ORIGINAL PAPER

Wiener Indices of Maximal k-Degenerate Graphs

Allan Bickle¹ · Zhongyuan Che²

Received: 14 January 2020 / Revised: 28 October 2020 / Accepted: 7 December 2020 / Published online: 9 January 2021 - The Author(s), under exclusive licence to Springer Japan KK part of Springer Nature 2021

Abstract

A graph is maximal k-degenerate if each induced subgraph has a vertex of degree at most k and adding any new edge to the graph violates this condition. In this paper, we provide sharp lower and upper bounds on Wiener indices of maximal k-degenerate graphs of order $n \ge k \ge 1$. A graph is *chordal* if every induced cycle in the graph is a triangle and chordal maximal k-degenerate graphs of order $n \geq k$ are k*trees*. For *k*-trees of order $n \ge 2k + 2$, we characterize all extremal graphs for the upper bound.

Keywords k -Tree \cdot Maximal k -degenerate graph \cdot Wiener index

1 Introduction

The *Wiener index* of a graph G , denoted by $W(G)$, is the summation of distances between all unordered vertex pairs of the graph. The concept was first introduced by Wiener in 1947 for applications in chemistry [[17\]](#page-8-0), and has been studied in terms of various names and equivalent concepts such as the total status $[13]$ $[13]$, the total distance $[10]$ $[10]$, the transmission $[16]$ $[16]$, and the *average distance* (or, *mean distance*) [\[9](#page-8-0)].

A graph with a property $\mathcal P$ is called *maximal* if it is complete or if adding an edge between any two non-adjacent vertices results in a new graph that does not have the property P. Finding bounds on Wiener indices of maximal planar graphs of a given order has attracted attention recently, see [\[7](#page-8-0), [8,](#page-8-0) [12](#page-8-0)]. For a maximal planar graph of order $n \ge 3$, its Wiener index has a sharp lower bound $n^2 - 4n + 6$. An Apollonian

 \boxtimes Zhongyuan Che zxc10@psu.edu Allan Bickle aub742@psu.edu

¹ Department of Mathematics, Penn State University, Altoona Campus, Altoona, PA 16601, USA

² Department of Mathematics, Penn State University, Beaver Campus, Monaca, PA 15061, USA

network is a chordal maximal planar graph. Wiener indices of Apollonian networks of order $n \ge 3$ have a sharp upper bound $\lfloor \frac{1}{18} (n^3 + 3n^2) \rfloor$, which also holds for maximal planar graphs of order $3 \le n \le 10$, and was conjectured to be valid for all $n \geq 3$ in [\[7](#page-8-0)]. Recently, the conjecture was confirmed in [\[12](#page-8-0)]. With an extra condition on vertex connectivity, it was shown $[8]$ $[8]$ that if G is a k-connected maximal planar graph of order *n*, then the mean distance $\mu(G) = \frac{W(G)}{\binom{n}{2}} \leq \frac{n}{3k} + O(\sqrt{n})$ for $k \in$ $\{3, 4, 5\}$ and the coefficient of *n* is the best possible.

Let k be a positive integer. A graph is k-degenerate if its vertices can be successively deleted so that when deleted, they have degree at most k . Note that Apollonian networks are maximal 3-degenerate graphs. In this paper, we provide sharp lower and upper bounds for Wiener indices of maximal k-degenerate graphs of order *n* and some extremal graphs for all $n \ge k \ge 1$. When the lower and upper bounds on Wiener indices are equal for maximal k -degenerate graphs of order n , their diameters are at most 2, which implies that $k \le n \le 2k + 1$. The extremal graphs for the lower bound have a nice description for 2-trees of diameter at most 2. Maximal k-degenerate graphs with diameter at least 3 have order at least $2k + 2$. For *k*-trees of order $n \ge 2k + 2$, we characterize all extremal graphs whose Wiener indices attain the upper bound. Our results generalize well-known sharp bounds on Wiener indices of some important classes of graphs such as trees and Apollonian networks.

2 Preliminaries

All graphs considered in the paper are simple graphs without loops or multiple edges. Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Then the order of G is $n = |V(G)|$ and the size of G is $|E(G)|$. Let K_n and P_n denote the clique and the path of order *n* respectively. Let \overline{K}_n be the compliment of K_n , that is, the graph on *n* isolated vertices. Let $G + H$ be the graph obtained from G and H by adding all possible edges between vertices of G and vertices of H . A complete bipartite graph $K_{r,s}$ is $\overline{K}_r + \overline{K}_s$.

