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Abstract
Given a graphG and a positive integer k, the sub-Ramsey number sr(G, k) is defined to
be the minimum number m such that every Km whose edges are colored using every

color at most k times contains a subgraph isomorphic to G all of whose edges have

distinct colors. In this paper, we will concentrate on srðnK2; kÞ with nK2 denoting a

matching of size n. We first give upper and lower bounds for srðnK2; kÞ and exact

values of srðnK2; kÞ for some n and k. Afterwards, we show that srðnK2; kÞ ¼ 2nwhen
n is sufficiently large and k\ n

8
by applying the Local Lemma.

Keywords Sub-Ramsey number � Rainbow matchings � Local lemma

1 Introduction

All graphs considered in this paper are simple and finite. For terminology and

notation not defined here, we refer the reader to [5].

Let G be a graph and k a positive integer. An edge-coloring of G is a mapping

C : EðGÞ ! N, where N is the set of natural numbers. We call C k-bounded if each

color appears at most k times. If k ¼ 1, i.e., all edges of G have distinct colors, then

we say that G is rainbow. The sub-Ramsey number sr(G, k) is defined to be the

minimum number m such that every k-bounded edge-coloring of Km contains a

rainbow subgraph isomorphic to G.
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The study of sub-Ramsey theory dates back to 1975 when Fred Galvin posed the

Advanced Problem 6034 in the American Mathematical Monthly [12]. The problem

description is as follows:

Suppose that the edges of the complete graph on n vertices are colored so that no

color appears more than k times. (1) If n� k þ 2, show that there is a rainbow

triangle. (2) Show that this is not necessarily so if n ¼ k þ 1.

Galvin [12] gave a solution to this problem. After that, some related

generalizations began to emerge. In Ref. [3] the authors gave the definition of the

sub-Ramsey number and proved that srðG; kÞ� rðG; kÞ (the definition of r(G, k)
will be given later), and hence each sr(G, k) is guaranteed to be finite. So far the

sub-Ramsey number has been considered for several special graph classes-complete

graphs, paths, cycles and stars. Denote by Kn, Pn and Cn the complete graph, path

and cycle of n vertices respectively, and K1;n the star with nþ 1 vertices. For

complete graphs, Alspach et al. [3] proved that

kðn� 1Þ þ 1� srðKn; kÞ�
nðn� 1Þðn� 2Þðk � 1Þ þ 3

4
;

where n� 4 and k� 2. After that Hell et al. [16] showed that

cn3=2 � srðKn; kÞ� ð2n� 3Þðn� 2Þðk � 1Þ þ 3

for some constant c, which improved the results of Alspach et al. For paths and

cycles, Hahn and Thomassen proved that srðPn; kÞ ¼ srðCn; kÞ ¼ n when n� ck3 in
Ref. [15]. Albert et al. [1] later showed that if n is sufficiently large and k� cn for

c\ 1
32
, then srðCn; kÞ ¼ n. The sub-Ramsey numbers of stars have not been com-

pletely solved so far. The authors of Refs. [9, 13, 14] gave upper and lower bounds

for srðK1;n; kÞ and some exact values of srðK1;n; kÞ when n or k is fixed. In addition

to this, sub-Ramsey numbers for arithmetic progressions are also studied [2, 4]. In

this paper, we will concentrate on the sub-Ramsey number of nK2 which is a

matching of n independent edges.

First, according to the definition of srðnK2; kÞ, we can get the following simple

results:

1. srðnK2; kÞ� 2n.
Note that Km contains no nK2 for m\2n.

2. srðnK2; kÞ�
3þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ8kðn�1Þ
p

2

� �

.

Since Km can be colored with at most n� 1 colors when
m
2

� �

� kðn� 1Þ, we

have

srðnK2; kÞ�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8kðn� 1Þ
p

2

$ %

þ 1� 3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8kðn� 1Þ
p

2

$ %

:

3. srðnK2; 1Þ ¼ 2n.
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When m ¼ 2n and k ¼ 1, Km must contain a rainbow nK2, and hence

srðnK2; 1Þ� 2n. Since srðnK2; 1Þ� 2n, we can get srðnK2; 1Þ ¼ 2n. Therefore, we
assume k� 2 in the rest of the paper.

Let r(G, k) denote the Ramsey number for graph G, that is, r(G, k) is the

minimum number m such that if the edges of Km are partitioned into at most

k classes then some class contains a subgraph isomorphic to G. The following

proposition shows the relationship between sr(G, k) and r(G, k).

