ORIGINAL PAPER

Sub-Ramsey Numbers for Matchings

Fangfang Wu^{1,2} · Shenggui Zhang^{1,2} · Binlong Li^{1,2}

Received: 14 September 2019 / Revised: 12 July 2020 / Published online: 24 July 2020 © Springer Japan KK, part of Springer Nature 2020

Abstract

Given a graph *G* and a positive integer *k*, the sub-Ramsey number sr(G, k) is defined to be the minimum number *m* such that every K_m whose edges are colored using every color at most *k* times contains a subgraph isomorphic to *G* all of whose edges have distinct colors. In this paper, we will concentrate on $sr(nK_2, k)$ with nK_2 denoting a matching of size *n*. We first give upper and lower bounds for $sr(nK_2, k)$ and exact values of $sr(nK_2, k)$ for some *n* and *k*. Afterwards, we show that $sr(nK_2, k) = 2n$ when *n* is sufficiently large and $k < \frac{n}{8}$ by applying the Local Lemma.

Keywords Sub-Ramsey number · Rainbow matchings · Local lemma

1 Introduction

All graphs considered in this paper are simple and finite. For terminology and notation not defined here, we refer the reader to [5].

Let *G* be a graph and *k* a positive integer. An edge-coloring of *G* is a mapping $C : E(G) \to \mathbb{N}$, where \mathbb{N} is the set of natural numbers. We call *C k*-bounded if each color appears at most *k* times. If k = 1, i.e., all edges of *G* have distinct colors, then we say that *G* is rainbow. The *sub-Ramsey number sr*(*G*, *k*) is defined to be the minimum number *m* such that every *k*-bounded edge-coloring of K_m contains a rainbow subgraph isomorphic to *G*.

Shenggui Zhang sgzhang@nwpu.edu.cn

Fangfang Wu wufangfang2017@mail.nwpu.edu.cn

Binlong Li binlongli@nwpu.edu.cn

¹ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China

² Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China The study of sub-Ramsey theory dates back to 1975 when Fred Galvin posed the Advanced Problem 6034 in the American Mathematical Monthly [12]. The problem description is as follows:

Suppose that the edges of the complete graph on *n* vertices are colored so that no color appears more than *k* times. (1) If $n \ge k + 2$, show that there is a rainbow triangle. (2) Show that this is not necessarily so if n = k + 1.

Galvin [12] gave a solution to this problem. After that, some related generalizations began to emerge. In Ref. [3] the authors gave the definition of the sub-Ramsey number and proved that $sr(G,k) \le r(G,k)$ (the definition of r(G, k) will be given later), and hence each sr(G, k) is guaranteed to be finite. So far the sub-Ramsey number has been considered for several special graph classes-complete graphs, paths, cycles and stars. Denote by K_n , P_n and C_n the complete graph, path and cycle of n vertices respectively, and $K_{1,n}$ the star with n + 1 vertices. For complete graphs, Alspach et al. [3] proved that

$$k(n-1) + 1 \le sr(K_n, k) \le \frac{n(n-1)(n-2)(k-1) + 3}{4},$$

where $n \ge 4$ and $k \ge 2$. After that Hell et al. [16] showed that

$$cn^{3/2} \le sr(K_n, k) \le (2n-3)(n-2)(k-1) + 3$$

for some constant c, which improved the results of Alspach et al. For paths and cycles, Hahn and Thomassen proved that $sr(P_n, k) = sr(C_n, k) = n$ when $n \ge ck^3$ in Ref. [15]. Albert et al. [1] later showed that if n is sufficiently large and $k \le cn$ for $c < \frac{1}{32}$, then $sr(C_n, k) = n$. The sub-Ramsey numbers of stars have not been completely solved so far. The authors of Refs. [9, 13, 14] gave upper and lower bounds for $sr(K_{1,n}, k)$ and some exact values of $sr(K_{1,n}, k)$ when n or k is fixed. In addition to this, sub-Ramsey numbers for arithmetic progressions are also studied [2, 4]. In this paper, we will concentrate on the sub-Ramsey number of nK_2 which is a matching of n independent edges.

First, according to the definition of $sr(nK_2, k)$, we can get the following simple results:

- 1. $sr(nK_2, k) \ge 2n$. Note that K_m contains no nK_2 for m < 2n.
- 2. $sr(nK_2,k) \ge \left\lfloor \frac{3+\sqrt{1+8k(n-1)}}{2} \right\rfloor$.

