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Abstract
This paper deals with the vertex connectivity of enhanced power graphs of finite

groups. We classify all abelian groups G such that the vertex connectivity of

enhanced power graph of G is 1. We derive an upper bound for the vertex con-

nectivity of the enhanced power graph of any general abelian group G. Also we

completely characterize all abelian groups G, such that the proper enhanced power

graph is connected. Moreover, we study some special class of non-abelian groups

G such that the proper enhanced power graph is connected and we find their vertex

connectivity.

Keywords Abelian group � Dominating vertex � Enhanced power graph � Vertex
connectivity

Mathematics Subject Classification 05C25

1 Introduction

The exploration of graphs associated with algebraic structures is important, as

graphs like these enrich both algebra and graph theory. Besides, they have important

applications (see, for example, [2, 21]) and are related to automata theory [22].

During the last two decades, investigation of the interplay between the properties of
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an algebraic structure S and the graph-theoretic properties of CðSÞ; a graph

associated with S, has been an exciting topic of research. Different types of graphs,

specifically zero-divisor graph of a ring [3], semiring [5], semigroup [14], poset

[20], power graph of semigroup [12, 24], group [23], normal subgroup based power

graph of group [8], intersection power graph of group [6] etc. have been introduced

to study algebraic structures using graph theory. The concept of a power graph was

introduced in [23]. As explained in the survey [2], this definition also covered the

undirected graphs. Accordingly, the present paper follows Chakrabarty et al. and

uses the brief term ‘‘power graph’’ defined as follows.

Definition 1.1 ([2, 12, 23]) Let S be a semigroup, then the power graph PðSÞ of S,
is a simple graph, whose vertex set is S and two distinct vertices u and v are edge

connected if and only if either um ¼ v or vn ¼ u; where m; n 2 N:

Another well-studied graph, called commuting graph associated with a group G is

studied in [10] as a part of the classification of finite simple groups. For more

information about the commuting graph, see [4, 17].

Definition 1.2 ([10]) Let G be a group, then the commuting graph of G, denoted by

CðGÞ; is the simple graph whose vertex set is a set of non-central elements of G and

two distinct vertices u and v are adjacent if and only if uv ¼ vu:

Definition 1.3 ([1]) Given a group G, the enhanced power graph of G, denoted by

GeðGÞ; is the graph with vertex set G, in which u and v are joined if and only if

there exists an element w 2 G such that both u and v are powers of w.

The authors Aalipour et al. [1] measure how close the power graph is to the

commuting graph by using the enhanced power graph. In fact, the enhanced power

graph contains the power graph and is a subgraph of the commuting graph. They

characterized the finite groups such that, for an arbitrary pair of these three graphs,

this pair of graphs are equal. Besides, Zahirović et al. [29], the researchers proved

that finite groups with isomorphic enhanced power graphs have isomorphic directed

power graphs. They showed that any isomorphism between the undirected power

graphs of finite groups is an isomorphism between enhanced power graphs of these

group. Ma and She [25] derived the metric dimension of enhanced power graphs of

finite groups where as Hamzeh et al. [19] derived the automorphism groups of

enhanced power graphs of finite groups. Recently Panda et al. [26] have studied

independence number, vertex covering number and some other graph invariants of

enhanced power graphs.

1.1 Basic Definitions, Notations and Main Results

For the convenience of the reader and also for later use, we recall some basic

definitions and notations about graphs. Let C ¼ ðV ;EÞ be a graph where V is the set

of vertices and E is the set of edges. Two elements u and v are said to be adjacent if

ðu; vÞ 2 E: The standard distance between two vertices u and v in a connected graph

C is denoted by d(u, v). Clearly, if u and v are adjacent, then dðu; vÞ ¼ 1: For a
graph C; its diameter is defined as diamðCÞ ¼ maxu;v2V dðu; vÞ: That is, the diameter
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of graph is the largest possible distance between pair of vertices of a graph. A path
of length l between two vertices v0 and vk is an alternating sequence of vertices and

edges v0; e0; v1; e1; v2; . . .; vk�1; ek�1; vk, where the v0is are distinct (except possibly

the first and last vertices) and ei is the edge ðvi; viþ1Þ: A graph C is said to be

connected if for any pair of vertices u and v, there exists a path between u and v. C
is said to be complete if any two distinct vertices are adjacent. A vertex of a graph

C ¼ ðV;EÞ is called a dominating vertex if it is adjacent to every other vertex. For a

graph C; let DomðCÞ denote the set of all dominating vertices in C: The vertex
connectivity of a graph C; denoted by jðCÞ is the minimum number of vertices

which need to be removed from the vertex set C so that the induced subgraph of C
on the remaining vertices is disconnected. The complete graph with n vertices has

connectivity n� 1: For more on graph theory we refer [9, 18, 28]. The enhanced

power graph is called dominatable if it has a dominating vertex other than identity.

