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Abstract
Given two graphs G and H, it is said that G percolates in H-bootstrap process if one

could join all the nonadjacent pairs of vertices of G in some order such that a new

copy of H is created at each step. Balogh, Bollobás and Morris in 2012 investigated

the threshold of H-bootstrap percolation in the Erd}os–Rényi model for the complete

graph H and proposed the similar problem for H ¼ Ks;t, the complete bipartite

graph. In this paper, we provide lower and upper bounds on the threshold of K2;t-

bootstrap percolation. In addition, a threshold function is derived for K2;4-bootstrap

percolation.

Keywords Bootstrap percolation � Random graph � Threshold

Mathematics Subject Classification 05C80 � 60K35

1 Introduction

Bootstrap percolation on graphs has been extensively investigated in several diverse

fields such as combinatorics, probability theory, statistical physics and social

sciences. Many different models of bootstrap percolation have been defined and

studied in the literature including the r-neighbor bootstrap percolation and the

majority bootstrap percolation. In this paper, we deal with the H-bootstrap
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percolation whose study was initiated in 2012 by Balogh, Bollobás, and Morris [1].

Roughly speaking, for two given graphs G and H, we say that G percolates in the H-

bootstrap process if it is possible to join all the nonadjacent pairs of vertices of G in

some order such that a new copy of H is created at each step. The concept is closely

related to the notion of ‘weak saturation’ that was introduced in 1968 by Bollobás

[2]. The H-bootstrap percolation has been studied by many researches [3–6].

Throughout this paper, all graphs are assumed to be finite, undirected, and

without loops or multiple edges. For a graph G, we denote the vertex set and the

edge set of G by V(G) and E(G), respectively. For given graphs G and H, we

associate the graph bGH obtained from the following process: Let G0 ¼ G and for

i ¼ 1; 2; . . . define Gi as the graph with vertex set V(G) and edge set EðGi�1Þ [ Ei,

where Ei is the set of all edges in the complement of Gi�1 such that adding each of

them to Gi�1 creates a new copy of H. Define bGH as the graph with vertex set V(G)

and edge set
S

i>0EðGiÞ. We say that G percolates in the H -bootstrap process if bGH

is a complete graph.

For two positive real valued functions f and g defined on positive integers, we

write f ¼ OðgÞ (respectively, f ¼ XðgÞ) if there exists a positive constant c such that

f ðnÞ 6 cgðnÞ (respectively, f ðnÞ > cgðnÞ) for any n large enough. Further, we write

f ¼ HðgÞ if f ¼ OðgÞ and f ¼ XðgÞ. Finally, we write f � g (respectively, f � g)

if limn!1
f ðnÞ
gðnÞ equals 0 (respectively, 1). For a positive integer n and a function

p defined on positive integers with values in [0, 1], we denote by the

probability space of all graphs on a fixed vertex set of size n where every two

distinct vertices are adjacent independently with probability p(n). In the literature,

is known as the Erd}os–Rényi model for random graphs. A function is a

threshold for a sequence En of events in if

We say that En holds with high probability if . As a consequence

of Theorem 4 in [7], we know for any graph H that

is a threshold function for H-bootstrap percolation.

Denote the complete graph on r vertices and the complete bipartite graph with

part sizes s and t by Kr and Ks;t, respectively. Balogh, Bollobás and Morris in [1]

studied H-bootstrap percolation on . They proved that, for any fixed integer

r > 4 and any sufficiently large n,

n�k

2 elog n
6 pcðn;KrÞ 6 n�k log n;
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where k ¼ 2r�4
r2�r�4

and log is the logarithm function with base the Neperian number e.