A graph is connected if there is a path between any two vertices of the graph. The distance between two vertices u , v of a graph G is the length of a shortest path joining u and v in G, and denoted by $d_G(u, v)$. The distance between two vertices from different components is infinite if G is disconnected. The *eccentricity* $e_G(u)$ of a vertex u in G is the maximum distance between u and other vertices of G. The set of all vertices with distance i from the vertex u in G is denoted by $N_G(u, i)$ for $1 \le i \le e_G(u)$. In particular, the set of all vertices adjacent to vertex u in G is denoted by $N_G(u)$, and its cardinality $|N_G(u)|$ is called the degree of vertex u. The *diameter* of G, denoted by $diam(G)$, is the maximum distance between any two vertices of G. A subgraph H of G is said to be *isometric* in G if $d_H(x, y) = d_G(x, y)$ for any two vertices x, y of H. The status (or, transmission) of a vertex u in G, denoted by $\sigma_G(u)$, is the summation of the distances between u and all other vertices in G .

Lemma 1 [\[4](#page-8-0), [10](#page-8-0)] Let G be a connected graph. Then

- (i) $W(G) \geq 2{n \choose 2} - |E(G)|$, and the equality holds if and only if diam $(G) \leq 2$.
- (ii) $W(G) \leq W(G v) + \sigma_G(v)$ for any vertex v of G, and the equality holds if and only if $G - v$ is isometric in G.
- (iii) $W(G) = \sum_{i=1}^{diam(G)} i \cdot d_i$, where d_i is the number of unordered vertex pairs with distance i in G.

We are interested in k -degenerate graphs and maximal k -degenerate graphs, introduced in [\[14](#page-8-0)]. A subclass of maximal k-degenerate graphs called k-trees [\[1](#page-8-0)] is particularly important. A k -tree is a generalization for the concept of a tree and can be defined recursively: a clique K_k of order $k \ge 1$ is a k-tree, and any k-tree of order $n + 1$ can be obtained from a k-tree of order $n \geq k$ by adding a new vertex adjacent to all vertices of a clique of order k , which is called the *root* of the newly added vertex, and we say that the newly added vertex is rooted at the specific clique. By definitions, the order of a maximal k-degenerate graph can be any positive integer, while the order of a k-tree is at least k. A graph is a k-tree if and only if it is a chordal maximal k-degenerate graph of order $n \geq k$ [\[2](#page-8-0)]. A graph is maximal 1-degenerate if and only if it is a tree [\[14](#page-8-0)]. It is known [[15\]](#page-8-0) that 2-trees form a special subclass of planar graphs extending the concept of maximal outerplanar graphs, and maximal outerplanar graphs are the only 2-trees that are outerplanar. Planar 3-trees are just Apollonian networks.

The *k*-th power of a path P_n , denoted by P_n^k , has the same vertex set as P_n and two distinct vertices u and v are adjacent in P_n^k if and only if their distance in P_n is at most k. Note that the order *n* of P_n^k can be any positive integer. When $n \ge k$, P_n^k is a special type of k-tree. For $n \geq 2$, P_n^k is an extremal graph for the upper bound on Wiener indices of maximal k -degenerate graphs of order n .

A graph is called k-connected if the removal of any $k-1$ vertices of the graph does not result a disconnected or trivial graph. It is well-known that for a kconnected graph G of order *n*, $diam(G) \leq \frac{n-2}{k} + 1$. Since maximal *k*-degenerate graphs of order $n \geq k + 1$ are k-connected [[14\]](#page-8-0), this bound holds for them, and a characterization of the extremal graphs (among maximal k -degenerate graphs) appears in [\[2](#page-8-0)].

The following upper bound on vertex status of a k -connected graph of order n can be obtained by the fact that $\sigma_G(x) = \sum_{i=1}^{e_G(x)} i \cdot |N_G(x, i)|$ [[4,](#page-8-0) [10\]](#page-8-0). An equivalent upper bound formula was first appeared in [[11,](#page-8-0) Remark 2.6.1]. without reference papers available.

Lemma 2 [[6,](#page-8-0) [11](#page-8-0)] Let G be a k-connected graph of order $n \ge k + 1$ and $k \ge 1$. Then $\sigma_G(x) \leq (\lfloor \frac{n-2}{k} \rfloor + 1)(n-1 - \frac{k}{2} \lfloor \frac{n-2}{k} \rfloor)$ for any vertex x of G. Moreover, $\sigma_G(x)$ attains the upper bound if and only if x satisfies both properties: (i) $e_G(x) = \text{diam}(G) = \lfloor \frac{n-2}{k} \rfloor + 1$, and (ii) $|N_G(x, i)| = k$ for all $1 \le i \le \lfloor \frac{n-2}{k} \rfloor$.