Proposition 1 (Alspach et al. [3]) Let G be a given graph and k a positive integer.
Then srðG; kÞ� rðG; kÞ.

So knowing what is the value of rðnK2; kÞ is necessary to solve for srðnK2; kÞ. In
1975, the Ramsey numbers for matchings are given by Cockayne and Lorimer [7].

Theorem 1 (Cockayne and Lorimer [7]) If n1; n2; . . .; nc are positive integers and
n1 ¼ maxðn1; n2; . . .; ncÞ, then rðn1K2; n2K2; . . .; ncK2Þ ¼ n1 þ 1þ

Pc
i¼1ðni � 1Þ.

From this theorem we can know that if c ¼ k and n1 ¼ n2 ¼ � � � ¼ nk ¼ n then

rðnK2; kÞ ¼ nðk þ 1Þ þ 1� k, so srðnK2; kÞ� rðnK2; kÞ ¼ nðk þ 1Þ þ 1� k. Our

following result improves the upper bound of srðnK2; kÞ from O(nk) to Oðnk1
2Þ.

Theorem 2 Let n� 3 and k� 5 be two integers. Then

srðnK2; kÞ�
5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nðn� 1Þðk � 1Þ
p

2

$ %

:

It is easy to verify that the upper bound of Theorem 2 is also true for srð3K2; 3Þ
and srðnK2; 4Þ with n 2 f3; 4; 5; 6g. Our next theorems give some exact values of

srðnK2; kÞ when n or k is fixed. It is clear that srðK2; kÞ ¼ 2 so that n� 2 is assumed.

Theorem 3 srð2K2; kÞ ¼ max 5; 3þ
ffiffiffiffiffiffiffiffi

1þ8k
p

2

j kn o

.

Theorem 4

(1) srðnK2; 2Þ ¼ 2n for all n� 3;

(2) srðnK2; 3Þ ¼ 2n for all n� 3;

(3) srðnK2; 4Þ ¼ 2n for all n� 3;

(4) 2n� srðnK2; 5Þ� 2nþ 1.

Theorem 4 shows that srðnK2; 2Þ ¼ srðnK2; 3Þ ¼ srðnK2; 4Þ ¼ 2n attains the

lower bound 2n and the upper bound of Theorem 2 for some n. A case is now

considered which shows that srð3K2; 5Þ ¼ 7. It is probably the case that the upper

bound of Theorem 2 is closer to the truth than the lower bound 2n for some k.

Proposition 2 srð3K2; 5Þ ¼ 7.

It became clear that srðnK2; kÞ� srðnK2; k þ 1Þ. Judging from these results, the

gap between the lower bound 2n and the upper bound of Theorem 2 is not large. A
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question mentioned in Erd}os et al. [8] is that of how fast can we allow k to grow and

guarantee that there exists a rainbow Hamilton cycle in a k-bounded edge-colored

Kn. After that, this question was considered by many researchers. Albert et al. [1]

proved the following theorem, which showed that the growth rate of k can be linear.

Theorem 5 (Albert et al. [1]) If n is sufficiently large and k is at most dcne, where
c\ 1

32
, then any k-bounded coloring of Kn contains a rainbow Hamilton cycle.

For other results related to the above question, we recommend papers

[10, 11, 15]. From Theorem 5 we can easily conclude that if n is sufficiently

large and k is at most dcne, where c\ 1
16
, then any k-bounded coloring of K2n

contains a rainbow nK2. Here, we show that c\ 1
8
is enough by giving the following

theorem.

Theorem 6 If n is sufficiently large and k\ n
8
, then srðnK2; kÞ ¼ 2n.

We give the proofs of our results in the rest of this paper. Before that, we need to

introduce adefinition.An (H, k)-coloredgraphG is ak-boundededge-coloredG so that no

H � G is rainbow.We use C(G) to denote the set of colors appearing on the edges ofG.

2 Proof of Theorem 2

Let Km be ðnK2; kÞ-colored and let the colors used be c1; c2; . . .; cp. Denote by mi the

number of edges colored ci, where i ¼ 1; 2; . . .; p, then mi � k and

X

p

i¼1

mi ¼
m

2

� �

¼ mðm� 1Þ
2

:

Let W denote the number of unordered pairs of disjoint edges of Km colored by the

same color. Clearly,

W �
X

p

i¼1

mi

2

� �

¼
X

p

i¼1

mi
mi � 1

2
�
X

p

i¼1

mi
k � 1

2
¼

m

2

� �

k � 1

2
: ð1Þ

Let G denote the set of all subgraphs of Km isomorphic to nK2. Each unordered pairs

of disjoint edges colored by the same color appears in

m� 4

2

� �

m� 6

2

� �

. . .
m� ð2n� 2Þ

2

� �

ðn� 2Þ!

graphs in G. But Km contains
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m

2

� �

m� 2

2

� �

m� 4

2

� �

. . .
m� ð2n� 2Þ

2

� �

n!

nK2’s each of which must contain a pair of edges of the same color by Km be

ðnK2; kÞ-colored. Thus,

W

m� 4

2

� �

m� 6

2

� �

. . .
m� ð2n� 2Þ

2

� �

ðn� 2Þ!

