð0; 0; 0Þr0m
6qþ1q0m,

this proves some of the claims from the following theorem.

Theorem 4.2 Let K denote the Heawood graph, let m[ 1 be an integer coprime to

3 and let C ¼ Cb;1D ðK;G1;mÞ, where G1 �AutðKÞ is as in Sect. 4.1. Then C is a half-
arc-transitive tetravalent Cayley graph with vertex-stabilizers of order 2. Moreover,
C ffi X IVð6m; 7; 2; 0; 1; 0; 6qþ 1; 1Þ, where q is the unique integer with 0\q\m
such that 3q � �1ðmod mÞ. Furthermore, if m is coprime to 7 the graph C is tightly
attached with radius 7m, while in the case that 7 j m the radius of C is m and its
attachment number is m/7.
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Proof Since the 1-regular subgroup G1 of AutðKÞ is maximal in AutðKÞ and

AutðKÞ is 4-arc-transitive, Theorem 3.6 implies that the subgroup G1 
 hsi of

AutðDðKÞÞ is the group of all automorphisms of DðKÞ that lift to C. Denote its lift

by ~G. In view of the arguments from the paragraph preceding the statement of

Theorem 4.2 we thus only need to verify that AutðCÞ ¼ ~G and to prove the claims

regarding the radius and the attachment number of C.
Of the two paired ~G-induced orientations of the edges of C choose the one in

which the edge (0, 0, 0)(1, 0, 0) is oriented from (0, 0, 0) to (1, 0, 0). The nature of

the action of ~G (which is clearly generated by r0m; q
0
m from (11) and (9) and the lift

of sp from Sect. 4.1) then implies that each edge of the form ði; j; kÞðiþ 1; j0; k0Þ is
oriented from (i, j, k) to ðiþ 1; j0; k0Þ. Let K be the subgroup of AutðCÞ of all

automorphisms preserving this orientation of the edges of C. Of course, ~G�K and

K acts half-arc-transitively on C.
It is not difficult to verify that for each edge of DðKÞ precisely eleven 6-cycles

pass through it (one corresponds to the corresponding point or line of the Fano

plane, six of them are 6-cycles obtained by joining two ‘‘halves’’ of 6-cycles

corresponding to points and lines of the Fano plane, while the remaining four

correspond to 6-cycles of K through the corresponding 2-arc of K). Moreover, of

these eleven 6-cycles precisely four receive the trivial voltage (and thus lift to 6-

cycles of C), while the remaining ones receive voltages �1 and �3 (and thus do not

lift to 6-cycles of C). More precisely, consider for instance the edge e ¼
ðð110Þ; ½111�Þð½111�; ð011ÞÞ of DðKÞ. There are two trivial voltage 6-cycles through

e that also contain ((101), [111]) - one of them obtained by joining the 6-cycles

corresponding to the line [111] and the point (101) of the Fano plane, and the other

by joining the 6-cycles corresponding to the line [111] and the point (110). There

are two trivial voltage 6-cycles through e that also contain ((011), [011])—one of

them obtained by joining the 6-cycles corresponding to the line [111] and the point

(011) of the Fano plane, and the other corresponding to the 6-cycle

((110), [111], (011), [011], (100), [001]) of K. However, there is no trivial voltage

6-cycle through e that also contains ((011), [100]). This shows that there is no 6-

cycle of C containing the ~G-alternating path ðð0; 0; 0Þ; ð1; 0; 0Þ; ð0;�1;�1ÞÞ while
for each of the ~G-directed paths ðð0; 0; 0Þ; ð1; 0; 0Þ; ð2; 0;�1ÞÞ and

((0, 0, 0), (1, 0, 0), (2, 2, 0)) there are two 6-cycles of C containing it. Observe

that this implies that the sets Vi ¼ fði; j; kÞ : j 2 Z7; k 2 Zmg, i 2 Z6, are blocks of

imprimitivity for the action of the full automorphism group AutðCÞ, proving that

½AutðCÞ : K� � 2.

Recall that for the half-arc-transitive action of G1hsi on DðKÞ the corresponding
radius and attachment number are 7 and observe that the corresponding alternating

cycles receive voltage 7. Therefore, if m is coprime to 7 the ~G-radius of C is 7m, and

so C is ~G-tightly attached. Suppose now that 7 j m. Then the ~G-radius of C is m. It is
easy to see that the set of the vertices of the form (1, j, k) that are contained on the
~G-alternating cycle containing (1, 0, 0) and (0, 0, 0) is fð1; k; kÞ : 0� k\mg.
Similarly, the set of the vertices of the form (1, j, k) that are contained on the ~G-
alternating cycle containing (1, 0, 0) and (2, 2, 0) is fð1; 2k; kÞ : 0� k\mg. As
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7 j m the intersection of these two sets is fð1; 0; 7kÞ : 0� k\m=7g, and so the ~G-
attachment number is m/7.