If the graphs in consideration are maximal k -degenerate graphs, then the upper bound on vertex status in Lemma 2 can be achieved by any degree-k vertex of P_n^k

for all $n \geq k + 1$ and $k \geq 1$. Furthermore, the extremal graphs are exactly paths P_n when $k = 1$. If $k \ge 2$, then the extremal graphs can be different from P_n^k [\[2](#page-8-0)].

3 Sharp Bounds

Theorem 1 Let G be a k-degenerate graph of order $n \ge k \ge 1$. Then

$$
W(G) \ge n^2 - (k+1)n + \binom{k+1}{2}.
$$

The equality holds if and only if G is maximal k -degenerate with diam $(G) \leq 2$.

Proof By Lemma [1](#page-1-0) (i), $W(G) \ge 2{n \choose 2} - |E(G)|$ and the equality holds if and only if G has diameter at most 2. By Proposition 3 in $[14]$ $[14]$, a k-degenerate graph G of order $n \geq k$ has $|E(G)| \leq kn - {k+1 \choose 2}$. Moreover, a k-degenerate graph G of order $n \geq k$ is maximal if and only if $|E(G)| = kn - \binom{k+1}{2}$ [[2\]](#page-8-0). Therefore, $W(G) \ge n(n-1) - kn + \binom{k+1}{2} = n^2 - (k+1)n + \binom{k+1}{2}$, and the equality holds exactly when G is maximal k-degenerate with $diam(G) \leq 2$.

This bound is sharp since for $k \le n \le k + 1$, the only maximal k-degenerate graph is K_n . For $n \geq k+2$, $K_k + K_{n-k}$ achieves the bound.

Theorem 2 Let G be a maximal k-degenerate graph of order $n \ge 2$ and $D = \left\lfloor \frac{n-2}{k} \right\rfloor$. Then

$$
W(G) \le W(P_n^k) = \sum_{i=0}^{D} {n-ik \choose 2} = {n \choose 2} + {n-k \choose 2} + \cdots + {n-Dk \choose 2}.
$$

Proof We show that $W(G) \leq W(P_n^k)$ using induction on order *n*. When $2 \le n \le k+2$, P_n^k is the only such graph, so it is extremal. Let G be a maximal kdegenerate graph of order $n \geq k + 3$, and assume that the result holds for all maximal k-degenerate graphs of smaller orders. By $[14]$ $[14]$, G has a vertex v of degree k and $G - v$ is a maximal k-degenerate graph. Thus $W(G - v) \le W(P_{n-1}^k)$.

Label vertices of P_n^k along the path P_n as v_1, v_2, \ldots, v_n where $n \geq k + 3$. It is clear that P_n^k is k-connected and $\sigma_{P_n^k}(v_n)$ achieves the bound in Lemma [2](#page-2-0). By Lemma [1](#page-1-0) (ii), $W(G) \leq W(G - v) + \sigma_G(v) \leq W(P_n^k - v_n) + \sigma_{P_n^k}(v_n) = W(P_n^k)$.

Note $W(P_n^k) = {n \choose 2}$ when $2 \le n \le k+1$, so that the formula holds then. In P_n , there are $n - i$ pairs of vertices with distance i. Now distances $rk - k + 1$ through rk in P_n become r in P_h^k . Since $diam(P_h^k) = D + 1$ $diam(P_h^k) = D + 1$, by Lemma 1 (iii),

$$
W(P_n^k) = 1(n - 1) + \dots + 1(n - k)
$$

+ 2(n - k - 1) + \dots + 2(n - 2k)
+ 3(n - 2k - 1) + \dots + 3(n - 3k)
+ \dots
+ D(n - (D - 1)k - 1) + \dots + D(n - Dk)
+ (D + 1)(n - Dk - 1) + \dots + (D + 1)1
= (n - 1 + \dots + 1) + (n - k - 1 + \dots + 1) + (n - 2k - 1 + \dots + 1)
+ \dots + (n - (D - 1)k - 1 + \dots + 1) + (n - Dk - 1 + \dots + 1)
= {n \choose 2} + {n - k \choose 2} + {n - 2k \choose 2} + \dots + {n - (D - 1)k \choose 2} + {n - Dk \choose 2}