�

m

2

� �

m� 2

2

� �

m� 4

2

� �

. . .
m� ð2n� 2Þ

2

� �

n!
:

By inequality (1), we have

m

2

� �

k � 1

2

m� 4

2

� �

m� 6

2

� �

. . .
m� ð2n� 2Þ

2

� �

ðn� 2Þ!

�

m

2

� �

m� 2

2

� �

m� 4

2

� �

. . .
m� ð2n� 2Þ

2

� �

nðn� 1Þðn� 2Þ! :

Finally,

k � 1

2
�

m� 2

2

� �

nðn� 1Þ :

This yields

m� 5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nðn� 1Þðk � 1Þ
p

2

$ %

:

Since the upper bound must be greater than or equal to the lower bound, we assume

that k� 5. Then we have
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5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nðn� 1Þðk � 1Þ
p

2

$ %

� 5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 16nðn� 1Þ
p

2

$ %

� 5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16ðn� 1Þðn� 1Þ
p

2

$ %

¼ 2nþ 1

2

� �

¼ 2n:

Hence the theorem holds.

3 Proof of Theorem 3

Consider the complete graph K4 on the vertex set fv1; v2; v3; v4g. Clearly, K4

contains

4

2

� �

2

2

� �

2
¼ 3

matchings of size 2. Color each of the three matchings with one color (see Fig. 1).

If K4 is edge-colored with 3 colors such that Cðv1v2Þ ¼ Cðv3v4Þ ¼ 1, Cðv1v3Þ ¼
Cðv2v4Þ ¼ 2 and Cðv1v4Þ ¼ Cðv2v3Þ ¼ 3, then it contains no rainbow 2K2. So,

srð2K2; kÞ� 5. Note that we already showed that srð2K2; kÞ� 3þ
ffiffiffiffiffiffiffiffi

1þ8k
p

2

j k

. Now, we

proceed by proving the following lemma which also appears in Ref. [6].

Lemma 1 Any edge-coloring of Km ðm� 5Þ with at least 2 colors contains a
rainbow subgraph isomorphic to 2K2.

Proof For m� 5, let the edges of Km be colored with at least 2 colors. Suppose that

Km contains no rainbow 2K2. Let e1 ¼ v1v2 be an arbitrary edge of Km. Assume that

Cðe1Þ ¼ 1 and U ¼ VðKmÞ � fv1; v2g. Then CðeÞ ¼ 1 for all edges e 2 EðKm½U�Þ.
Moreover, CðeÞ ¼ 1 for all edges e 2 ½fv1; v2g;U�, sincejUj � 3, where ½fv1; v2g;U�
is the set of edges between fv1; v2g and U. Then Km is monochromatic, a

contradiction. h

Fig. 1 2-bounded edge-coloring
of K4 contains no rainbow 2K2
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If
m
2

� �

[ k, which yields m� 3þ
ffiffiffiffiffiffiffiffi

1þ8k
p

2

j k

, then, clearly, Km is colored such that

at least two colors are used. By Lemma 1, Km contains a rainbow 2K2. Therefore,

srð2K2; kÞ� 3þ
ffiffiffiffiffiffiffiffi

1þ8k
p

2

j k

. In conclusion, we have this theorem.

4 Proof of Theorem 4

The lower bounds are obvious. For the upper bounds of (1)–(3) of Theorem 4, we

prove them by contradiction. Before giving the proofs, we first make some

assumptions. Suppose that m ¼ 2n and Km is ðnK2; kÞ-colored where k 2 f2; 3; 4g.
Let CðEðKmÞÞ ¼ fc1; c2; . . .; cpg and denote by ei the number of edges colored ci.