One of the open problems posed in [1] is the determination of pcðn;Ks;tÞ. We know

from Proposition 26 of [1] that

pcðn;K1;tÞ ¼ H n� t
t�1

� �

for any t > 2 and also that

pcðn;K2;2Þ ¼ pcðn;K2;3Þ ¼
log n

n
þH

1

n

� �

by Proposition 24 of [1]. In this paper, we examine pcðn;K2;tÞ for t > 4. We present

lower and upper bounds on pcðn;K2;tÞ, and moreover, we prove that pcðn;K2;4Þ ¼
Hðn�10=13Þ. After our work, in Theorem 1.1 of [8], Bayraktar and Chakraborty

proved that, for every fixed integers s > 4 and t > 3 satisfying t 6 s 6 t2 � 3t þ 4

and any sufficiently large n,

c1

n�l

log n
6 pcðn;Ks;tÞ 6 c2

log n

log log n

� �2l

n�l;

where l ¼ sþt�2
st�2

and c1; c2 do not depend on n. We also refer to [9] for some related

results.

Let us fix some notation and terminology. For a graph G and a subset S of V(G),

we denote the induced subgraph of G on S by G[S]. For a vertex v of G, we set

NGðvÞ ¼ fx 2 VðGÞ j v is adjacent to xg and NG½v� ¼ NGðvÞ [ fvg. The degree of a

vertex v of G, denoted by degGðvÞ, is defined as jNGðvÞj. A graph G is a complete
split graph if one can partition V(G) into an independent set I and a clique C such

that each vertex in I is adjacent to each vertex in C.

2 The Upper Bound

In this section, we assume that t is an integer at least 4 and we reserve bG for the

graph obtained from a graph G in K2;t-bootstrap process. We will obtain an upper

bound on pcðn;K2;tÞ. More precisely, we will establish that

pcðn;K2;tÞ ¼ O n
� 1

gðtÞ
� �

;

where

gðtÞ ¼

6t2 � 14t þ 12

3t2 � 4t þ 8
if t is even,

2t2 � 4t þ 2

t2 � t þ 2
if t is odd.

8

>

>

>

<

>

>

>

:

Recall that the density of a graph G is defined as

123

Graphs and Combinatorics (2021) 37:731–741 733



dðGÞ ¼ jEðGÞj
jVðGÞj ;

and the maximum subgraph density of G as

mðGÞ ¼ max
n

dðHÞ
�

�

�H is a subgraph of G
o

:

In our proofs, we frequently use the following theorem which also appears as

Theorem 5.3 in [10].

Theorem 2.1 (Bollobás [11]) Let H be a fixed graph with at least one edge. Then

n�1=mðHÞ is a threshold for the property that contains a copy of H as a
subgraph.

The following lemma is easily obtained from the definition of K2;t-bootstrap

process.

Lemma 2.2 Let G be a graph and let x; y 2 VðGÞ with jNGðxÞ \ NGðyÞj > t � 1.
Then N

bG
ðxÞnfyg ¼ N

bG
ðyÞnfxg.

Lemma 2.3 Let G be a connected graph containing a copy of Kt�1;t�1 as a

subgraph. Then bG is either a complete graph, a complete bipartite graph or a
complete split graph with the clique part of size t � 1.

Proof We consider the relation � on Vð bGÞ as follows:

x � y if N
bG
ðxÞnfyg ¼ N

bG
ðyÞnfxg: ð1Þ

It is straightforward to check that � is an equivalence relation. Further, it is obvious

from (1) that each equivalence class is either an independent set or a clique and,

more generally, between every two equivalence classes either there is no edge or all

possible edges are present.

Let H be a copy of Kt�1;t�1 in G with bipartition VðHÞ ¼ A [ B. It follows from

Lemma 2.2 that A, and similarly B, is contained in some equivalence class. Let [A]

and [B] be the equivalence classes containing A and B, respectively. Note that [A]

and [B] are not necessary distinct. We show that VðGÞ ¼ ½A� [ ½B� which implies the

assertion of the lemma. By contradiction, suppose that VðGÞ 6¼ ½A� [ ½B�. As G is

connected, there is a vertex v 62 ½A� [ ½B� with a neighbor in [A] or [B], say [A]. Note

that v is adjacent to the whole [A]. Therefore, jNGðvÞ \ NGðwÞj > t � 1 for arbi-

trarily chosen vertex w 2 B. Using Lemma 2.2, v � w and hence v 2 ½B�, a con-

tradiction.