Throughout this paper we consider G as a finite group. |G| denotes the cardinality
of the set G. For a prime p, a group G is said to be a p-group if jGj ¼ pr; r 2 N: For
any element g 2 G; oðgÞ denotes the order of the element g 2 G: Let G be a group

and a 2 G; then GenðaÞ is the set of all generators of the cyclic group hai: Let m and

n be any two positive integers, then the greatest common divisor of m and n is

denoted by gcdðm; nÞ: The Euler’s phi function /ðnÞ is the number of integers k in

the range 1� k� n for which the gcdðn; kÞ is equal to 1. The set f1; 2; . . .; ng is

denoted by [n]. Throughout this paper, the group operation of any abelian group is

taken to be additive.

In this paper, our focus is on the vertex connectivity of enhanced power graphs of

finite abelian groups. If G is a non-cyclic non-generalized quaternion p-group, then
we determine the exact value of the vertex connectivity of GeðGÞ:

Theorem 1.1 Let G be a finite p-group such that G is neither cyclic nor generalized
quaternion group. Then jðGeðGÞÞ ¼ 1:

Our next result classifies all non-cyclic abelian groups G such that jðGeðGÞÞ ¼ 1:

Theorem 1.2 Let G be a finite non-cyclic abelian group. Then jðGeðGÞÞ is equal to
1 if and only if G is a p-group.

The authors Aalipour et al. [1][Question 40] asked about the connectivity of

power graphs when all the dominating vertices are removed. Recently, Cameron and

Jafari [11] answered this question for power graphs. In this paper, we investigate the

same question for enhanced power graphs. To seek the answer of this question,

define the following graph:

Definition 1.4 Given a group G, the proper enhanced power graph of G, denoted

by G��
e ðGÞ; is the graph obtained by deleting all the dominating vertices from the

enhanced power graph GeðGÞ: Moreover, by G�
eðGÞ we denote the graph obtained by

deleting only the identity element of G and this is called deleted enhanced power
graph of G. Note that if there is no such dominating vertex other than identity, then

G�
eðGÞ ¼ G��

e ðGÞ:
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Bera et al. [7] characterized all abelian groups G, such that jDomðGeðGÞÞj[ 1:
In fact, they proved the folllowing:

Theorem 1.3 ([7]) Let G be a finite abelian group. Then GeðGÞ is dominatable if
and only if G has a cyclic Sylow subgroup.

So, from Theorem 1.3, jDomðGeðGÞÞj[ 1 if and only if G ¼ G1 � Zn; where
gcdðjG1j; nÞ ¼ 1 and G1 has no cyclic sylow subgroup. Then one natural question is

which are the dominatable vertices of GeðGÞ: The next theorem gives the complete

list of the dominating vertices of GeðGÞ:

Theorem 1.4 Let G1 be a non-cyclic abelian group such that G1 has no cyclic
sylow subgroup. If n 2 N; and gcdðjG1j; nÞ ¼ 1, then DomðGeðG1 � ZnÞÞ ¼
fðe; xÞ; where x is any element of Zn and e is the identity of G1g:

Theorem 1.2 completely characterizes the connectivity of G�
eðGÞ for any finite

abelian p-group G. Now if G is a non-cyclic abelian non p-group such that G has no

cyclic sylow subgroup, then by Theorem 1.3, G has no dominating vertex other than

the identity. So, in this case we care about the connectivity of G��
e ðGÞ ¼ G�

eðGÞ and
by Theorem 1.2, G�

eðGÞ is connected. Therefore when the graph G�
eðGÞ has a

dominating vertex other than identity, the connectivity of GeðGÞ is a more

interesting question. In this paper, we characterize for which finite abelian groups,

the proper enhanced power graphs G��
e ðGÞ are connected and for which they are not.

Our contributions on this paper in this theme is the following:

Theorem 1.5 Let G be a non-cyclic abelian non p-group such that G ffi G1 �
Zn; gcdðjG1j; nÞ ¼ 1 and G1 has no cylcic sylow subgroup. Then G��

e ðGÞ is
disconnected if and only if G1 is a p-group.