Since K_m can be colored with at most n-1 colors when $\binom{m}{2} \leq k(n-1)$, we have

$$sr(nK_2,k) \ge \left\lfloor \frac{1+\sqrt{1+8k(n-1)}}{2} \right\rfloor + 1 \ge \left\lfloor \frac{3+\sqrt{1+8k(n-1)}}{2} \right\rfloor.$$

3. $sr(nK_2, 1) = 2n$.

🖄 Springer

When m = 2n and k = 1, K_m must contain a rainbow nK_2 , and hence $sr(nK_2, 1) \le 2n$. Since $sr(nK_2, 1) \ge 2n$, we can get $sr(nK_2, 1) = 2n$. Therefore, we assume $k \ge 2$ in the rest of the paper.

Let r(G, k) denote the Ramsey number for graph G, that is, r(G, k) is the minimum number m such that if the edges of K_m are partitioned into at most k classes then some class contains a subgraph isomorphic to G. The following proposition shows the relationship between sr(G, k) and r(G, k).

Proposition 1 (Alspach et al. [3]) Let G be a given graph and k a positive integer. Then $sr(G,k) \le r(G,k)$.

So knowing what is the value of $r(nK_2, k)$ is necessary to solve for $sr(nK_2, k)$. In 1975, the Ramsey numbers for matchings are given by Cockayne and Lorimer [7].

Theorem 1 (*Cockayne and Lorimer* [7]) *If* $n_1, n_2, ..., n_c$ *are positive integers and* $n_1 = max(n_1, n_2, ..., n_c)$, then $r(n_1K_2, n_2K_2, ..., n_cK_2) = n_1 + 1 + \sum_{i=1}^{c} (n_i - 1)$.

From this theorem we can know that if c = k and $n_1 = n_2 = \cdots = n_k = n$ then $r(nK_2, k) = n(k+1) + 1 - k$, so $sr(nK_2, k) \le r(nK_2, k) = n(k+1) + 1 - k$. Our following result improves the upper bound of $sr(nK_2, k)$ from O(nk) to $O(nk^{\frac{1}{2}})$.

Theorem 2 Let $n \ge 3$ and $k \ge 5$ be two integers. Then

$$sr(nK_2,k) \leq \left\lfloor \frac{5 + \sqrt{1 + 4n(n-1)(k-1)}}{2} \right\rfloor.$$

It is easy to verify that the upper bound of Theorem 2 is also true for $sr(3K_2, 3)$ and $sr(nK_2, 4)$ with $n \in \{3, 4, 5, 6\}$. Our next theorems give some exact values of $sr(nK_2, k)$ when *n* or *k* is fixed. It is clear that $sr(K_2, k) = 2$ so that $n \ge 2$ is assumed.

Theorem 3
$$sr(2K_2, k) = \max\left\{5, \left\lfloor\frac{3+\sqrt{1+8k}}{2}\right\rfloor\right\}.$$

Theorem 4

- (1) $sr(nK_2, 2) = 2n$ for all $n \ge 3$;
- (2) $sr(nK_2, 3) = 2n$ for all $n \ge 3$;
- (3) $sr(nK_2, 4) = 2n$ for all $n \ge 3$;
- (4) $2n \leq sr(nK_2, 5) \leq 2n + 1.$

Theorem 4 shows that $sr(nK_2, 2) = sr(nK_2, 3) = sr(nK_2, 4) = 2n$ attains the lower bound 2n and the upper bound of Theorem 2 for some n. A case is now considered which shows that $sr(3K_2, 5) = 7$. It is probably the case that the upper bound of Theorem 2 is closer to the truth than the lower bound 2n for some k.

Proposition 2 $sr(3K_2, 5) = 7$.

It became clear that $sr(nK_2, k) \le sr(nK_2, k+1)$. Judging from these results, the gap between the lower bound 2n and the upper bound of Theorem 2 is not large. A

question mentioned in Erdős et al. [8] is that of how fast can we allow k to grow and guarantee that there exists a rainbow Hamilton cycle in a k-bounded edge-colored K_n . After that, this question was considered by many researchers. Albert et al. [1] proved the following theorem, which showed that the growth rate of k can be linear.

Theorem 5 (Albert et al. [1]) If n is sufficiently large and k is at most $\lceil cn \rceil$, where $c < \frac{1}{32}$, then any k-bounded coloring of K_n contains a rainbow Hamilton cycle.

