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Abstract
A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at

most k and adding any new edge to the graph violates this condition. In this paper,

we provide sharp lower and upper bounds on Wiener indices of maximal k-de-
generate graphs of order n� k� 1. A graph is chordal if every induced cycle in the

graph is a triangle and chordal maximal k-degenerate graphs of order n� k are k-
trees. For k-trees of order n� 2k þ 2, we characterize all extremal graphs for the

upper bound.

Keywords k-Tree � Maximal k-degenerate graph � Wiener index

1 Introduction

The Wiener index of a graph G, denoted by W(G), is the summation of distances

between all unordered vertex pairs of the graph. The concept was first introduced by

Wiener in 1947 for applications in chemistry [17], and has been studied in terms of

various names and equivalent concepts such as the total status [13], the total

distance [10], the transmission [16], and the average distance (or, mean distance)
[9].

A graph with a property P is called maximal if it is complete or if adding an edge

between any two non-adjacent vertices results in a new graph that does not have the

property P. Finding bounds on Wiener indices of maximal planar graphs of a given

order has attracted attention recently, see [7, 8, 12]. For a maximal planar graph of

order n� 3, its Wiener index has a sharp lower bound n2 � 4nþ 6. An Apollonian
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network is a chordal maximal planar graph. Wiener indices of Apollonian networks

of order n� 3 have a sharp upper bound b 1
18
ðn3 þ 3n2Þc, which also holds for

maximal planar graphs of order 3� n� 10, and was conjectured to be valid for all

n� 3 in [7]. Recently, the conjecture was confirmed in [12]. With an extra condition

on vertex connectivity, it was shown [8] that if G is a k-connected maximal planar

graph of order n, then the mean distance lðGÞ ¼ WðGÞ
n
2ð Þ

� n
3k þ Oð

ffiffiffi

n
p

Þ for k 2
f3; 4; 5g and the coefficient of n is the best possible.

Let k be a positive integer. A graph is k-degenerate if its vertices can be

successively deleted so that when deleted, they have degree at most k. Note that

Apollonian networks are maximal 3-degenerate graphs. In this paper, we provide

sharp lower and upper bounds for Wiener indices of maximal k-degenerate graphs

of order n and some extremal graphs for all n� k� 1. When the lower and upper

bounds on Wiener indices are equal for maximal k-degenerate graphs of order n,
their diameters are at most 2, which implies that k� n� 2k þ 1. The extremal

graphs for the lower bound have a nice description for 2-trees of diameter at most 2.

Maximal k-degenerate graphs with diameter at least 3 have order at least 2k þ 2. For

k-trees of order n� 2k þ 2, we characterize all extremal graphs whose Wiener

indices attain the upper bound. Our results generalize well-known sharp bounds on

Wiener indices of some important classes of graphs such as trees and Apollonian

networks.

2 Preliminaries

All graphs considered in the paper are simple graphs without loops or multiple

edges. Let G be a graph with vertex set V(G) and edge set E(G). Then the order of G
is n ¼ jVðGÞj and the size of G is |E(G)|. Let Kn and Pn denote the clique and the

path of order n respectively. Let Kn be the compliment of Kn, that is, the graph on n
isolated vertices. Let Gþ H be the graph obtained from G and H by adding all

possible edges between vertices of G and vertices of H. A complete bipartite graph

Kr;s is Kr þ Ks.

A graph is connected if there is a path between any two vertices of the graph. The
distance between two vertices u, v of a graph G is the length of a shortest path

joining u and v in G, and denoted by dGðu; vÞ. The distance between two vertices

from different components is infinite if G is disconnected. The eccentricity eGðuÞ of
a vertex u in G is the maximum distance between u and other vertices of G. The set
of all vertices with distance i from the vertex u in G is denoted by NGðu; iÞ for

1� i� eGðuÞ. In particular, the set of all vertices adjacent to vertex u in G is denoted

by NGðuÞ, and its cardinality jNGðuÞj is called the degree of vertex u. The diameter
of G, denoted by diam(G), is the maximum distance between any two vertices of G.
A subgraph H of G is said to be isometric in G if dHðx; yÞ ¼ dGðx; yÞ for any two

vertices x, y of H. The status (or, transmission) of a vertex u in G, denoted by rGðuÞ,
is the summation of the distances between u and all other vertices in G.