Now, assume that bG is a complete split graph with the independent part I and the

clique part C. Note that I and C are the equivalence classes of �. If jCj > t, then

every two vertices x 2 I and y 2 C have at least t � 1 common neighbors in C.

Hence, Lemma 2.2 yields that x � y, a contradiction. h

Definition 2.4 For two positive integers r and s, consider s copies of K2;r and let

fui; u
0
ig be a part of size 2 in the ith copy. We denote by the graph
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obtained by identifying all u0
1; . . .; u0

s to a single vertex u. For instance, the graph

is depicted in Fig. 1. For an integer t > 4, let r ¼ bðt � 1Þ=2c and

s ¼ t � 1 � r. We define as the graph made of the vertex disjoint graphs

, and by joining u to

v; v1; . . .; vs and v to w;w1; . . .;wt�2. For example, the graph is shown in Fig. 2.

Theorem 2.5 For any t > 4, .

Proof For convenience, let and m ¼ mðGÞ. Assume that H is a subgraph of

G with minimum possible number of vertices satisfying dðHÞ ¼ m. We need to

prove the following facts about H.

Fact 1 The minimum degree of H is 2.

Since t > 4 and G contains a copy of K2;t�1, we find that m[ 1. For each vertex

v 2 VðHÞ, it follows from dðH � vÞ 6 dðHÞ that degHðvÞ > m. Therefore, the

minimum degree of H is at least 2. On the other hand, it is easily seen that G has no

subgraph with the minimum degree more than 2, implying the desired property.

Fact 2 For every two distinct vertices x; y 2 VðHÞ, NGðxÞ \ NGðyÞ � VðHÞ.
For a vertex v 2 VðHÞ with degHðvÞ ¼ 2, it follows from the minimality of |V(H)|

that dðH � vÞ\dðHÞ which in turn implies that m\2. Now, if a vertex x 2
VðGÞnVðHÞ is adjacent to at least two vertices in V(H), then it follows from m\2

Fig. 1 The graph

Fig. 2 The graph
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that dðG½fxg [ VðHÞ�Þ[ dðHÞ, a contradiction. This shows the correctness of Fact

2.

Fact 3 If ui0 2 VðHÞ for some i0, then u and all ui are contained in V(H).

Similar statements hold for vi and wi.

By contradiction, without loss of generality, assume that u1 2 VðHÞ and

u2 62 VðHÞ. Facts 1 and 2 imply that fug [ NGðu1Þ � VðHÞ and NGðu2Þ \ VðHÞ ¼
£. The minimality of |V(H)| forces that dðH � NG½u1�Þ\dðHÞ which in turn yields

that m\2ðt � 1Þ=t. This shows that dðG½NG½u2� [ VðHÞ�Þ[ dðHÞ, a contradiction.

The proofs for vi and wi are similar.

Applying Facts 1–3 and noting that H is an induced subgraph of G, we are left

with only seven candidates for V(H) as described below. Letting

A ¼
[

r

i¼1

NG½ui�; B ¼
[

s

i¼1

NG½vi� and C ¼
[
t�2

i¼1

NG½wi�;

where r, s are as defined in Definition 2.4, V(H) is equal to one of the subsets

fug [ A; fvg [ B; fwg [ C; fvg [ A [ B; fwg [ B [ C; fu;wg [ A [ C; fwg [ A [ B [ C:

It is a matter of straightforward calculation to show that, among the subgraphs of G
induced on these seven subsets, the maximum density occurs in G½fug [ A� if t is

odd and in G½fvg [ A [ B�, otherwise. Since

d
�

G½fug [ A�
�

¼ 2t2 � 4t þ 2

t2 � t þ 2
and d

�

G½fvg [ A [ B�
�

¼ 6t2 � 14t þ 12

3t2 � 4t þ 8
;

the proof is complete. h

Now we are ready to prove our upper bound on pcðn;K2;tÞ.