For other results related to the above question, we recommend papers [10, 11, 15]. From Theorem 5 we can easily conclude that if *n* is sufficiently large and *k* is at most $\lceil cn \rceil$, where $c < \frac{1}{16}$, then any *k*-bounded coloring of K_{2n} contains a rainbow nK_2 . Here, we show that $c < \frac{1}{8}$ is enough by giving the following theorem.

Theorem 6 If *n* is sufficiently large and $k < \frac{n}{8}$, then $sr(nK_2, k) = 2n$.

We give the proofs of our results in the rest of this paper. Before that, we need to introduce a definition. An (H, k)-colored graph G is a k-bounded edge-colored G so that no $H \subseteq G$ is rainbow. We use C(G) to denote the set of colors appearing on the edges of G.

2 Proof of Theorem 2

Let K_m be (nK_2, k) -colored and let the colors used be c_1, c_2, \ldots, c_p . Denote by m_i the number of edges colored c_i , where $i = 1, 2, \ldots, p$, then $m_i \le k$ and

$$\sum_{i=1}^p m_i = \binom{m}{2} = \frac{m(m-1)}{2}.$$

Let *W* denote the number of unordered pairs of disjoint edges of K_m colored by the same color. Clearly,

$$W \le \sum_{i=1}^{p} \binom{m_i}{2} = \sum_{i=1}^{p} m_i \frac{m_i - 1}{2} \le \sum_{i=1}^{p} m_i \frac{k - 1}{2} = \binom{m}{2} \frac{k - 1}{2}.$$
 (1)

Let \mathscr{G} denote the set of all subgraphs of K_m isomorphic to nK_2 . Each unordered pairs of disjoint edges colored by the same color appears in

$$\frac{\binom{m-4}{2}\binom{m-6}{2}\cdots\binom{m-(2n-2)}{2}}{(n-2)!}$$

graphs in \mathcal{G} . But K_m contains

$$\frac{\binom{m}{2}\binom{m-2}{2}\binom{m-4}{2}\cdots\binom{m-(2n-2)}{2}}{n!}$$

 nK_2 's each of which must contain a pair of edges of the same color by K_m be (nK_2, k) -colored. Thus,

$$W \frac{\binom{m-4}{2}\binom{m-6}{2} \cdots \binom{m-(2n-2)}{2}}{\binom{(n-2)!}{2}} \geq \frac{\binom{m}{2}\binom{m-2}{2}\binom{m-4}{2} \cdots \binom{m-(2n-2)}{2}}{n!}.$$

By inequality (1), we have

$$\binom{m}{2} \frac{k-1}{2} \frac{\binom{m-4}{2}\binom{m-6}{2} \cdots \binom{m-(2n-2)}{2}}{(n-2)!} \\ \ge \frac{\binom{m}{2}\binom{m-2}{2}\binom{m-4}{2} \cdots \binom{m-(2n-2)}{2}}{n(n-1)(n-2)!}.$$

Finally,

$$\frac{k-1}{2} \ge \frac{\binom{m-2}{2}}{n(n-1)}.$$

This yields

$$m \le \left\lfloor \frac{5 + \sqrt{1 + 4n(n-1)(k-1)}}{2} \right\rfloor$$

Since the upper bound must be greater than or equal to the lower bound, we assume that $k \ge 5$. Then we have

$$\left\lfloor \frac{5 + \sqrt{1 + 4n(n-1)(k-1)}}{2} \right\rfloor \ge \left\lfloor \frac{5 + \sqrt{1 + 16n(n-1)}}{2} \right\rfloor$$
$$\ge \left\lfloor \frac{5 + \sqrt{16(n-1)(n-1)}}{2} \right\rfloor$$
$$= \left\lfloor 2n + \frac{1}{2} \right\rfloor$$
$$= 2n.$$

Hence the theorem holds.

3 Proof of Theorem 3

Consider the complete graph K_4 on the vertex set $\{v_1, v_2, v_3, v_4\}$. Clearly, K_4 contains

$$\frac{\binom{4}{2}\binom{2}{2}}{2} = 3$$

matchings of size 2. Color each of the three matchings with one color (see Fig. 1).