Lemma 1 [4, 10] Let G be a connected graph. Then
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(i) WðGÞ� 2 n
2

� �

� jEðGÞj, and the equality holds if and only if diamðGÞ� 2:

(ii) WðGÞ�WðG� vÞ þ rGðvÞ for any vertex v of G, and the equality holds if
and only if G� v is isometric in G.

(iii) WðGÞ ¼
PdiamðGÞ

i¼1 i � di, where di is the number of unordered vertex pairs
with distance i in G.

We are interested in k-degenerate graphs and maximal k-degenerate graphs,

introduced in [14]. A subclass of maximal k-degenerate graphs called k-trees [1] is
particularly important. A k-tree is a generalization for the concept of a tree and can

be defined recursively: a clique Kk of order k� 1 is a k-tree, and any k-tree of order
nþ 1 can be obtained from a k-tree of order n� k by adding a new vertex adjacent

to all vertices of a clique of order k, which is called the root of the newly added

vertex, and we say that the newly added vertex is rooted at the specific clique. By

definitions, the order of a maximal k-degenerate graph can be any positive integer,

while the order of a k-tree is at least k. A graph is a k-tree if and only if it is a

chordal maximal k-degenerate graph of order n� k [2]. A graph is maximal

1-degenerate if and only if it is a tree [14]. It is known [15] that 2-trees form a

special subclass of planar graphs extending the concept of maximal outerplanar

graphs, and maximal outerplanar graphs are the only 2-trees that are outerplanar.

Planar 3-trees are just Apollonian networks.

The k-th power of a path Pn, denoted by P
k
n, has the same vertex set as Pn and two

distinct vertices u and v are adjacent in Pk
n if and only if their distance in Pn is at

most k. Note that the order n of Pk
n can be any positive integer. When n� k, Pk

n is a

special type of k-tree. For n� 2, Pk
n is an extremal graph for the upper bound on

Wiener indices of maximal k-degenerate graphs of order n.
A graph is called k-connected if the removal of any k � 1 vertices of the graph

does not result a disconnected or trivial graph. It is well-known that for a k-

connected graph G of order n, diam Gð Þ� n�2
k þ 1. Since maximal k-degenerate

graphs of order n� k þ 1 are k-connected [14], this bound holds for them, and a

characterization of the extremal graphs (among maximal k-degenerate graphs)

appears in [2].

The following upper bound on vertex status of a k-connected graph of order n can

be obtained by the fact that rGðxÞ ¼
PeGðxÞ

i¼1 i � jNGðx; iÞj [4, 10]. An equivalent upper
bound formula was first appeared in [11, Remark 2.6.1]. without reference papers

available.

Lemma 2 [6, 11] Let G be a k-connected graph of order n� k þ 1 and k� 1. Then

rGðxÞ� ðbn�2
k c þ 1Þðn� 1� k

2
bn�2

k cÞ for any vertex x of G. Moreover, rGðxÞ attains
the upper bound if and only if x satisfies both properties: (i)

eGðxÞ ¼ diam ðGÞ ¼ bn�2
k c þ 1, and (ii) jNGðx; iÞj ¼ k for all 1� i�bn�2

k c.

If the graphs in consideration are maximal k-degenerate graphs, then the upper

bound on vertex status in Lemma 2 can be achieved by any degree-k vertex of Pk
n
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for all n� k þ 1 and k� 1. Furthermore, the extremal graphs are exactly paths Pn

when k ¼ 1. If k� 2, then the extremal graphs can be different from Pk
n [2].

3 Sharp Bounds

Theorem 1 Let G be a k-degenerate graph of order n� k� 1. Then

WðGÞ� n2 � ðk þ 1Þnþ k þ 1

2

� �

:

The equality holds if and only if G is maximal k -degenerate with diamðGÞ� 2.

Proof By Lemma 1 (i), WðGÞ� 2 n
2

� �

� jEðGÞj and the equality holds if and only if

G has diameter at most 2. By Proposition 3 in [14], a k-degenerate graph G of order

n� k has jEðGÞj � kn� kþ1
2

� �

. Moreover, a k-degenerate graph G of order n� k is

maximal if and only if jEðGÞj ¼ kn� kþ1
2

� �

, [2]. Therefore,

WðGÞ� nðn� 1Þ � knþ kþ1
2

� �

¼ n2 � ðk þ 1Þnþ kþ1
2

� �

, and the equality holds

exactly when G is maximal k-degenerate with diamðGÞ� 2. h

This bound is sharp since for k� n� k þ 1, the only maximal k-degenerate graph

is Kn. For n� k þ 2, Kk þ Kn�k achieves the bound.