Theorem 2.6 For any fixed integer t > 4,

pcðn;K2;tÞ ¼ O n
� 1

gðtÞ
� �

:

Proof Let and p � n�1=gðtÞ. Using Theorems 2.1 and 2.5, G with

high probability contains a copy of , say H. Applying Lemma 2.2, N
bH
ðuÞnfuig ¼

N
bH
ðuiÞnfug for i ¼ 1; . . .; r, where r is as defined in Definition 2.4. This shows that

ui is adjacent to v; v1; . . .; vs for any i. Hence, jN
bH
ðvÞ \ N

bH
ðvjÞj > t � 1 for

j ¼ 1; . . .; s, where s is as defined in Definition 2.4. Again, it follows from Lemma

2.2 that N
bH
ðvÞnfvjg ¼ N

bH
ðvjÞnfvg for any j. This shows that vj is adjacent to

w;w1; . . .;wt�2 for any j. Therefore, for any k, jN
bH
ðwÞ \ N

bH
ðwkÞj > t � 1 which

implies that N
bH
ðwÞnfwkg ¼ N

bH
ðwkÞnfwg by Lemma 2.2. This shows that bH

contains a copy of Kt�1;t�1 and so is bG, since bH is a subgraph of bG. As p � log n=n,

by Theorem 4.1 of [10] and Theorem 2.1, G is connected and nonbipartite with high

probability. So, Lemma 2.3 yields that bG is either a complete split graph or a

complete graph. If bG is a complete split graph with the independent part I and the

clique part C, then, by Theorem 3.4 of [10], each vertex in I has at least np/2
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neighbors in C with high probability. Thus, jCj > t which contradicts Lemma 2.3.

Consequently, bG is complete and the result follows. h

It is natural to ask whether the upper bound given in Theorem 2.6 is in fact a

threshold. For t ¼ 4, we give an affirmative answer to this question in the following

theorem. Although a similar proof might works also for t ¼ 5, but it seems when

t > 6 a different kind of argument is needed to find a threshold. So, the question

remains widely open. Anyway, we will provide a lower bound on pcðn;K2;tÞ for any

t > 4 in Sect. 3.

Theorem 2.7 pcðn;K2;4Þ ¼ H n�10=13
� �

.

Proof By Theorem 2.6, it suffices to prove that pcðn;K2;4Þ ¼ Xðn�10=13Þ. If

with p � n�10=13, then Theorem 2.1 and the union bound theorem

imply that G contains no subgraph H with jVðHÞj 6 36 and mðHÞ > 13
10

with high

probability. So, in order to prove pcðn;K2;4Þ ¼ Xðn�10=13Þ, it is enough to show that

any graph with no subgraph H satisfying jVðHÞj 6 36 and mðHÞ > 13
10

does not

percolate in K2;4-bootstrap process.

Fix a graph G without any subgraph H with jVðHÞj 6 36 and mðHÞ > 13
10

. We

define a sequence F1;F2; . . . of vertex disjoint subgraphs of G by the following

procedure. At each step i, we look for a copy of K2;3 in Hi ¼ G �
Si�1

k¼1VðFkÞ. If

there is no such a copy, we finish the procedure. Otherwise, we choose a copy L of

K2;3 in Hi with bipartition A and B, where jAj ¼ 2. At the beginning of step i, we set

Fi ¼ G½VðLÞ�, Ai ¼ fAg, Bi ¼ B, ‘i ¼ ‘0i ¼ 0.

If there exist two adjacent vertices u; v 2 VðHiÞnVðFiÞ such that NGðuÞ \ A 6¼ £

and NGðvÞ \ B 6¼ £, then we do the following: First choose a vertex

w 2 NGðvÞ \ B. Then, update Fi, Ai, Bi to G½VðFiÞ [ fu; vg�, Ai [ ffu;wgg,

ðBi [ fvgÞnfwg, respectively, and increment ‘i.