Therefore, from Theorem 1.5, when G1 is not a p-group, G��
e ðGÞ remains

connected. Thus, the number of additional vertices required to make it disconnected

is an interesting question. On this theme, our next result is the following:

Theorem 1.6 Let G be a non-cyclic abelian group such that

G ffi Zp
t11
1

� Zp
t12
1

� Zp
t13
1

� � � � � Z
p
t1k1
1

� Zp
t21
2

� Zp
t22
2

� � � �

� Z
p
t2k2
2

� � � � � Zp
tr1
r
� Zp

tr2
r
� � � � � Z

p
trkr
r
;

where ki � 1 and 1� ti1 � ti2 � � � � � tiki , for all i 2 ½r	: Then

jðGeðGÞÞ� pt111 pt212 � � � ptr1r � /ðpt111 pt212 � � � ptr1r Þ:

When G1 is a p-group, the following result gives the exact value of the vertex

connectivity of GeðGÞ:

Theorem 1.7 Let G be a non-cyclic abelian non-p-group such that G ffi G1 �
Zn; gcdðjG1j; nÞ ¼ 1 and G1 is a p-group with no cyclic sylow subgroup. Then
jðGeðGÞÞ ¼ n:
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2 Preliminaries

We first recall some earlier known results on enhanced power graphs which we need

throughout the paper. Bera et al. [7], studied about the completeness, dominatability

and many other properties of enhanced power graph of finite group. In fact, they

proved the following:

Lemma 2.1 (Theorem 2.4, [7]) The enhanced power graph GeðGÞ of the group G is
complete if and only if G is cyclic.

Lemma 2.2 (Theorem 3.3, [7]) Let G be a non-abelian 2-group. Then the enhanced
power graph GeðGÞ is dominatable if and only if G is generalized quarternion
group.

Lemma 2.3 (Theorem 3.1, [7]) Let G be a finite group and n 2 N. If
gcdðjGj; nÞ ¼ 1, then the enhanced power graph GeðG� ZnÞ is dominatable.

Lemma 2.4 (Lemma 2.1, [7]) Let a; b 2 G with oðaÞ ¼ oðbÞ and hai 6¼ hbi. Then x
is not adjacent with y for every x 2 GenðaÞ and y 2 GenðbÞ:

We next prove some important lemmas which are used to prove our main

theorems.

Lemma 2.5 Let G be a finite group and x; y 2 G n feg be such that
gcdðoðxÞ; oðyÞÞ ¼ 1 and xy ¼ yx: Then, x
 y in G�

eðGÞ.

Proof Let oðaÞ ¼ m and oðbÞ ¼ n: Now gcdðm; nÞ ¼ 1 implies that n/ðmÞ ¼
mk þ 1; k 2 N; ð by Euler’s theorem Þ: Again, ab ¼ ba implies that ðabÞn

/ðmÞ
¼

an
/ðmÞ

bn
/ðmÞ ¼ an

/ðmÞ ¼ amkþ1 ¼ a: As a result, a 2 habi: Similarly we can prove that

b 2 habi: Consequently, a
 b in G�ðGÞ: h

Lemma 2.6 Let G be a p-group. Let a, b be two elements of G of order p; piði� 1Þ
respectively. If there is a path between a and b in G�

eðGÞ; then hai � hbi: In
particular, if both a and b have order p, then, hai ¼ hbi:

Proof Let a ¼ a1 
 a2 
 � � � 
 am ¼ b be a path between a and b. Now a ¼ a1 
 a2
implies that there exists x 2 G such that a1; a2 2 hxi: As a result, a1 2 ha2i (since a
cyclic group has a unique subgroup corresponding to each divisor of the order of the

cyclic group). Now, a2 
 a3 and G is a p-group, then either a2 2 ha3i or a3 2 ha2i:
Clearly for both of the cases a1 2 ha3i: Continuing this process we can conclude

that a 2 hbi: h

Lemma 2.7 Let G be any non-cyclic group. For any dominating vertex vð6¼ eÞ of G
there exists a prime p dividing oðvÞ such that G has a unique subgroup of order p.

Proof Let v 6¼ e be a dominating vertex and oðvÞ ¼ m. Let p be a prime divisor of

m and m ¼ rp: We claim that H ¼ hvri is the unique subgroup of order p in G.
Consider x 2 G such that oðxÞ ¼ p: Since v is dominating vertex, we have x
 v:
Thus, there exists a cyclic subgroup A such that x; v 2 A: Then oðxÞ ¼ p implies that
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x 2 hvi: If x ¼ vq, by division algorithm it can be shown that q has to be a multiple

of r and thus x 2 H: This completes the proof. h

We next move on to the most important result of this section.

Theorem 2.8 For any group G, the graph P�ðGÞ is connected if and only if the
graph G�

eðGÞ is connected.