Theorem 2 Let G be a maximal k-degenerate graph of order n� 2 and D ¼ n�2
k

� �

.

Then

W Gð Þ�W Pk
n

� �

¼
X

D

i¼0

n� ik

2

� �

¼ n

2

	 


þ n� k

2

� �

þ � � � þ n� Dk

2

� �

:

Proof We show that W Gð Þ�W Pk
n

� �

using induction on order n. When

2� n� k þ 2, Pk
n is the only such graph, so it is extremal. Let G be a maximal k-

degenerate graph of order n� k þ 3, and assume that the result holds for all

maximal k-degenerate graphs of smaller orders. By [14], G has a vertex v of degree

k and G� v is a maximal k-degenerate graph. Thus W G� vð Þ�W Pk
n�1

� �

.

Label vertices of Pk
n along the path Pn as v1; v2; . . .; vn where n� k þ 3. It is clear

that Pk
n is k-connected and rPk

n
vnð Þ achieves the bound in Lemma 2. By Lemma 1

(ii), W Gð Þ�W G� vð Þ þ rG vð Þ�W Pk
n � vn

� �

þ rPk
n
vnð Þ ¼ W Pk

n

� �

.

Note W Pk
n

� �

¼ n
2

� �

when 2� n� k þ 1, so that the formula holds then. In Pn,

there are n� i pairs of vertices with distance i. Now distances rk � k þ 1 through rk

in Pn become r in Pk
n. Since diam Pk

n

� �

¼ Dþ 1, by Lemma 1 (iii),
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W Pk
n

� �

¼1 n� 1ð Þ þ � � � þ 1 n� kð Þ
þ 2 n� k � 1ð Þ þ � � � þ 2 n� 2kð Þ
þ 3 n� 2k � 1ð Þ þ � � � þ 3 n� 3kð Þ
þ � � �
þ D n� D� 1ð Þk � 1ð Þ þ � � � þ D n� Dkð Þ
þ Dþ 1ð Þ n� Dk � 1ð Þ þ � � � þ Dþ 1ð Þ1

¼ n� 1þ � � � þ 1ð Þ þ n� k � 1þ � � � þ 1ð Þ þ n� 2k � 1þ � � � þ 1ð Þ
þ � � � þ n� D� 1ð Þk � 1þ � � � þ 1ð Þ þ n� Dk � 1þ � � � þ 1ð Þ

¼ n

2

	 


þ n� k

2

� �

þ n� 2k

2

� �

þ � � � þ n� D� 1ð Þk
2

� �

þ n� Dk

2

� �

h

We now provide a closed form expression for W Pk
n

� �

for all n� 2.

Corollary 1 Let n� 2 and n� 2 � j mod k for 0� j� k � 1. Then

W Pk
n

� �

¼ n3

6k
þ k � 1ð Þn2

4k
þ k � 3ð Þn

12
þ�2j3 þ 3j2 k � 3ð Þ � j k2 � 9k þ 12ð Þ � 2k2 þ 6k � 4

12k
:

Proof We have

W Pk
n

� �

¼
X

D

i¼0

n� ik

2

� �

¼
X

D

i¼0

1

2
n� ikð Þ n� ik � 1ð Þ

¼
X

D

i¼0

n2

2
� n

2

� �

þ k

2
� kn

� �

iþ k2

2
i2

� �

¼
X

D

i¼0

n2

2
� n

2

� �

þ
X

D

i¼0

k

2
� kn

� �

iþ
X

D

i¼0

k2

2
i2

¼ Dþ 1ð Þ n2

2
� n

2

� �

þ D Dþ 1ð Þ
2

k

2
� kn

� �

þ D Dþ 1ð Þ 2Dþ 1ð Þ
6

k2

2

¼ k2

6
D3 þ k

4
þ k2

4
� kn

2

� �

D2 þ k

4
þ k2

12
� n

2
� kn

2
þ n2

2

� �

D� n

2
þ n2

2

Since D ¼ n�2
k

� �

, n� 2 ¼ Dk þ j for 0� j� k � 1. Substituting D ¼ n�2�j
k into the

above and simplifying, we obtain the formula. h

If 1� k� 5, this formula can be reduced to W Pk
n

� �

¼ 2n3þ3 k�1ð Þn2þk k�3ð Þn
12k

j k

.