Otherwise, perform the following iterative subprocedure as long as possible: Find

three distinct vertices u; v;w 2 VðHiÞnVðFiÞ such that w 2 NGðuÞ \ NGðvÞ and both

NGðuÞ;NGðvÞ intersect an element P 2 Ai. Add fu; vg to Ai and w to Bi. In

addition, update Fi to G½VðFiÞ [ fu; v;wg� and increment ‘0i.
We now state some properties of Fi. According to the procedure, jVðFiÞj ¼

2‘i þ 3‘0i þ 5 and jEðFiÞj > 3‘i þ 4‘0i þ 6. As soon as 4‘i þ ‘0i surpasses 4, then

jVðFiÞj 2 f9; 10; 13; 16; 19; 20g and dðFiÞ > 13
10

which contradicts our assumption on

G. Therefore, 4‘i þ ‘0i 6 4 and so jVðFiÞj 6 17. Similarly, the following properties

of Fi are proved using the density arguments.

Fact 1 jEðFiÞj ¼ 3‘i þ 4‘0i þ 6.

If not, then jEðFiÞj > 3‘i þ 4‘0i þ 7 and so dðFiÞ[ 13
10

which is a contradiction in

view of jVðFiÞj 6 17.

Fact 2 There is no edge between VðFiÞ and VðFjÞ whenever i 6¼ j.
If not, then, since G½VðFiÞ [ VðFjÞ� has at most 34 vertices, it follows from

dðG½VðFiÞ [ VðFjÞ�Þ\13
10

that 4ð‘i þ ‘jÞ þ ð‘0i þ ‘0jÞ\0, a contradiction.

Fact 3 There exists at most one vertex x such that NGðxÞ intersects both VðFiÞ
and VðFjÞ whenever i 6¼ j.
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If there are two distinct vertices x, y such that NGðxÞ and NGðyÞ intersect both

VðFiÞ and VðFjÞ, then, as G½VðFiÞ [ VðFjÞ [ fx; yg� has at most 36 vertices, we

derive that dðG½VðFiÞ [ VðFjÞ [ fx; yg�Þ\13
10

which means that 4ð‘i þ ‘jÞþ ð‘0i þ ‘0jÞþ
4\0, a contradiction.

For the rest of the proof, we consider an auxiliary graph G0 obtained from G as

follows: For every integer i and every element fa; bg 2 Ai, join a to all vertices in

NGðbÞnNGðaÞ and b to all vertices in NGðaÞnNGðbÞ. We claim that bG ¼ G0. Since any

pair in P ¼
S

i>0Ai is an independent set in G0 by Fact 1, the claim concludes that G

does not percolate in K2;4-bootstrap process.

In order to prove the claim, it is enough to show that there is no pair fx; yg 62 Pwith

jNG0 ðxÞ \ NG0 ðyÞj > 3. Towards a contradiction, suppose that there exists such a pair

fx; yg. Let S1 ¼ fx; yg and fix a subset S2 � NG0 ðxÞ \ NG0 ðyÞ such that jS2j 2 f3; 4g
and jP \ S2j 2 f0; 2g for each P 2 P. Put S ¼ S1 [ S2. By Facts 2 and 3, VðFiÞ \ S ¼
£ for all i except one, say i0. We drop the subscript i0 from Fi0 ;Ai0 ;Bi0 ; ‘i0 ; ‘

0
i0

in what

follows.

First we assume that SnVðFÞ 6¼ £. Set a ¼ jS1nVðFÞj, b ¼ jS2nVðFÞj, c ¼
jS2 \Bj and d ¼ jfP 2 A j jP \ S2j ¼ 2gj. Clearly, bþ cþ 2d ¼ jS2j. Letting

Z ¼ G½S [ VðFÞ�, we have jVðZÞj ¼ aþ bþ 2‘þ 3‘0 þ 5 and jEðZÞj > acþ
adþ 2bþ 3‘þ 4‘0 þ 6. It follows from dðZÞ\13

10
that

7ðaþ b� 1Þ þ 10aðcþ d� 2Þ þ 4‘þ ‘0 þ 2\0: ð2Þ

In view of aþ b > 1, it follows from (2) that cþ d 6 1, or equivalently,

ðc; dÞ 2 fð0; 0Þ; ð0; 1Þ; ð1; 0Þg. Since aþ b 6 4 and bþ cþ 2d ¼ jS2j, one can

easily deduce from (2) that b ¼ d ¼ 1, c ¼ ‘ ¼ 0 and a 2 f1; 2g. Moreover, if

a ¼ 1, then it follows from (2) that ‘0 ¼ 0 and hence jS1 \Bj ¼ 1. Now, in both

cases a ¼ 1 and a ¼ 2, the structure of Z forces F to be updated to Z during the

procedure, a contradiction.

