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Abstract

Given a graph G and a positive integer k, the sub-Ramsey number s7(G, k) is defined to
be the minimum number m such that every K, whose edges are colored using every
color at most k times contains a subgraph isomorphic to G all of whose edges have
distinct colors. In this paper, we will concentrate on sr(nK3, k) with nK, denoting a
matching of size n. We first give upper and lower bounds for sr(nK,, k) and exact
values of sr(nK,, k) for some n and k. Afterwards, we show that sr(nk, k) = 2n when
n is sufficiently large and k < g by applying the Local Lemma.

Keywords Sub-Ramsey number - Rainbow matchings - Local lemma

1 Introduction

All graphs considered in this paper are simple and finite. For terminology and
notation not defined here, we refer the reader to [5].

Let G be a graph and k a positive integer. An edge-coloring of G is a mapping
C: E(G) — N, where N is the set of natural numbers. We call C k-bounded if each
color appears at most k times. If k = 1, i.e., all edges of G have distinct colors, then
we say that G is rainbow. The sub-Ramsey number sr(G, k) is defined to be the
minimum number m such that every k-bounded edge-coloring of K,, contains a
rainbow subgraph isomorphic to G.
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The study of sub-Ramsey theory dates back to 1975 when Fred Galvin posed the
Advanced Problem 6034 in the American Mathematical Monthly [12]. The problem
description is as follows:

Suppose that the edges of the complete graph on n vertices are colored so that no
color appears more than k times. (1) If n>k 4 2, show that there is a rainbow
triangle. (2) Show that this is not necessarily so if n = k 4 1.

Galvin [12] gave a solution to this problem. After that, some related
generalizations began to emerge. In Ref. [3] the authors gave the definition of the
sub-Ramsey number and proved that sr(G,k) <r(G,k) (the definition of (G, k)
will be given later), and hence each sr(G, k) is guaranteed to be finite. So far the
sub-Ramsey number has been considered for several special graph classes-complete
graphs, paths, cycles and stars. Denote by K,,, P, and C, the complete graph, path
and cycle of n vertices respectively, and K, the star with n+ 1 vertices. For
complete graphs, Alspach et al. [3] proved that

(mn=1)(n—=2)k—1)+3
4 ’
where n >4 and k > 2. After that Hell et al. [16] showed that

k(n — 1) + 1 < sr(Kn, k) < °

en®? <sr(Kp, k) < (2n—3)(n—2)(k—1) 43

for some constant ¢, which improved the results of Alspach et al. For paths and
cycles, Hahn and Thomassen proved that sr(P,,, k) = s7(C,,k) = n when n > ck® in
Ref. [15]. Albert et al. [1] later showed that if n is sufficiently large and k < cn for
c< _%2, then sr(C,,k) = n. The sub-Ramsey numbers of stars have not been com-
pletely solved so far. The authors of Refs. [9, 13, 14] gave upper and lower bounds
for sr(K) », k) and some exact values of sr(Kj ,, k) when n or k is fixed. In addition
to this, sub-Ramsey numbers for arithmetic progressions are also studied [2, 4]. In
this paper, we will concentrate on the sub-Ramsey number of nK, which is a
matching of n independent edges.

First, according to the definition of sr(nK,, k), we can get the following simple
results:

1. sr(nkK,, k) >2n.
Note that K, contains no nK, for m<2n.

2. sr(nKy, k) > {3+ Vl-fk("_])J

Since K, can be colored with at most n — 1 colors when (r;) <k(n—1), we

have

sr(nky, k) > FJF\/HT"—UJ 1> {3+\/1+8k7(n—1)J
T 2 = 5 .

3. sr(nkKy, 1) =2n.
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When m=2n and k=1, K, must contain a rainbow nK,, and hence
sr(nKy, 1) <2n. Since sr(nk,, 1) >2n, we can get sr(nk, 1) = 2n. Therefore, we
assume k > 2 in the rest of the paper.

Let r(G, k) denote the Ramsey number for graph G, that is, (G, k) is the
minimum number m such that if the edges of K,, are partitioned into at most
k classes then some class contains a subgraph isomorphic to G. The following
proposition shows the relationship between sr(G, k) and (G, k).