Formulas for small values of k and the beginnings of the resulting sequences are

given in the following table. These sequences occur (shifted) in the On-Line

Encyclopedia of Integer Sequences (OEIS). For 1� k� 3, they have many different

combinatorial interpretations, which are listed in OEIS.
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k WðPk
nÞ Sequence OEIS

1 n3�n
6

0, 1, 4, 10, 20, 35, 56, 84, 120, 165, ... A000292

2 n3þ1:5n2�n
12

j k

0, 1, 3, 7, 13, 22, 34, 50, 70, 95, ... A002623

3 n3þ3n2

18

j k

0, 1, 3, 6, 11, 18, 27, 39, 54, 72, ... A014125

4 n3þ4:5n2þ2n
24

j k

0, 1, 3, 6, 10, 16, 24, 34, 46, 61, ... A122046

5 n3þ6n2þ5n
30

j k

0, 1, 3, 6, 10, 15, 22, 31, 42, 55, ... A122047

4 Extremal Graphs

Any graph of order n and diameter 1 is a clique and has Wiener index n
2

� �

. Any

maximal k-degenerate graph of diameter 1 is Kn, 2� n� k þ 1, which is also Pk
n.

Recall that a graph G of order n and diameter 2 has WðGÞ ¼ nðn� 1Þ � jEðGÞj, and
a maximal k-degenerate graph G of order n� k has jEðGÞj ¼ kn� kþ1

2

� �

. Then any

maximal k-degenerate graph of order n� k and diameter 2 has

WðGÞ ¼ nðn� 1Þ � knþ kþ1
2

� �

¼ n
2

� �

þ n�k
2

� �

. Therefore, when k� n� 2k þ 1,

the lower bound given in Theorem 1 and the upper bound given in Theorem 2

are the same, and any maximal k-degenerate graph of order n has this value for its

Wiener index.

Maximal 1-degenerate graphs are just trees and so all maximal 1-degenerate

graphs of diameter 2 are just stars. For k� 2, the graphs Kk þ Kn�k are maximal k-
degenerate graphs of diameter 2, but there are others.

We are able to characterize 2-trees of diameter 2. But the situation becomes

complicated as k gets larger.

Proposition 1 The following statements are equivalent for a 2-tree G :

1. G has diameter at most 2.

2. G does not contain P2
6.

3. G is T þ K1 for any tree T, or any graph formed by adding any number of
vertices adjacent to pairs of vertices of K3. See Fig. 1.

Proof 3 ) 1ð Þ The graphs described all have diameter at most 2.

1 ) 2ð Þ (contrapositive) We see P2
6 is a 2-tree with diameter 3. Adding a new

degree 2 vertex v to a 2-tree cannot decrease its diameter, since v’s neighbors are

adjacent. Thus a 2-tree containing P2
6 has diameter at least 3.

2 ) 3ð Þ Assume G does not contain P2
6. The 2-trees with orders 4 and 5 (K4 � e,

P4 þ K1, and K2 þ K3) don’t contain P2
6 and can be described as T þ K1. Any 2-tree

not containing P4 þ K1 is K1 þ K1;r, because any additional vertices must be rooted
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at the edge xy of K2 þ K3, see Fig. 1. Assume G has order at least 6. Since it does

not contain P2
6, there are three possibilities.

Case 1. G contains P5 þ K1. Then any additional vertices must be rooted on

edges incident with K1 (the vertex z), or else it will contain P2
6.

Case 2. G contains the triangular grid Tr2. Then the only edges that can be used

as roots are those of the central clique K3 (the triangle abc), or else it will contain

P2
6.

Case 3. G roots all additional vertices on the edges between vertices of degree 3

and 4 in P4 þ K1.

Graphs in Case 1 and Case 3 can be described as T þ K1, where T is a tree.

Graphs in Case 2 are formed by adding vertices rooted at edges from a fixed clique

K3. h

Maximal outerplanar graphs are exactly the 2-trees that are outerplanar [15]. A

graph is outerplanar if and only if it does not contain a subdivision of K4 or K2;3 [5].

Thus we have the following corollary.

Corollary 2 The maximal outerplanar graphs with diameter at most 2 are fans
Pn�1 þ K1 and the triangular grid Tr2.

A characterization of all maximal 2-degenerate graphs with diameter 2,

generalizing Proposition 1, has been proved in [3].