We next assume that S � VðFÞ. From our procedure and Fact 1, we observe that

NFðvÞ 2 A for any v 2 B. This yields S \B ¼ £. Hence, there are

A1;A2;A3;A4 2 A such that x 2 A1, y 2 A2 and S2 ¼ A3 [ A4. Note that there exist

two edges between P and Q for any ðP;QÞ 2 fðA1;A3Þ; ðA1;A4Þ; ðA2;A3Þ; ðA2;A4Þg.

According to the procedure, each X 2 A is connected to exactly one of the elements

of A generated prior to X. This property contradicts the cyclic connection between

A1;A2;A3;A4.

We have established the claim and so the theorem is concluded. h

Remark 2.8 An easy but weak upper bound on pcðn;K2;tÞ can be found as follows.

If a graph G has a copy of as a subgraph, then one can easily

see that a copy of Kt�1;t�1 is contained in bG. Therefore, a threshold for the existence

of in gives an upper bound on pcðn;K2;tÞ. This shows

that pcðn;K2;tÞ ¼ Oðn�ðt�1Þ=ð2t�4ÞÞ using Theorem 2.1.
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3 The Lower Bound

In this section, we give a lower bound on pcðn;K2;tÞ. In Proposition 25 of [1],

Balogh, Bollobás and Morris provided a lower bound on pcðn;HÞ for any H.

According to their result, pcðn;K2;tÞ ¼ Xðn�ðtþ1Þ=ð2t�2ÞÞ. An improvement is given

in the following theorem.

Theorem 3.1 For any fixed integer t > 4,

pcðn;K2;tÞ ¼ X n� t
2t�3

� �

:

Proof If with p � n�t=ð2t�3Þ, then Theorems 2.1 together with the

union bound theorem yield that G contains no subgraph H with jVðHÞj 6 ðt þ 2Þ2

and mðHÞ > ð2t � 3Þ=t with high probability. So, in order to prove the theorem, it

suffices to show that any graph with no subgraph H satisfying jVðHÞj 6 ðt þ 2Þ2
and

mðHÞ > ð2t � 3Þ=t does not percolate in K2;t-bootstrap process.

Fix a graph G without any subgraph H with jVðHÞj 6 ðt þ 2Þ2
and

mðHÞ > ð2t � 3Þ=t. Consider a maximal family F ¼ fF1; . . .;F‘g of vertex disjoint

copies of K2;t�1 in G. Denote the vertex bipartition of Fi by fai1; ai2g and

fbi1; . . .; bi;t�1g. Denote by G0 the graph obtained from G by joining ai1 to all

vertices in NGðai2ÞnNGðai1Þ and ai2 to all vertices in NGðai1ÞnNGðai2Þ for

i ¼ 1; . . .; ‘. We claim that bG ¼ G0. Since the graph obtained from K2;t�1 by

adding one edge has density ð2t � 1Þ=ðt þ 1Þ[ ð2t � 3Þ=t, our assumption on G
concludes that G0 is not a complete graph. So, the claim yields that G does not

percolate in K2;t-bootstrap process.