Proposition 1 (Alspach et al. [3]) Let G be a given graph and k a positive integer.
Then sr(G, k) <r(G,k).

So knowing what is the value of r(nK3, k) is necessary to solve for sr(nk», k). In
1975, the Ramsey numbers for matchings are given by Cockayne and Lorimer [7].

Theorem 1 (Cockayne and Lorimer [7]) If ny,ny, . . .,n. are positive integers and
ny = max(ny,na,. .., n.), then r(m Ko, mKy, ... ,n.Ky) =ny + 1+ >0 (n;—1).

From this theorem we can know that if c = k and n; = n, = --- = ny = n then
r(nkKy, k) =nlk+ 1)+ 1 —k, so sr(nky, k) <r(nk,k) =n(k+1)+1—k. Our
following result improves the upper bound of sr(nKks, k) from O(nk) to O(nk?).

Theorem 2 Let n>3 and k> 5 be two integers. Then

5+/1+4n(n—1)(k — 1)J
5 .

sr(nky, k) < {

It is easy to verify that the upper bound of Theorem 2 is also true for sr(3K3, 3)
and sr(nk,,4) with n € {3,4,5,6}. Our next theorems give some exact values of
sr(nKy, k) when n or k is fixed. It is clear that sr(K,, k) = 2 so that n > 2 is assumed.

Theorem 3 sr(2K,,k) = max{s, {3+\/21+81<J }

Theorem 4

(1) sr(nk,,2) =2n for all n>3;
(2) sr(nK,,3) =2n for all n>3;
(3) sr(nkK,,4) = 2n for all n>3;
4) 2n<sr(nK,,5)<2n+1.

Theorem 4 shows that sr(nk;,2) = sr(nky,3) = sr(nk,,4) = 2n attains the
lower bound 2n and the upper bound of Theorem 2 for some n. A case is now
considered which shows that sr(3K,,5) = 7. It is probably the case that the upper
bound of Theorem 2 is closer to the truth than the lower bound 2n for some k.

Proposition 2 sr(3K,,5) =17.

It became clear that sr(nk,, k) <sr(nK,,k + 1). Judging from these results, the
gap between the lower bound 2n and the upper bound of Theorem 2 is not large. A
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question mentioned in Erdds et al. [8] is that of how fast can we allow k to grow and
guarantee that there exists a rainbow Hamilton cycle in a k-bounded edge-colored
K,. After that, this question was considered by many researchers. Albert et al. [1]
proved the following theorem, which showed that the growth rate of k can be linear.

Theorem 5 (Albert et al. [1]) If n is sufficiently large and k is at most [cn], where

c< ﬁ, then any k-bounded coloring of K,, contains a rainbow Hamilton cycle.

For other results related to the above question, we recommend papers
[10, 11, 15]. From Theorem 5 we can easily conclude that if n is sufficiently
large and k is at most [cn], where ¢< %, then any k-bounded coloring of K,
contains a rainbow nK,. Here, we show that ¢ < % is enough by giving the following
theorem.

Theorem 6 If n is sufficiently large and k<%, then sr(nK, k) = 2n.

We give the proofs of our results in the rest of this paper. Before that, we need to
introduce a definition. An (H, k)-colored graph G is a k-bounded edge-colored G so that no
H C G israinbow. We use C(G) to denote the set of colors appearing on the edges of G.

2 Proof of Theorem 2

Let K,, be (nK, k)-colored and let the colors used be ¢y, ¢s, . . ., ¢,. Denote by m; the
number of edges colored c;, where i = 1,2,...,p, then m; <k and

Let W denote the number of unordered pairs of disjoint edges of K, colored by the
same color. Clearly,

L my Poomi—1 I k-1 m\ k—1
W< = i < — = _ 1
—,Z:<z> ;m 2 —;m 2 (2) 2 (1)

Let ¢ denote the set of all subgraphs of K, isomorphic to nK,. Each unordered pairs
of disjoint edges colored by the same color appears in

(") ()

(n—2)!

graphs in 4. But K, contains
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G )5

n!

nK,’s each of which must contain a pair of edges of the same color by K, be
(nK,, k)-colored. Thus,

"))

(n—2)!