Proof The forward implication is easy. That is, if P�ðGÞ is connected then G�
eðGÞ is

of course connected. We prove the other direction. Let, G�
eðGÞ be connected and

a; b 2 P�ðGÞ: As G�
eðGÞ is connected, there exists a path a ¼ a1 
 a2 
 � � � 
 am ¼

b: Now, ai 
 aiþ1 in G�
eðGÞ) there exist bi 2 G such that both ai and aiþ1 2 hbii: In

that case, ai 
 bi 
 aiþ1: Therefore, we have a ¼ a1 
 b1 
 a2 
 b2 
 a3 � � � 
 am ¼
b in P�ðGÞ: This completes the proof. h

Therefore, for any graph G, the information about the connectivity of one of the

two graphs P�ðGÞ and G�
eðGÞ gives information about the connectivity of the other

one.

3 Proofs of Main Results About Vertex Connectivity of GeðGÞ When
G is Abelian

Proof of Theorem 1.1 First suppose that G is non-cyclic abelian p-group. Clearly G
has at least two distinct cyclic subgroups H1 ¼ hai and H2 ¼ hbi of order p. Now by

Lemma 2.6, there is no path joining a and b in G�
eðGÞ; otherwise H1 ¼ H2: The proof

is complete. h

Proof of Theorem 1.2 G is non-cyclic abelian p-group. Therefore, by Theorem 1.1,

jðGeðGÞÞ ¼ 1:
For the converse part, let G be a finite abelian group which is not a p-group. Let,

p1; p2; . . .; pk be the prime factors of |G|. Let, a; b 2 G and oðaÞ ¼ pr11 p
r2
2 � � � prkk and

oðbÞ ¼ ps11 p
s2
2 � � � pskk . We consider the following two cases:

Case 1: There exists distinct i and j with ri 6¼ 0 and sj 6¼ 0. Then the elements

pr11 p
r2
2 � � � pri�1

i�1p
riþ1

iþ1 � � � p
rk
k a and ps11 p

s2
2 � � � psj�1

j�1p
sjþ1

jþ1 � � � p
sk
k b are of order prii and p

sj
j

respectively. Thus, by Lemma 2.5, pr11 p
r2
2 � � � pri�1

i�1p
riþ1

iþ1. . .p
rk
k a and

ps11 p
s2
2 � � � psj�1

j�1p
sjþ1

jþ1 � � � p
sk
k b are adjacent. Therefore we have

a
 pr11 p
r2
2 � � � pri�1

i�1p
riþ1

iþ1 � � � p
rk
k a
 ps11 p

s2
2 � � � psj�1

j�1p
sjþ1

jþ1 � � � p
sk
k b
 b:

That is, there exists a path of length � 3 between a and b. We observe that this case

takes care of everything except when both oðaÞ and oðbÞ are power of the same

prime p‘ for some 1� ‘� k which we consider next.

Case 2: oðaÞ ¼ pr‘‘ and oðbÞ ¼ ps‘‘ : Let, c be an element of order pi in G with

i 6¼ ‘. Then by Lemma 2.5, we have a
 c
 b. Thus, G�
eðGÞ is connected. This

completes the proof. h

By Theorem 2.8, we immediately get the following corollary on the connectivity

of the power graphs.
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Corollary 1 Let G be a finite non-cyclic abelian group. Then jðPðGÞÞ is equal to 1

if and only if G is a p-group.

Proof of Theorem 1.4 We show that (e, x) is a dominating vertex, where e is the

identity element of the group G and x is a any element of the group Zn: Consider an
arbitrary vertex (g, y) of the graph GeðG� ZnÞ:

Case 1: Let g ¼ e: Let a be a generator of the cyclic group Zn: Now y 2 Zn

implies that ðe; yÞ; ðe; xÞ 2 hðe; aÞi and so ðe; xÞ
 ðe; yÞ:
Case 2: Let g 6¼ e and y ¼ 0: [Here 0 actually means the additive identity of the

group Zn	:We show that ðg; 0Þ; ðe; xÞ 2 hðg; aÞi: First we show that ðe; aÞ 2 hðg; aÞi:
Let oðgÞ ¼ m: Now gcdðjGj; nÞ ¼ 1 implies that gcdðm; nÞ ¼ 1: Then by Euler’s

theorem m/ðnÞ ¼ n‘þ 1; ‘ 2 N: Therefore, ðg; aÞm
/ðnÞ

¼ ðgm/ðnÞ
; am

/ðnÞ Þ ¼
ðe; an‘þ1Þ ¼ ðe; aÞ: Hence, ðe; aÞ 2 hðg; aÞi: Now we show that ðg; 0Þ 2 hðg; aÞi: It
is given that gcdðm; nÞ ¼ 1: So, by the Euler’s theorem, n/ðmÞ ¼ mk þ 1; k 2 N:

Hence ðg; aÞn
/ðmÞ

¼ ðgn/ðmÞ ; 0Þ ¼ ðgmkþ1; 0Þ ¼ ðg; 0Þ: Consequently, ðg; 0Þ 2 hðg; aÞi:
Case 3: Let g 6¼ e and y 6¼ 0: We show that ðg; yÞ; ðe; xÞ 2 hðg; aÞi: Already we

have proved that ðg; 0Þ; ðe; xÞ 2 hðg; aÞi: Since a is a generator of Zn, ðe; yÞ 2
hðe; aÞi � hðg; aÞi: Hence ðg; yÞ ¼ ðg; 0Þðe; yÞ 2 hðg; aÞi:

To finish the proof we have to show that if (g, z) is a dominating vertex, then g
must be the identity of G. Let

G ¼ Zp
t11
1

� Zp
t12
1

� Zp
t13
1

� � � � � Z
p
t1k1
1

� Zp
t21
2

� Zp
t22
2

� � � �

� Z
p
t2k2
2

� � � � � Zp
tr1
r
� Zp

tr2
r
� � � � � Z

p
trkr
r
;

where ki � 2 and ti1 � ti2 � � � � � tiki , for all i 2 ½r	. Let

v ¼ ðxpt11
1
; xpt12

1
; � � � x

p
t1k1
1

; xpt21
2
; . . .; x

p
t2k2
2

; . . .; xpt1rr
; xpt2rr

; . . .; x
p
trkr
r
; zÞ

be a dominating vertex. We will prove that, for each i 2 ½r	 and j 2 ½ki	; xpti1i ¼
xpti2i

¼ � � � ¼ x
p
tij
i

¼ 0: [Here 0 actually means the additive identity of the group

Z
p
tij
i

]. Consider the element

v0 ¼ ð0; 0; . . .; 0; g
p
t1k1
1

; 0; 0; . . .; g
p
t2k2
2

; 0; . . .; 0; g
p
trkr
r
; z0Þ;

where g
p
tiki
i

is a generator of the cyclic group Z
p
tiki
i

for each i 2 ½r	 and z0 is a

generator of Zn: As v is a dominating vertex of the graph GeðGÞ; we have v
 v0 in
GeðGÞ: Clearly, v0 is an element of maximum ordered. So, we have v 2 hv0i: As a
result, for each i 2 ½r	 and j 2 ½ki � 1	; xpti1i ¼ xpti2i

¼ � � � ¼ x
p
tij
i

¼ 0; i.e.,

v ¼ ð0; 0; . . .; 0; x
p
t1k1
1

; 0; 0; . . .; 0; x
p
t2k2
2

; 0; . . .; 0; x
p
trkr
r
; zÞ:

Now we show that x
p
tiki
i

¼ 0; for all i 2 ½r	: Suppose at least one of the x
p
tiki
i

is non-

zero. Without any loss of generality we assume that x
p
t1k1
1

6¼ 0: Consider v1 ¼
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ðx; 0; 0; . . .; 0; 0; 0Þ; (last zero is the identity of cyclic group ZnÞ where x 2 Z
p
t1k1
1

with oðxÞ ¼ p1: Then p1 divides oðvÞ: If v
 v1; then there exists a cyclic subgroup

C of G� Zn such that v; v1 2 C: Then oðv1Þ ¼ p1 and p1 divides oðvÞ: This implies

that v1 2 hvi; which contradicts that x 6¼ 0: This completes the proof. h

We next consider the connectivity of the proper enhanced power graph G��
e ðGÞ;

when G is abelian.

Proof of Theorem 1.5 First we show that if G1 is a p-group, then G��
e ðGÞ is

disconnected. By Theorem 1.4, order of each element of G��
e ðGÞ is divisible by p. So

applying the proof of the lemma 2.6, we get that for two elements a ¼ ðx; 0Þ and
b ¼ ðx0; y0Þ of G��

e ðGÞ; with oððx; 0ÞÞ ¼ p and x0 6¼ e; if there exists any path joining

a and b, then hðx; 0Þi is contained in or equal to hðx0; y0Þi: In particular, if both a and
b have order p, then the existence of a path joining a and b implies that hai ¼ hbi:
Since, G1 is noncyclic abelian p-group, there exist two elements a and b of order p
such that hai 6¼ hbi: So by our previous observation, a is not path connected to b.

Conversely, suppose that G1 is non-p-group. Then we show that G��ðGÞ is

connected. Here we have two cases.