In order to prove the claim, it is sufficient to show that there exists no pair

fx; yg 62 ffa11; a12g; . . .; fa‘1; a‘2gg so that jNG0 ðxÞ \ NG0 ðyÞj > t � 1. By contrary,

suppose that there exists such a pair fx; yg. Let S1 ¼ fx; yg and pi ¼ jfai1; ai2g \ S1j
for any i. By the assumption, pi 2 f0; 1g. Further, fix a subset S2 � NG0 ðxÞ \ NG0 ðyÞ
such that jS2j 2 ft � 1; tg and qi ¼ jfai1; ai2g \ S2j 2 f0; 2g for any i. Put S ¼
S1 [ S2 and k ¼ jSj. Assume that

a ¼ jfi j pi ¼ 1gj;
b ¼ jfi j qi ¼ 2gj;
c ¼

�

�

	

i
�

� pi ¼ qi ¼ 0 and there exists j with bij 2 S

�

�;

k ¼
�

�

	

bij

�

� bij 2 S1 and pi ¼ 1



[
	

bij

�

� bij 2 S2 and qi ¼ 2

�

�;

l ¼
�

�

	

bij

�

� bij 2 S1 and qi ¼ 2



[
	

bij

�

� bij 2 S2 and pi ¼ 1

�

�;

m ¼
�

�

	

bij

�

� pi ¼ qi ¼ 0 and bij 2 S

�

�:

Based on the above definitions, one may find that 1 6 aþ bþ c 6 k and c 6 m. The

inequality c 6 m is clear. To prove 1 6 aþ bþ c 6 k, note that the subsets

fi j pi ¼ 1g, fi j qi ¼ 2g and fi j pi ¼ qi ¼ 0 and there exists j with bij 2 Sg are

mutually distinct and thus their union, say U, is of size aþ bþ c. It follows from

the maximality of F that U 6¼ £ and hence aþ bþ c > 1. Moreover, one may

123

Graphs and Combinatorics (2021) 37:731–741 739



naturally assign to each i 2 U a subset Ri � S with jRij 6 2. The subsets Ri are

mutually distinct and so jUj 6
P

i2U jRij 6 jSj. This means that aþ bþ c 6 k. Let

H ¼ G S [
[

S\VðFiÞ6¼£

VðFiÞ

2

4

3

5:

It is easy to see that

jVðHÞj ¼ ðaþ bþ cÞðt þ 1Þ þ k � a� 2b� k� l� m

and

jEðHÞj > 2ðaþ bþ cÞðt � 1Þ þ 2ðk � b� 2Þ � l:

Therefore, the condition k 6 t þ 2 implies that jVðHÞj 6 ðt þ 2Þðt þ 1Þ þ ðt þ 2Þ ¼
ðt þ 2Þ2

and so mðHÞ\ð2t � 3Þ=t by the assumption on G. It follows from

dðHÞ\ð2t � 3Þ=t that

tðaþ b� cþ 2kþ lþ 2m� 4Þ\3ðb� cþ kþ lþ m� kÞ;

which can be rewritten as

ðt � 3Þ
�

ðaþ bþ c� 1Þ þ l
�

þ ð2t � 3Þ
�

ðm� cÞ þ k
�

þ 3
�

aþ cþ
�

k � ðt þ 1Þ
��

\0:

We have reached a contradiction, since the left hand side of the inequality above is

nonnegative. This establishes the claim, as required. h

4 Concluding Remarks

In this paper, we have determined an upper bound for the threshold of K2;t-bootstrap

percolation by proposing a subgraph whose existence forces the graph to percolate.

Note that if the upper bound given in Theorem 2.6 is tight for any t, then

Theorem 5.4 of [10] implies that K2;t-bootstrap percolation has a coarse threshold. It

means that the threshold given in Theorem 2.7 is coarse. As it has mentioned before,

the determination of pcðn;K2;tÞ remains open for t > 5.

Acknowledgements The authors wish to express their gratitude to the anonymous referee for her/his

helpful comments and suggestions which considerably improved the presentation of the paper. The

second author is sincerely grateful to the Institute for Research in Fundamental Sciences (IPM) for the

hospitality and support during his visit in February 2018.

References

1. Balogh, J., Bollobás, B., Morris, R.: Graph bootstrap percolation. Random Struct. Algorithms 41,

413–440 (2012)

2. Bollobás, B.: Weakly k-saturated graphs, Beiträge zur Graphentheorie (Kolloquium, Manebach,
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