We now finally prove that AutðCÞ ¼ ~G. Using a computer one easily verifies that

this is indeed the case for m ¼ 2 (in which case C ffi X IVð12; 7; 2; 0; 1; 0; 7; 1Þ), for
m ¼ 7 (in which case C ffi X IVð42; 7; 2; 0; 1; 0; 13; 1Þ) and for m ¼ 14 (in which

case C ffi X IVð84; 7; 2; 0; 1; 0; 55; 1Þ). For the rest of the proof we thus assume that

either m[ 2 is coprime to 7 or m[ 14. The above argument shows that in this case

the ~G-attachment number of C is at least 3, and so [14, Lemma 3.5] implies that the

vertex-stabilizers of the action of K on C are of order 2. This shows that K ¼ ~G and

consequently ½AutðCÞ : ~G� � 2. By way of contradiction suppose that ~G is an index 2

subgroup of AutðCÞ. Then ~G is normal in AutðCÞ and there exists a unique a 2
AutðCÞ n ~G fixing (1, 0, 0) and mapping ð2; 0;�1Þ to (0, 0, 0). Since ~G ¼ K is

normal in AutðCÞ and a 62 ~G it follows that a reverses the orientation of each edge,

and so it maps ~G-alternating cycles to ~G-alternating cycles. Consider now the walk

obtained by starting with the 2-path ((0, 0, 0), (1, 0, 0), (2, 2, 0)) and then

extending it 13 times in such a way that at each step we add one vertex at each

of the two endvertices of the current path in a ~G-alternating way. For instance, at the
first step we obtain the walk ((1, 1, 1), (0, 0, 0), (1, 0, 0), (2, 2, 0), (1, 2, 1)) and

we obtain the walk ((0, 1, 1), (1, 1, 1), (0, 0, 0), (1, 0, 0), (2, 2, 0), (1, 2, 1),

(2, 4, 1)) at the second step. The obtained walk is closed with (1, 0, 7) being

antipodal to (1, 0, 0) (and it can be verified that, as m 62 f2; 3g, it is in fact a cycle).

If however we do the same starting with the walk ðð0; 0; 0Þ; ð1; 0; 0Þ; ð2; 0;�1ÞÞ then
the endvertices of the obtained walk are (1, 0, 7) and ð1; 0;�7Þ, which are different

as m 62 f2; 7; 14g. Letting the flat edges of C be the ones covering the flat edges of

DðKÞ (see the end of Sect. 4.1) and taking into account that AutðCÞ preserves the set
of ~G-alternating cycles and thus also the set of ~G-alternating 2-paths, we thus find

that the 2-path ((0, 0, 0), (1, 0, 0), (2, 2, 0)), which consists of a flat and a non-flat

edge, is essentially different from the 2-path ðð0; 0; 0Þ; ð1; 0; 0Þ; ð2; 0;�1ÞÞ, which
consists of two flat edges. Since a fixes (1, 0, 0) and maps the flat edge

ð1; 0; 0Þð2; 0;�1Þ to the flat edge (0, 0, 0)(1, 0, 0) it thus follows that it has to

preserve the set of flat edges (and consequently also the set of non-flat edges) of C.
Finally, observe that starting at a vertex (i, j, k) and then traversing six

consecutive flat edges (in one of the two possible directions from (i, j, k)) we arrive
at ði; j; k þ 3Þ or ði; j; k � 3Þ, which are both in the same Zm-fibre. Since m is

coprime to 3 and a preserves the set of flat edges of C it also preserves the set of Zm-

fibres. But then a has to be a lift of some automorphism from AutðDðKÞÞ, that is
a 2 ~G, a contradiction. This finally proves that ~G ¼ AutðCÞ, as claimed. h

Remark Recall that the dart graph of the Heawood graph is isomorphic to

X IVð6; 7; 3; 0; 1; 0; 1; 1Þ as well as to X IVð6; 7; 2; 0; 1; 0; 1; 1Þ. Somewhat surpris-

ingly, Theorems 4.1 and 4.2 imply that for each m[ 1, coprime to 3, the graphs

X IVð6m; 7; 3; 0; 1; 0; 6qþ 1; 1Þ and X IVð6m; 7; 2; 0; 1; 0; 6qþ 1; 1Þ, where q is the

unique integer with 0\q\m and 3q � �1ðmod mÞ, are not isomorphic. In fact, the
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first one is arc-transitive with vertex-stabilizers of order at least 16, while the second

one is half-arc-transitive with vertex-stabilizers of order 2.

Remark LetK be theHeawood graph and letm[ 1 be an integer coprime to 21. Since

the half-arc-transitive graph Cb;1D ðK;G1;mÞ from Theorem 4.2 is tightly-attached with

radius 7m, the classification of tetravalent tightly attached half-arc-transitive graphs

from [13, 22] implies that it has to be isomorphic to a graph of the formXoð6; 7m; ~rÞ or
X eð6; 7m; ~r; ~tÞ from [22], depending on whether m is odd or even, respectively.

Moreover, the results of [21] imply that the parameter ~r corresponds to the so-called
alternating jump parameter of the graph in question (see [21] for the definition and the

corresponding result). It is thus not difficult to see that ~r can be taken as the unique

integer with 0� ~r\7m such that ~r � 2ðmod 7Þ and ~r � 1ðmod mÞ. For instance, for
the graph Cb;1D ðK;G1; 2Þ, which by Theorem 4.2 is isomorphic to X IVð12; 7;
2; 0; 1; 0; 7; 1Þ, we get ~r ¼ 9, and so the results of [22] imply that ~t ¼ 7, that is

Cb;1D ðK;G1; 2Þ ffi X IVð12; 7; 2; 0; 1; 0; 7; 1Þ ffi X eð6; 14; 9; 7Þ ffi X eð6; 14; 3; 0Þ (see

[22, Proposition 9.1]). Similarly, for the graph Cb;1D ðK;G1; 5Þ ffi X IVð30; 7; 2; 0; 1; 0;
19; 1Þ we get ~r ¼ 16, and so Cb;1D ðK;G1; 5Þ ffi X IVð30; 7; 2; 0; 1; 0; 19; 1Þ ffi
X oð6; 35; 16Þ ffi X oð6; 35; 11Þ (see [13, Proposition 4.1]).
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