Case 1: Let ðx1; 0Þ and ðx2; 0Þ be two elements of G1 � Zn such that x1 6¼ e and

x2 6¼ e: Then by same argument as in proof of converse part of Theorem 1.2, ðx1; 0Þ
and ðx2; 0Þ are path connected in G��

e ðGÞ:
Case 2: Let ðx1; y1Þ; ðx2; y2Þ 2 VðG��

e ðGÞÞ: Clearly, ðx1; y1Þ
 ðx1; 0Þ and

ðx2; 0Þ
 ðx2; y2Þ: Again there is a path between ðx1; 0Þ and ðx2; 0Þ in G��
e ðGÞ by

Case 1. Therefore, ðx1; y1Þ and ðx2; y2Þ are path connected in G��
e ðGÞ: Hence the

graph G��
e ðGÞ is connected. This completes the proof. h

Proof of Theorem 1.6 Let H ¼ hai be a cyclic subgroup of G, where a ¼
ða11; 0; . . .; 0; a21; 0; . . .; ar1; 0. . .; 0Þ; and ai1 2 Zp

ti1
i

such that oðai1Þ ¼ pti1i ; for i ¼
1; 2; . . .; r: H is maximal cyclic subgroup of G.

Now we show that for any b 2 G n H; there is no edge between b and any

element in GenðaÞ: If possible there exists x 2 GenðaÞ such that b
 x in GeðGÞ: Then
there exists a cyclic subgroup K of G such that b; x 2 K: Again H is a maximal

cyclic subgroup of G which is also generated by x. Therefore, K ¼ hai ¼ H: Hence
a contradiction as b 2 G n H: Clearly, if we remove the identity and non-identity

non-generators elements from the cyclic subgroup H, then the graph will be

disconnected and the number of deleted vertices is pt111 pt212 . . .ptr1r � /ðpt111 pt212 . . .ptr1r Þ:
Hence the result. h

From Theorem 1.6, we immediately have the following corollary on the vertex

connectivity of power graphs of any non-cyclic abelian group.

Corollary 2 Let G be a non-cyclic abelian group such that

G ffi Zp
t11
1

� Zp
t12
1

� Zp
t13
1

� � � � � Z
p
t1k1
1

� Zp
t21
2

� Zp
t22
2

� � � � � Z
p
t2k2
2

� � � � � Zp
tr1
r
� Zp

tr2
r
� � � � � Z

p
trkr
r
;

where ki � 1 and 1� ti1 � ti2 � � � � � tiki , for all i 2 ½r	: Then
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jðPðGÞÞ� pt111 pt212 � � � ptr1r � /ðpt111 pt212 � � � ptr1r Þ:

Proof of Theorem 1.7 Proof of this theorem follows from Theorems 1.4 and 1.5. h

3.1 The Number of Components of G**
e ðGÞ When it is Disconnected

So far, we have characterized the abelian groups for which the proper enhanced

power graph is disconnected. In this context, the natural question that comes to our

mind is the number of connected components of the subgraph G��
e ðGÞ: By

Theorem 1.5, the proper enhanced power graph G��
e ðGÞ for a finite abelian group G

is disconnected when G is either a non-cyclic p-group or G ffi G1 � Zn where G1 is

an p-group and gcdðp; nÞ ¼ 1: Here, we explicitly count the number of components

for those G.

Theorem 3.1 Let G be a finite abelian p-group. Suppose that

G ¼ Zpt1 � Zpt2 � � � � � Zptr :

where r� 2 and t1 � t2 � � � � � tr: Then, the number of components of G��
e ðGÞ is

pr�1
p�1

:

Proof It is easy to show that there are pr � 1 elements of order p. For any element a
of order p, the p� 1 non-zero scalar multiples of a must be in the same component.

Moreover, by Lemma 2.6, if any two elements of order p are connected by a path,

then one of them must be the multiple of another. Henceforth, there are exactly

p� 1 members of order p in any component. Thus, the number of connected

components of G�
eðGÞ is

pr�1
p�1

: h

It is quite interesting to note that the number of components of the proper

enhanced power graph of a finite abelian non-cyclic p-group is independent of the

exponent ti’s. In the next result, we prove that this phenomenon is observed also in

the case when G ffi G1 � Zn where G1 is an p-group and gcdðp; nÞ ¼ 1: Let

CðG��
e ðGÞÞ be the set of connected components of the proper enhanced power graph

G��
e ðGÞ:

Theorem 3.2 Let G be an abelian group such that G ffi Zpt1 � Zpt2 � � � � � Zptr �
Zn; where r� 2 and gcdðp; nÞ ¼ 1: Then, the number of components of G��

e ðGÞ is
pr�1
p�1

:

Proof Let, G1 ¼ Zpt1 � Zpt2 � � � � � Zptr : By Theorem 3.1, the number of con-

nected components of G��
e ðG1Þ is pr�1

p�1
: Let, C1;C2; . . .;Cpr�1

p�1

be the components of

CðG��
e ðG1ÞÞ. Define f : CðG��

e ðG1ÞÞ7!CðG��
e ðG1 � ZnÞÞ by

f ðCiÞ ¼ Ci � Zn:
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At first, we show that there is no path in between Ci � Zn and Cj � Zn for

1� i\j� pr�1
p�1

: Let, there exists an path between ða1; b1Þ and ða2; b2Þ where

a1 2 Ci, a2 2 Cj and b1; b2 2 Zn: If possible, let

ða1; b1Þ
 ðc1; d1Þ
 ðc2; d2Þ
 � � � 
 ðcm�1; dm�1Þ
 ða2; b2Þ in G��
e ðGÞ where

c1; c2; . . .; cm�1 2 G1 and d1; d2; . . .; dm�1 2 Zn. Then c1; c2; . . .; cm�1 must be non-

zero elements of G1. This proves that a1 and a2 are connected by a path in G�
eðG1Þ

which contradicts the fact that Ci and Cj are distinct connected components of

G��
e ðG1Þ: Therefore, the number of components of G��

e ðGÞ is at least pr�1
p�1

:

Moreover, it is clear that the number of elements of order p in G is pr�1
p�1

: Any

element of order [ p is adjacent to an element of order p. Therefore, the number of

components of G��
e ðGÞ should be exactly equal to pr�1

p�1
: The proof is complete. h

4 Vertex Connectivity of Some Non-abelian Groups

In this section, we discuss the vertex connectivity of some interesting classes of

non-abelian groups. We start with the dihedral groups. We need the structures of

these groups to determine the vertex connectivity. For n� 2, the dihedral group of

order 2n is defined by the following presentation:

D2n ¼ hr; s : rn ¼ s2 ¼ e; rs ¼ sr�1i:

We also consider the generalized quarternion groups Q2n : Let x ¼ ð1; 0Þ and y ¼
ð0; 1Þ: Then Q2n ¼ hx; yi; where

(1) x has order 2n�1 and y has order 4,

(2) every element of Q2n can be written in the form xa or xay for some a 2 Z;

(3) x2
n�2 ¼ y2;

(4) for each g 2 Q2n such that g 2 hxi; such that gxg�1 ¼ x�1:

For more information about D2n; and Q2n see [13, 16, 27].

Theorem 4.1 Let G be the dihedral group of order 2n. Then jðGeðGÞÞ is equal to 1.

Moreover, the number of components of G��
e ðGÞ is nþ 1.

Proof Consider the following nþ 1 sets:

S1 ¼ frsg; S2 ¼ fr2sg; . . .; Sn�1 ¼ frn�1sg; Sn ¼ fsg; Snþ1 ¼ fr; r2; . . .; rn�1g:

We observe that G n feg ¼ [nþ1
i¼1 Si and for 1� i\j� n. Moreover, the power of any

element of Si must be in Si itself in G n feg: Therefore, there can be no edge

between Si and Sj for distinct i, j. This completes the proof. h

Theorem 4.2 For n� 3; let Q2n be the generalized quaternion group. Then the
vertex connectivity of GeðQ2nÞ is 2. Moreover the number of components of G��

e ðQ2nÞ
is 2n�2 þ 1:
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Proof Q2n is generalized quaternion group, so Q2n is a 2-group and it has a unique

minimal subgroup of order 2. Let g 2 Q2n such that oðgÞ ¼ 2: Then by Lemma 2.2,

g and e are adjacent to all other vertices in GeðQ2nÞ: For this reason to disconnect the

graph we have to delete the vertices e, g. Consequently, jðGeðQ2nÞÞ� 2: Now we

show that after removing the vertices e and g from VðGeðQ2nÞÞ; the graph G��
e ðQ2nÞ

will be disconnected. Let x 2 Q2n such that oðxÞ ¼ 2n�1 and H ¼ hxi:We will prove

that there is no edge between the vertices in H and Q2n n H: If for any y 2 Q2n n H is

adjacent to a vertex of H, then y should belong to H, (since H is the only subgroup

of order 2n�1 and there is no other subgroup of order [ 2n�1) a contradiction. So

the graph is disconnected. Moreover it is clear that there is no edge between the

vertices in GenðyÞ and GenðzÞ; where y; z 2 Q2n n H such that oðyÞ ¼ 4 ¼ oðzÞ and
hyi 6¼ hzi: Hence the number of components in G��

e ðQ2nÞ is 2n�2 þ 1 (as the number

of 4-ordered element in Q2n n H is 2n�1 and /ð4Þ ¼ 2Þ: h

Corollary 3 Let Q2n be the generalized quaternion group. Then the enhanced power
graph G�

eðQ2nÞ is connected but the proper enhanced power graph G��
e ðQ2nÞ is

disconnected.