We now provide a closed form expression for $W(P_n^k)$ for all $n \ge 2$. **Corollary 1** Let $n \geq 2$ and $n - 2 \equiv j \mod k$ for $0 \leq j \leq k - 1$. Then

$$
W(P_n^k) = \frac{n^3}{6k} + \frac{(k-1)n^2}{4k} + \frac{(k-3)n}{12} + \frac{-2j^3 + 3j^2(k-3) - j(k^2 - 9k + 12) - 2k^2 + 6k - 4}{12k}.
$$

Proof We have

$$
W(P_n^k) = \sum_{i=0}^D {n - ik \choose 2} = \sum_{i=0}^D \frac{1}{2} (n - ik)(n - ik - 1)
$$

=
$$
\sum_{i=0}^D \left[\left(\frac{n^2}{2} - \frac{n}{2} \right) + \left(\frac{k}{2} - kn \right) i + \frac{k^2}{2} i^2 \right]
$$

=
$$
\sum_{i=0}^D \left(\frac{n^2}{2} - \frac{n}{2} \right) + \sum_{i=0}^D \left(\frac{k}{2} - kn \right) i + \sum_{i=0}^D \frac{k^2}{2} i^2
$$

=
$$
(D+1) \left(\frac{n^2}{2} - \frac{n}{2} \right) + \frac{D(D+1)}{2} \left(\frac{k}{2} - kn \right) + \frac{D(D+1)(2D+1)k^2}{6} = \frac{k^2}{6} D^3 + \left(\frac{k}{4} + \frac{k^2}{4} - \frac{kn}{2} \right) D^2 + \left(\frac{k}{4} + \frac{k^2}{12} - \frac{n}{2} - \frac{kn}{2} + \frac{n^2}{2} \right) D - \frac{n}{2} + \frac{n^2}{2}
$$

Since $D = \left\lfloor \frac{n-2}{k} \right\rfloor$, $n-2 = Dk + j$ for $0 \le j \le k-1$. Substituting $D = \frac{n-2-j}{k}$ into the above and simplifying, we obtain the formula. \Box

If $1 \leq k \leq 5$, this formula can be reduced to $W(P_n^k) = \left| \frac{2n^3 + 3(k-1)n^2 + k(k-3)n}{12k} \right|$. Formulas for small values of k and the beginnings of the resulting sequences are given in the following table. These sequences occur (shifted) in the On-Line Encyclopedia of Integer Sequences (OEIS). For $1 \le k \le 3$, they have many different combinatorial interpretations, which are listed in OEIS.

4 Extremal Graphs

Any graph of order *n* and diameter 1 is a clique and has Wiener index $\binom{n}{2}$. Any maximal k-degenerate graph of diameter 1 is K_n , $2 \le n \le k + 1$, which is also P_n^k . Recall that a graph G of order n and diameter 2 has $W(G) = n(n - 1) - |E(G)|$, and a maximal k-degenerate graph G of order $n \ge k$ has $|E(G)| = kn - \binom{k+1}{2}$. Then any maximal k-degenerate graph of order $n \geq k$ and diameter 2 has $W(G) = n(n-1) - kn + {\binom{k+1}{2}} = {\binom{n}{2}} + {\binom{n-k}{2}}$. Therefore, when $k \le n \le 2k+1$, the lower bound given in Theorem [1](#page-3-0) and the upper bound given in Theorem [2](#page-3-0) are the same, and any maximal k-degenerate graph of order n has this value for its Wiener index.

Maximal 1-degenerate graphs are just trees and so all maximal 1-degenerate graphs of diameter 2 are just stars. For $k \ge 2$, the graphs $K_k + K_{n-k}$ are maximal kdegenerate graphs of diameter 2, but there are others.

We are able to characterize 2-trees of diameter 2. But the situation becomes complicated as k gets larger.

Proposition 1 The following statements are equivalent for a 2-tree G :

- 1. G has diameter at most 2.
- 2. *G* does not contain P_6^2 .
- 3. G is $T + K_1$ for any tree T, or any graph formed by adding any number of vertices adjacent to pairs of vertices of K_3 . See Fig. [1](#page-6-0).

Proof $(3 \Rightarrow 1)$ The graphs described all have diameter at most 2.

 $(1 \Rightarrow 2)$ (contrapositive) We see P_6^2 is a 2-tree with diameter 3. Adding a new degree 2 vertex v to a 2-tree cannot decrease its diameter, since v 's neighbors are adjacent. Thus a 2-tree containing P_6^2 has diameter at least 3.