2

K + K2 3P + K1

P + K

4

1

P + K1

2−trees of order at most 5 and diameter 2

2−trees of order 6 and diameter 2 and containing 4

P + K13

5 T + K5 1

x

y

ba

z c
Tr

Fig. 1 Examples of 2-trees
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Since any maximal k-degenerate graph of order n� k þ 1 is k-connected and

diamðGÞ� bn�2
k c þ 1 for a k-connected graph G of order n, any maximal k-

degenerate graph of diameter at least 3 has order n� 2k þ 2.

Theorem 3 Let G be a k-tree of order n� 2k þ 2 and k� 1. Then WðGÞ ¼
Pbn�2

k c
i¼0

n�ik
2

� �

exactly when G ¼ Pk
n.

Proof We use induction on order n. By definition, a k-tree can be constructed from

a clique Kk, and the i-th vertex added is adjacent to at least k � iþ 1 vertices of the

starting clique. Thus the smallest order of a k-tree with diameter 3 is n ¼ 2k þ 2. To

achieve this, there is a unique choice (up to isomorphism) for the neighborhood of

each newly added vertex. Since Pk
2kþ2 has diameter 3, this is the k-tree that is

constructed. Thus the result holds for the base case of n ¼ 2k þ 2.

Let G be a k-tree of order n� 2k þ 3 that maximizes W Gð Þ, and assume that the

result holds for all k-trees of order n� 1. By the definition of a k-tree, G has a vertex

v of degree k such that G� v is a k-tree. By Lemma 1(ii),

W Gð Þ�W G� vð Þ þ rG vð Þ. We will show that G simultaneously achieves the

maximum possible values of W G� vð Þ and rG vð Þ, which means that no extremal

graph exists that does not do so.

Maximizing W G� vð Þ requires that G� v is the extremal graph Pk
n�1. Number

the vertices of G� v along the path from 1 to n� 1. Since k-trees of order at least
k þ 1 are k-connected, rG vð Þ is maximized when NG vð Þ ¼ 1; 2; . . .; kf g (or

NG vð Þ ¼ n� k; . . .; n� 1f g) since it achieves the bound in Lemma 2. When

n� 2k þ 3, any other choice for NG vð Þ has NG v; 2ð Þj j[ k, so rG vð Þ is not

maximized. Thus G ¼ Pk
n, and Theorem 2 provides the formula. h

Note that for k[ 1, there is a unique extremal graph for k-trees to achieve the

upper bound in Theorem 2 when k� n� k þ 2 or n� 2k þ 2, but not when

k þ 3� n� 2k þ 1.

By Theorems 1, 2 and Corollary 1, we have the following sharp bounds on

Wiener indices of maximal k-degenerate graphs for 1� k� 3.

Corollary 3 Let G be a maximal k-degenerate graph of order n� k� 1.

1. If k ¼ 1, then G is a tree and n2 � 2nþ 1�WðGÞ� n3

6
� n

6
: The extremal

graphs for the bounds are exactly K1 þ Kn�1 and Pn respectively, see [10].

2. If k ¼ 2, then n2 � 3nþ 3�WðGÞ� n3

12
þ n2

8
� n

12
� 1

16
þ ð�1Þn

16
:

For 2-trees, the extremal graphs for the lower bound are characterized in

Proposition 1; the extremal graphs for the upper bound are P2
n and K2 þ K3 (of

order 5), see Theorem 3.
For maximal outerplanar graph of order n� 3 (that is, outerplanar 2-trees), the
extremal graphs for the lower bound are fans Pn�1 þ K1 and the triangular grid

graph Tr2 if n ¼ 6; and the extremal graphs for the upper bound are P2
n.

3. If k ¼ 3, then n2 � 4nþ 6�WðGÞ� bn3
18
þ n2

6
c.

For 3-trees, it is easily checked that the extremal graphs for the upper bound
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are P3
n, K3 þ K3 of order 6 and four others of order 7 which are K3 þ K4,

K2 þ T5, where T5 is the tree of order 5 that is neither a path nor a star,
P5 þ K2, and the graph formed from K4 by adding degree 3 vertices inside 3

regions. See Fig. 2.
For Apollonian networks (planar 3-trees), the upper bound was given in [7].

The extremal graphs for the upper bound are P3
n and the last two graphs of

order 7 in Fig. 2.
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