)T

- n!

w

By inequality (1), we have

(m)k_1<m;“)<m;6)~-

2) 2 (n—2)!
G5
= n(n—1)(n—2)! '

Finally,
o {z)

This yields

- {5 +/T+4n(n— 1)k — 1)J
< > .

Since the upper bound must be greater than or equal to the lower bound, we assume
that k> 5. Then we have
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2

5+¢H4w%4m—UJ>F+MH4mm—?
= 2

F+Mmm—nm—nJ
2

)

= 2n.

Hence the theorem holds.

3 Proof of Theorem 3

Consider the complete graph K, on the vertex set {vi,v,,vs,v4}. Clearly, K4

contains

3 =

matchings of size 2. Color each of the three matchings with one color (see Fig. 1).

If K4 is edge-colored with 3 colors such that C(viv2) = C(v3vs) = 1, C(vyv3) =
C(vav4) =2 and C(viv4) = C(vpv3) = 3, then it contains no rainbow 2K,. So,
sr(2K;, k) > 5. Note that we already showed that sr(2K;, k) > {3*— Vz”ng Now, we

proceed by proving the following lemma which also appears in Ref. [6].

Lemma 1 Any edge-coloring of K, (m>5) with at least 2 colors contains a

rainbow subgraph isomorphic to 2K5.

Proof For m> 35, let the edges of K, be colored with at least 2 colors. Suppose that
K., contains no rainbow 2K,. Let ¢; = v;v, be an arbitrary edge of K,,. Assume that
C(e;) =1and U = V(K,,) — {vi,v2}. Then C(e) = 1 for all edges e € E(K,,[U]).
Moreover, C(e) = 1 for all edges e € [{vi,v2}, U], since|U| > 3, where [{v;,v,}, U]
is the set of edges between {vi,v,} and U. Then K, is monochromatic, a

contradiction. [J

Fig. 1 2-bounded edge-coloring
of K4 contains no rainbow 2K,
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If (’;) > k, which yields m > |27, then, clearly, K,, is colored such that

at least two colors are used. By Lemma 1, K, contains a rainbow 2K,. Therefore,

sr(2Ky, k) < F‘Fi VZ'W‘J In conclusion, we have this theorem.

4 Proof of Theorem 4

The lower bounds are obvious. For the upper bounds of (1)—(3) of Theorem 4, we
prove them by contradiction. Before giving the proofs, we first make some
assumptions. Suppose that m = 2n and K,, is (nK3, k)-colored where k € {2,3,4}.
Let C(E(K,)) = {c1,¢2,...,¢,} and denote by e; the number of edges colored c;.
Then ¢; <k and

L 2n 2n(2n —1)
= T ) 0w n<kp.
> e <2> ' W —n<kp

Let ¢ denote the set of all subgraphs of K}, isomorphic to nK>, s denote the number
of unordered pairs of disjoint edges of K,, colored by the same color. Clearly,

P /e Piei—1 & k=1 (2n* —n)(k—1)

i=

and each pair of edges of the same color appears in

) -(6)

(n—2)!

graphs in % if the edges are vertex-disjoint. Note that K, contains

) ) )-6)

n!

subgraphs isomorphic to nK, each of which must contain a pair of edges of the same
color. Thus,

S(Z”;“)((nzfz;)f)w(i) G)E)G) e

Then we have
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(D

2)

3)

4)

When k = 2, it follows that s < # from inequality (2), and hence

2n 2n —2
2n2—n> 2 2

2 - nn—1)

by inequality (3). This yields % <n<2.But n>3, a contradiction.
When k = 3, s <2n% — n can be obtained from inequality (2). Hence, we have

(2)(":7)

nn—1)

2n2—n2

by inequality (3). This yields % <n<3. Recall that n>3. We have n = 3.
Then, by Theorem 2,

5 1+4x3x2x2
sr(3K2,3)§\‘ VIt 2X Xex J:6.