If K_4 is edge-colored with 3 colors such that $C(v_1v_2) = C(v_3v_4) = 1$, $C(v_1v_3) = C(v_2v_4) = 2$ and $C(v_1v_4) = C(v_2v_3) = 3$, then it contains no rainbow $2K_2$. So, $sr(2K_2, k) \ge 5$. Note that we already showed that $sr(2K_2, k) \ge \left\lfloor \frac{3+\sqrt{1+8k}}{2} \right\rfloor$. Now, we proceed by proving the following lemma which also appears in Ref. [6].

Lemma 1 Any edge-coloring of K_m $(m \ge 5)$ with at least 2 colors contains a rainbow subgraph isomorphic to $2K_2$.

Proof For $m \ge 5$, let the edges of K_m be colored with at least 2 colors. Suppose that K_m contains no rainbow $2K_2$. Let $e_1 = v_1v_2$ be an arbitrary edge of K_m . Assume that $C(e_1) = 1$ and $U = V(K_m) - \{v_1, v_2\}$. Then C(e) = 1 for all edges $e \in E(K_m[U])$. Moreover, C(e) = 1 for all edges $e \in [\{v_1, v_2\}, U]$, since $|U| \ge 3$, where $[\{v_1, v_2\}, U]$ is the set of edges between $\{v_1, v_2\}$ and U. Then K_m is monochromatic, a contradiction. \Box

Fig. 1 2-bounded edge-coloring of K_4 contains no rainbow $2K_2$

If $\binom{m}{2} > k$, which yields $m \ge \lfloor \frac{3+\sqrt{1+8k}}{2} \rfloor$, then, clearly, K_m is colored such that at least two colors are used. By Lemma 1, K_m contains a rainbow $2K_2$. Therefore, $sr(2K_2,k) \le \lfloor \frac{3+\sqrt{1+8k}}{2} \rfloor$. In conclusion, we have this theorem.

4 Proof of Theorem 4

The lower bounds are obvious. For the upper bounds of (1)–(3) of Theorem 4, we prove them by contradiction. Before giving the proofs, we first make some assumptions. Suppose that m = 2n and K_m is (nK_2, k) -colored where $k \in \{2, 3, 4\}$. Let $C(E(K_m)) = \{c_1, c_2, ..., c_p\}$ and denote by e_i the number of edges colored c_i . Then $e_i \leq k$ and

$$\sum_{i=1}^{p} e_i = \binom{2n}{2} = \frac{2n(2n-1)}{2} = 2n^2 - n \le kp.$$

Let \mathscr{G} denote the set of all subgraphs of K_m isomorphic to nK_2 , s denote the number of unordered pairs of disjoint edges of K_m colored by the same color. Clearly,

$$s \le \sum_{i=1}^{p} \binom{e_i}{2} = \sum_{i=1}^{p} e_i \frac{e_i - 1}{2} \le \sum_{i=1}^{p} e_i \frac{k - 1}{2} = \frac{(2n^2 - n)(k - 1)}{2}, \quad (2)$$

and each pair of edges of the same color appears in

$$\frac{\binom{2n-4}{2}\binom{2n-6}{2}\cdots\binom{2}{2}}{(n-2)!}$$

graphs in \mathscr{G} if the edges are vertex-disjoint. Note that K_m contains

$$\frac{\binom{2n}{2}\binom{2n-2}{2}\binom{2n-4}{2}\cdots\binom{2}{2}}{n!}$$

subgraphs isomorphic to nK_2 each of which must contain a pair of edges of the same color. Thus,

$$s \frac{\binom{2n-4}{2}\binom{2n-6}{2}\dots\binom{2}{2}}{(n-2)!} \ge \frac{\binom{2n}{2}\binom{2n-2}{2}\binom{2n-4}{2}\dots\binom{2}{2}}{n!}.$$
 (3)

Then we have

(1) When k = 2, it follows that $s \le \frac{2n^2 - n}{2}$ from inequality (2), and hence

$$\frac{2n^2-n}{2} \ge \frac{\binom{2n}{2}\binom{2n-2}{2}}{n(n-1)}$$

by inequality (3). This yields $\frac{1}{2} \le n \le 2$. But $n \ge 3$, a contradiction.