We next consider the family of symmetric groupsSn: [16] is a good reference for
this. Recall from Sect. 1 that PðGÞ denotes the power graph of G. Let, P�ðGÞ
denote the power graph of G after deleting the identity. Doostabadi et al. [15]

proved the following theorem on the vertex connectivity of power graphs [15].

Theorem 4.3 Let G ¼ Sn be a symmetric group with n� 3: Then

(1) If n� 3 and neither n nor n� 1 is a prime, then P�ðGÞ is connected.
(2) If n is such that either n or n� 1 is a prime, then P�ðGÞ is disconnected.

We prove an analogous result corresponding to the enhanced power graph of Sn:
For this, we first prove that GeðSnÞ has no dominating vertex.

Lemma 4.4 For n� 3; the enhanced power graph GeðSnÞ has no dominating vertex
other than identity. Therefore, for n� 3, the graphs G�

eðSnÞ and G��
e ðSnÞ coincide.

Proof We first prove it when n is composite. Let a 6¼ e be a dominating vertex. By

Lemma 2.7, there exists a prime p dividing oðaÞ such that G has a unique subgroup

of order p. But we can take C1 ¼ hð1; 2; . . .; pÞi and C2 ¼ hð2; 3; . . .; pþ 1Þi and

arrive at a contradiction. We next consider the case when n is prime, say n ¼ p: Let
a 6¼ e be a dominating vertex. Then, a
hð1; 2; . . .; pÞi: So, they are contained in a

cyclic subgroup, say A of G. Now, there cannot be a subgroup of G which properly

contains hð1; 2; . . .; pÞi: Hence, a 2 hð1; 2; . . .; pÞi and consequently hai ¼
hð1; 2; . . .; pÞi: Again, since a is a dominating vertex, a
ð1; 2Þ: Now, applying
the similar argument as above, we see that ð1; 2Þ 2 hai; which is not possible. The

proof is complete. h

Theorem 4.5 For positive integers n� 3, jðGeðSnÞÞ ¼ if and only if either n or
n� 1 is prime.
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Proof By Lemma 4.4, we have G�
eðSnÞ ¼ G��

e ðSnÞ: So, by Theorem 2.8, G��
e ðSnÞ is

connected if and only if P�ðSnÞ is connected. Now, the proof is complete using

Theorem 4.3. h

Let, An � Sn be the alternating group. The family of alternating groups is an

interesting subgroup of the set of even permutations in Sn: Doostabadi et al. proved
the following theorem on the vertex connectivity of power graphs [15].

Theorem 4.6 Let G ¼ An be the alternating group and n� 4. Then

(1) If n; n� 1; n� 2; n=2; ðn� 1Þ=2; ðn� 2Þ=2 are not primes, then P�ðGÞ is

connected.

(2) If n is such that any one of n; n� 1; n� 2; n=2; ðn� 1Þ=2; ðn� 2Þ=2 is prime,

then P�ðGÞ is not connected.

We start with showing that GeðAnÞ has no dominating vertex.

Lemma 4.7 For n� 4; the enhanced power graph GeðAnÞ has no dominating vertex
other than identity. Therefore, for n� 4; the graphs G�

eðAnÞ and G��
e ðAnÞ coincide.

Proof Let, a 6¼ e be a dominating vertex. By Lemma 2.7, there exists a prime p
such that G has a unique subgroup of order p. If p� 4, take C1 ¼ hð1; 2; 3; . . .; pÞi
and C2 ¼ hð1; 3; 2; . . .; pÞi: If p ¼ 3; take C1 ¼ hð1; 2; 3Þi and C2 ¼ hð2; 3; 4Þi:
When p ¼ 2; let C1 ¼ hð1; 2Þð3; 4Þi and C2 ¼ hð1; 3Þð2; 4Þi: Thus, in each case, we

can verify that both C1 and C2 are even permutations and this contradicts Lemma

2.7. This completes the proof. h

From Theorem 4.6 and Lemma 4.7, we prove the following theorem.

Theorem 4.8 For positive integers n� 7, jðGeðAnÞÞ ¼ 1 if and only if one of
n; n� 1; n� 2; n=2; ðn� 1Þ=2; ðn� 2Þ=2 is prime.

Proof By Lemma 4.7, we have G�
eðAnÞ ¼ G��

e ðAnÞ: Now, we are done using

Theorems 2.8 and 4.6. h
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