Similarly, we know that s < W”TL") when k = 4 by inequality (2). Then, we

have
3(2n* —n) < <22n) <2n2 2)
2 - nn—1)

by inequality (3). This yields % <n<6. Recall that n>3. We have
n € {3,4,5,6}. Then, by Theorem 2,

5 1+4 —1)x3
+1+4xnx(n )XJSQH-

sr(nky,4) < { >

By Theorem 2,

<5+\/1+4n(n71)(571)

sr(nky,5) >

<2n+2.

So 2n <sr(nk,,5) <2n+ 1.

5 Proof of Proposition 2

By Theorem 4 (4), we have sr(3K,,5) <7. Now, consider K on the vertex set
{v1,v2,v3,v4,Vs,V6}. Color the edges {vovs,vove,V3va, v3ve, vsv} with red color
and the edges {vivy,vivs,vivs,vavs,vave} with blue color and the edges
{v1v4, v1ve, vav3, vavs,v3vs} with green color. It is routine to verify that any
completion of this coloring to a 5-bounded edge-coloring will result in a (3K3,5)-
colored graph. Thus, sr(3K;,5) > 7 (see Fig. 2). This proposition holds.
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Fig. 2 5-bounded edge-coloring
of K¢ contains no rainbow 3K,

6 Proof of Theorem 6

It is clear that sr(nK,, k) > 2n. To prove that sr(nKj, k) <2n, we just have to show
that if n is sufficiently large and k < g, then any k-bounded edge-coloring of Kj,
contains a rainbow perfect matching. This proof technique follows the lines of
modification of the Local Lemma listed by Albert et al. in Ref. [1].

Lemma 2 (Albert et al. [1]) Let Ay,A,, ..., Ay denote events in some probability
space. Suppose that for each i there is a partition of [N|\{i} into X; and Y;. Let
m =max{|Y;| : i € [N]} and p = max{Pr(A]| ﬂIGXX,) :i € [N], X CX;}. If there
exists 0 < o<1 such that a(1 — ma) > B then Pr((, A;) > 0.

Let K = Kj, be a k-bounded edge-colored complete graph satisfying n is
sufficiently large and k < . Now, construct a graph G whose vertex set is the edge
set of K and two edges e, f of K correspond to the two end-vertices of an edge of G
if and only if C(e) = C(f). Thus a set of vertices of G is independent if and only if it
corresponds to a rainbow set of edges of K. Then we only need to prove that
K contains a perfect matching whose edge set is an independent vertex set in G.

Let H be a perfect matching chosen randomly and independently from the set of

@n! herfect matchings of K. Let {eifi : 1 <i< N} be the edge set of G and

2"n!

Ai={H : er.f: € E(H)}.

We will show that Pr(ﬂf.\’: | A;) > 0 to prove the conclusion we want. For 1 <i <N,
let

Y; = {j # i : one of e}, f; shares avertex with one of e;, f; }

and X; = [N]\(Y; U {i}). Obviously, ¥; < 8nk, so m < 8nk. Let X C X;, then no edge
in X shares an end-vertex with either e; or f;. Let e; = ujuy, f; = viv, and M be a
perfect matching containing both e; and f; but no edges of X. Consider two edges
a = ajap and b = b1b, of M. There are at least (n —2)(n — 3) - 4 choices for a, b.
For each such M, we construct M, , by removing the edges e;,f;,a, b from M and
adding 4 edges uja;, upas, viby, v2by which does not contain an edge of X. Then,
taking F(M) = {M,y, : a,basabove}, we have |F(M)|>4(n—2)(n—3) and
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FMM)NFM') =0 for M # M'. Let .4 denote the set of perfect matchings con-
taining e; and f;. Then, we have

PriAl(A ) = Y Pr{H =M
jex Meu jex
1 _
<5 Y Pr|He{M}UF(M)|[ 4
4n* —20n +25 =, jex
1
<——— ———
~ 4n? —20n + 25
Thus,
B
T 4n?2 —-20n+25°
We choose
1—+/1—-(8+¢€k/n
o=
16nk ’
then
8+¢ 1+4¢/8
M —m) 2 om = g

Thus o(1 —ma) > when € > 0 is sufficiently small and n is sufficiently large

which means Pr((,4;) >0 by Lemma 2. Therefore, we can find a rainbow
perfect matching in K. This completes the proof of Theorem 6.
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