 $(2 \Rightarrow 3)$ Assume G does not contain P_6^2 . The 2-trees with orders 4 and 5 ($K_4 - e$, $P_4 + K_1$, and $K_2 + \overline{K}_3$) don't contain P_6^2 and can be described as $T + K_1$. Any 2-tree not containing $P_4 + K_1$ is $K_1 + K_{1,r}$, because any additional vertices must be rooted

2−trees of order at most 5 and diameter 2

2−trees of order 6 and diameter 2 and containing $\;$ $P_4^{}+K_1^{}$

Fig. 1 Examples of 2-trees

at the edge xy of $K_2 + \overline{K}_3$, see Fig. 1. Assume G has order at least 6. Since it does not contain P_6^2 , there are three possibilities.

Case 1. G contains $P_5 + K_1$. Then any additional vertices must be rooted on edges incident with K_1 (the vertex z), or else it will contain P_6^2 .

Case 2. G contains the triangular grid Tr_2 . Then the only edges that can be used as roots are those of the central clique K_3 (the triangle *abc*), or else it will contain P_6^2 .

Case 3. G roots all additional vertices on the edges between vertices of degree 3 and 4 in $P_4 + K_1$.

Graphs in Case 1 and Case 3 can be described as $T + K_1$, where T is a tree. Graphs in Case 2 are formed by adding vertices rooted at edges from a fixed clique K_3 .

Maximal outerplanar graphs are exactly the 2-trees that are outerplanar [[15\]](#page-8-0). A graph is outerplanar if and only if it does not contain a subdivision of K_4 or $K_{2,3}$ [[5\]](#page-8-0). Thus we have the following corollary.

Corollary 2 The maximal outerplanar graphs with diameter at most 2 are fans $P_{n-1} + K_1$ and the triangular grid Tr₂.

A characterization of all maximal 2-degenerate graphs with diameter 2, generalizing Proposition [1](#page-5-0), has been proved in [\[3](#page-8-0)].

Since any maximal k-degenerate graph of order $n \geq k+1$ is k-connected and $diam(G) \leq \lfloor \frac{n-2}{k} \rfloor + 1$ for a k-connected graph G of order n, any maximal kdegenerate graph of diameter at least 3 has order $n \ge 2k + 2$.

Theorem 3 Let G be a k-tree of order $n \geq 2k + 2$ and $k \geq 1$. Then $W(G)$ = $\sum_{i=0}^{\lfloor \frac{n-2}{k} \rfloor} \binom{n-ik}{2}$ exactly when $G = P_n^k$.

Proof We use induction on order n. By definition, a k-tree can be constructed from a clique K_k , and the *i*-th vertex added is adjacent to at least $k - i + 1$ vertices of the starting clique. Thus the smallest order of a k-tree with diameter 3 is $n = 2k + 2$. To achieve this, there is a unique choice (up to isomorphism) for the neighborhood of each newly added vertex. Since P_{2k+2}^k has diameter 3, this is the k-tree that is constructed. Thus the result holds for the base case of $n = 2k + 2$.

Let G be a k-tree of order $n \geq 2k + 3$ that maximizes $W(G)$, and assume that the result holds for all k-trees of order $n - 1$. By the definition of a k-tree, G has a vertex v of degree k such that $G - v$ is a k-tree. By Lemma [1\(](#page-1-0)ii), $W(G) \leq W(G - v) + \sigma_G(v)$. We will show that G simultaneously achieves the maximum possible values of $W(G - v)$ and $\sigma_G(v)$, which means that no extremal graph exists that does not do so.

Maximizing $W(G - v)$ requires that $G - v$ is the extremal graph P_{n-1}^k . Number the vertices of $G - v$ along the path from 1 to $n - 1$. Since k-trees of order at least $k + 1$ are k-connected, $\sigma_G(v)$ is maximized when $N_G(v) = \{1, 2, ..., k\}$ (or $N_G(v) = \{n - k, \ldots, n - 1\}$ since it achieves the bound in Lemma [2.](#page-2-0) When $n \ge 2k + 3$, any other choice for $N_G(v)$ has $|N_G(v, 2)| > k$, so $\sigma_G(v)$ is not maximized. Thus $G = P_n^k$, and Theorem [2](#page-3-0) provides the formula.

Note that for $k > 1$, there is a unique extremal graph for k-trees to achieve the upper bound in Theorem [2](#page-3-0) when $k \le n \le k+2$ or $n \ge 2k+2$, but not when $k + 3 \le n \le 2k + 1$.