(2) When k = 3, $s \le 2n^2 - n$ can be obtained from inequality (2). Hence, we have

$$2n^2 - n \ge \frac{\binom{2n}{2}\binom{2n-2}{2}}{n(n-1)}$$

by inequality (3). This yields $\frac{1}{2} \le n \le 3$. Recall that $n \ge 3$. We have n = 3. Then, by Theorem 2,

$$sr(3K_2,3) \leq \left\lfloor \frac{5 + \sqrt{1 + 4 \times 3 \times 2 \times 2}}{2} \right\rfloor = 6.$$

(3) Similarly, we know that $s \le \frac{3(2n^2-n)}{2}$ when k = 4 by inequality (2). Then, we have

$$\frac{3(2n^2 - n)}{2} \ge \frac{\binom{2n}{2}\binom{2n - 2}{2}}{n(n-1)}$$

by inequality (3). This yields $\frac{1}{2} \le n \le 6$. Recall that $n \ge 3$. We have $n \in \{3, 4, 5, 6\}$. Then, by Theorem 2,

$$sr(nK_2,4) \le \left\lfloor \frac{5 + \sqrt{1 + 4 \times n \times (n-1) \times 3}}{2} \right\rfloor \le 2n$$

(4) By Theorem 2,

$$sr(nK_2,5) < \frac{5 + \sqrt{1 + 4n(n-1)(5-1)}}{2} < 2n+2.$$

So $2n \le sr(nK_2, 5) \le 2n + 1$.

5 Proof of Proposition 2

By Theorem 4 (4), we have $sr(3K_2, 5) \le 7$. Now, consider K_6 on the vertex set $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Color the edges $\{v_2v_4, v_2v_6, v_3v_4, v_3v_6, v_5v_6\}$ with red color and the edges $\{v_1v_2, v_1v_3, v_1v_5, v_4v_5, v_4v_6\}$ with blue color and the edges $\{v_1v_4, v_1v_6, v_2v_3, v_2v_5, v_3v_5\}$ with green color. It is routine to verify that any completion of this coloring to a 5-bounded edge-coloring will result in a $(3K_2, 5)$ -colored graph. Thus, $sr(3K_2, 5) \ge 7$ (see Fig. 2). This proposition holds.

6 Proof of Theorem 6

It is clear that $sr(nK_2, k) \ge 2n$. To prove that $sr(nK_2, k) \le 2n$, we just have to show that if *n* is sufficiently large and $k < \frac{n}{8}$, then any *k*-bounded edge-coloring of K_{2n} contains a rainbow perfect matching. This proof technique follows the lines of modification of the Local Lemma listed by Albert et al. in Ref. [1].

Lemma 2 (Albert et al. [1]) Let $A_1, A_2, ..., A_N$ denote events in some probability space. Suppose that for each *i* there is a partition of $[N] \setminus \{i\}$ into X_i and Y_i . Let $m = \max\{|Y_i| : i \in [N]\}$ and $\beta = \max\{Pr(A_i|\bigcap_{j\in X}\overline{A_j}) : i \in [N], X \subseteq X_i\}$. If there exists $0 \le \alpha < 1$ such that $\alpha(1 - m\alpha) \ge \beta$ then $Pr(\bigcap_{i=1}^N \overline{A_i}) > 0$.

Let $K = K_{2n}$ be a k-bounded edge-colored complete graph satisfying *n* is sufficiently large and $k < \frac{n}{8}$. Now, construct a graph *G* whose vertex set is the edge set of *K* and two edges *e*, *f* of *K* correspond to the two end-vertices of an edge of *G* if and only if C(e) = C(f). Thus a set of vertices of *G* is independent if and only if it corresponds to a rainbow set of edges of *K*. Then we only need to prove that *K* contains a perfect matching whose edge set is an independent vertex set in *G*.

Let *H* be a perfect matching chosen randomly and independently from the set of $\frac{(2n)!}{2n+1}$ perfect matchings of *K*. Let $\{e_i f_i : 1 \le i \le N\}$ be the edge set of *G* and

$$A_i = \{H : e_i, f_i \in E(H)\}.$$

We will show that $Pr(\bigcap_{i=1}^{N} \overline{A_i}) > 0$ to prove the conclusion we want. For $1 \le i \le N$, let