By Theorems [1](#page-3-0), [2](#page-3-0) and Corollary [1](#page-4-0), we have the following sharp bounds on Wiener indices of maximal k-degenerate graphs for $1 \le k \le 3$.

Corollary 3 Let G be a maximal k-degenerate graph of order $n \ge k \ge 1$.

- 1. If $k = 1$, then G is a tree and $n^2 2n + 1 \leq W(G) \leq \frac{n^3}{6} \frac{n}{6}$. The extremal graphs for the bounds are exactly $K_1 + \overline{K}_{n-1}$ and P_n respectively, see [[10](#page-8-0)].
- 2. If $k = 2$, then $n^2 3n + 3 \le W(G) \le \frac{n^3}{12} + \frac{n^2}{8} \frac{n}{12} \frac{1}{16} + \frac{(-1)^n}{16}$. For 2-trees, the extremal graphs for the lower bound are characterized in Proposition [1](#page-5-0); the extremal graphs for the upper bound are P_n^2 and $K_2 + \overline{K}_3$ (of order 5), see Theorem 3.

For maximal outerplanar graph of order $n\geq 3$ (that is, outerplanar 2-trees), the extremal graphs for the lower bound are fans $P_{n-1} + K_1$ and the triangular grid graph Tr_2 if $n = 6$; and the extremal graphs for the upper bound are P_n^2 .

3. If $k = 3$, then $n^2 - 4n + 6 \le W(G) \le \lfloor \frac{n^3}{18} + \frac{n^2}{6} \rfloor$. For 3-trees, it is easily checked that the extremal graphs for the upper bound

Fig. 2 Examples of 3-trees of order 7

are P_n^3 , $K_3 + \overline{K}_3$ of order 6 and four others of order 7 which are $K_3 + \overline{K}_4$, $K_2 + T_5$, where T_5 is the tree of order 5 that is neither a path nor a star, $P_5 + K_2$, and the graph formed from K_4 by adding degree 3 vertices inside 3 regions. See Fig. 2.

For Apollonian networks (planar 3-trees), the upper bound was given in [7]. The extremal graphs for the upper bound are P_n^3 and the last two graphs of order 7 in Fig. 2.

Acknowledgements The authors would like to thank the referees for their helpful comments.

References

- 1. Beineke, L.W., Pippert, R.E.: The number of labeled \$k\$-dimensional trees. J. Combin. Theory 6, 200–205 (1969)
- 2. Bickle, A.: Structural results on maximal \$k\$-degenerate graphs. Discuss. Math. Graph Theory 32, 659–676 (2012)
- 3. Bickle, A.: Maximal \$k\$-degenerate graphs with diameter 2 (to appear)
- 4. Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood (1990)
- 5. Chartrand, G., Harary, F.: Planar permutation graphs. Ann. Inst. H. Poincaré Sect. B (N.S.) 3, 433–438 (1967)
- 6. Che, Z., Collins, K.L.: An upper bound on the Wiener index of a \$k\$-connected graph. arXiv:1811.02664 [math.CO]
- 7. Che, Z., Collins, K.L.: An upper bound on Wiener indices of maximal planar graphs. Discrete Appl. Math. 258, 76–86 (2019)
- 8. Czabarka, E., Dankelmann, P., Olsen, T., Székely, L.A.: Wiener index and remoteness in triangulations and quadrangulations. arXiv:1905.06753v1
- 9. Doyle, J.K., Graver, J.E.: Mean distance in a graph. Discrete Math. 7, 147–154 (1977)
- 10. Entringer, R.C., Jackson, D.E., Snyder, D.A.: Distance in graphs. Czech. Math. J. 26, 283–296 (1976)
- 11. Favaron, O., Kouider, M., Mahe´o, M.: Edge-vulnerability and mean distance. Networks 19, 493–504 (1989)
- 12. Ghosh, D., Győri, E., Paulos, A., Salia, N., Zamora, O.: The maximum Wiener index of maximal planar graphs. arXiv:1912.02846
- 13. Harary, F.: Status and contrastatus. Sociometry 22, 23–43 (1959)
- 14. Lick, D.R., White, A.T.: \$k\$-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)
- 15. Patil, H.P.: On the structure of \$k\$-trees. J. Combin. Inf. Syst. Sci. 11, 57–64 (1986)
- 16. Plesnı´k, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8, 1–21 (1984)
- 17. Wiener, H.: Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.