 $Y_i = \{j \neq i : one \ of \ e_i, f_i \ shares \ a \ vertex \ with \ one \ of \ e_i, f_i \}$

and $X_i = [N] \setminus (Y_i \cup \{i\})$. Obviously, $Y_i \leq 8nk$, so $m \leq 8nk$. Let $X \subseteq X_i$, then no edge in X shares an end-vertex with either e_i or f_i . Let $e_i = u_1u_2$, $f_i = v_1v_2$ and M be a perfect matching containing both e_i and f_i but no edges of X. Consider two edges $a = a_1a_2$ and $b = b_1b_2$ of M. There are at least $(n - 2)(n - 3) \cdot 4$ choices for a, b. For each such M, we construct $M_{a,b}$ by removing the edges e_i, f_i, a, b from M and adding 4 edges $u_1a_1, u_2a_2, v_1b_1, v_2b_2$ which does not contain an edge of X. Then, taking $F(M) = \{M_{a,b} : a, b \text{ as above}\}$, we have $|F(M)| \geq 4(n - 2)(n - 3)$ and $F(M) \cap F(M') = \emptyset$ for $M \neq M'$. Let \mathcal{M} denote the set of perfect matchings containing e_i and f_i . Then, we have

$$\begin{aligned} \Pr\left(A_i | \bigcap_{j \in X} \overline{A_j}\right) &= \sum_{M \in \mathcal{M}} \Pr\left(H = M | \bigcap_{j \in X} \overline{A_j}\right) \\ &\leq \frac{1}{4n^2 - 20n + 25} \sum_{M \in \mathcal{M}} \Pr\left(H \in \{M\} \cup F(M) | \bigcap_{j \in X} \overline{A_j}\right) \\ &\leq \frac{1}{4n^2 - 20n + 25}. \end{aligned}$$

Thus,

$$\beta \le \frac{1}{4n^2 - 20n + 25}$$

We choose

$$\alpha = \frac{1 - \sqrt{1 - (8 + \epsilon)k/n}}{16nk}$$

then

$$\alpha(1-m\alpha) \geq \frac{8+\epsilon}{32n^2} = \frac{1+\epsilon/8}{4n^2}.$$

Thus $\alpha(1 - m\alpha) \ge \beta$ when $\epsilon > 0$ is sufficiently small and *n* is sufficiently large which means $Pr(\bigcap_{i=1}^{N} \overline{A_i}) > 0$ by Lemma 2. Therefore, we can find a rainbow perfect matching in *K*. This completes the proof of Theorem 6.

Acknowledgements Supported by NSFC (nos. 11671320, 11601429 and U1803263) and the Fundamental Research Funds for the Central Universities (no. 3102019GHJD003).

References

- 1. Albert, M., Frieze, A., Reed, B.: Multicoloured Hamilton cycles. Electron J. Combin. 2, # R10 (1995)
- Alon, N., Caro, Y., Tuza, Z.: Sub-Ramsey numbers for arithmetic progressions. Gr. Combin. 5(4), 307–314 (1989)
- Alspach, B., Gerson, M., Hahn, G., Hell, P.: On sub-Ramsey numbers. Ars Combin. 22, 199–206 (1986)
- Axenovich, M., Martin, R.: Sub-Ramsey numbers for arithmetic progressions. Gr. Combin. 22(3), 297–309 (2006)
- Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan London and Elsevier, New York (1976)
- Chen, H., Li, X., Tu, J.: Complete solution for the rainbow numbers of matchings. Discret. Math. 309, 3370–3380 (2009)
- 7. Cockayne, E.J., Lorimer, P.J.: The Ramsey number for stripes. J. Aust. Math. Soc. 19(2), 5 (1975)
- Erdős, P., Nestril, J., Rödl, V.: Some Problems Related to Partitions of Edges of a Graph in Graphs and Other Combinatorial Topics, pp. 54–63. Teubner, Leipzing (1983)
- 9. Fraisse, P., Hahn, G., Sotteau, D.: Star sub-Ramsey numbers. Discret. Math. 149(2), 153-163 (1987)
- 10. Frieze, A., Reed, B.: Polychromatic Hamilton cycles. Discret. Math. 118(1-3), 69-74 (1993)

- Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory—a dynamic survey, Theory Appl. Gr. 0(1) (2014)https://doi.org/10.20429/tag.2014.000101
- 12. Galvin, F.: Advanced problem number 6034. Am. Math. Mon. 82, 529 (1975)
- Hahn, G.: Anti-Ramsey numbers: an introduction. M.Sc. thesis, Simon Fraser University, Burnaby, BC (1977)
- 14. Hahn, G.: More star sub-Ramsey numbers. Discret. Math. 34(2), 131–139 (1981)
- Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey numbers and an edge colouring conjecture. Discret. Math. 62(1), 29–33 (1986)
- Hell, P., Jose, J., Montellano-Ballesteros, Polychromatic cliques. Discret. Math. 285(1–3), 319–322 (2004)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.