Then ei � k and

X

p

i¼1

ei ¼
2n

2

� �

¼ 2nð2n� 1Þ
2

¼ 2n2 � n� kp:

Let G denote the set of all subgraphs of Km isomorphic to nK2, s denote the number

of unordered pairs of disjoint edges of Km colored by the same color. Clearly,

s�
X

p

i¼1

ei

2

� �

¼
X

p

i¼1

ei
ei � 1

2
�
X

p

i¼1

ei
k � 1

2
¼ ð2n2 � nÞðk � 1Þ

2
; ð2Þ

and each pair of edges of the same color appears in

2n� 4

2

� �

2n� 6

2

� �

. . .
2

2

� �

ðn� 2Þ!

graphs in G if the edges are vertex-disjoint. Note that Km contains

2n

2

� �

2n� 2

2

� �

2n� 4

2

� �

. . .
2

2

� �

n!

subgraphs isomorphic to nK2 each of which must contain a pair of edges of the same

color. Thus,

s

2n� 4

2

� �

2n� 6

2

� �

. . .
2

2

� �

ðn� 2Þ! �

2n

2

� �

2n� 2

2

� �

2n� 4

2

� �

. . .
2

2

� �

n!
:

ð3Þ

Then we have
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(1) When k ¼ 2, it follows that s� 2n2�n
2

from inequality (2), and hence

2n2 � n

2
�

2n

2

� �

2n� 2

2

� �

nðn� 1Þ

by inequality (3). This yields 1
2
� n� 2. But n� 3, a contradiction.

(2) When k ¼ 3, s� 2n2 � n can be obtained from inequality (2). Hence, we have

2n2 � n�

2n

2

� �

2n� 2

2

� �

nðn� 1Þ

by inequality (3). This yields 1
2
� n� 3. Recall that n� 3. We have n ¼ 3.

Then, by Theorem 2,

srð3K2; 3Þ�
5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4� 3� 2� 2
p

2

� �

¼ 6:

(3) Similarly, we know that s� 3ð2n2�nÞ
2

when k ¼ 4 by inequality (2). Then, we

have

3ð2n2 � nÞ
2

�

2n

2

� �

2n� 2

2

� �

nðn� 1Þ

by inequality (3). This yields 1
2
� n� 6. Recall that n� 3. We have

n 2 f3; 4; 5; 6g. Then, by Theorem 2,

srðnK2; 4Þ�
5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4� n� ðn� 1Þ � 3
p

2

$ %

� 2n:

(4) By Theorem 2,

srðnK2; 5Þ\
5þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4nðn� 1Þð5� 1Þ
p

2
\2nþ 2:

So 2n� srðnK2; 5Þ� 2nþ 1.

5 Proof of Proposition 2

By Theorem 4 (4), we have srð3K2; 5Þ� 7. Now, consider K6 on the vertex set

fv1; v2; v3; v4; v5; v6g. Color the edges fv2v4; v2v6; v3v4; v3v6; v5v6g with red color

and the edges fv1v2; v1v3; v1v5; v4v5; v4v6g with blue color and the edges

fv1v4; v1v6; v2v3; v2v5; v3v5g with green color. It is routine to verify that any

completion of this coloring to a 5-bounded edge-coloring will result in a ð3K2; 5Þ-
colored graph. Thus, srð3K2; 5Þ� 7 (see Fig. 2). This proposition holds.
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6 Proof of Theorem 6

It is clear that srðnK2; kÞ� 2n. To prove that srðnK2; kÞ� 2n, we just have to show

that if n is sufficiently large and k\ n
8
, then any k-bounded edge-coloring of K2n

contains a rainbow perfect matching. This proof technique follows the lines of

modification of the Local Lemma listed by Albert et al. in Ref. [1].

Lemma 2 (Albert et al. [1]) Let A1;A2; . . .;AN denote events in some probability
space. Suppose that for each i there is a partition of ½N�nfig into Xi and Yi. Let

m ¼ maxfjYij : i 2 ½N�g and b ¼ maxfPrðAij
T

j2X AjÞ : i 2 ½N�; X � Xig. If there

exists 0� a\1 such that að1� maÞ� b then Prð
TN

i¼1 AiÞ[ 0.

Let K ¼ K2n be a k-bounded edge-colored complete graph satisfying n is

sufficiently large and k\ n
8
. Now, construct a graph G whose vertex set is the edge

set of K and two edges e; f of K correspond to the two end-vertices of an edge of G
if and only if CðeÞ ¼ Cðf Þ. Thus a set of vertices of G is independent if and only if it

corresponds to a rainbow set of edges of K. Then we only need to prove that

K contains a perfect matching whose edge set is an independent vertex set in G.
Let H be a perfect matching chosen randomly and independently from the set of

ð2nÞ!
2nn! perfect matchings of K. Let feifi : 1� i�Ng be the edge set of G and

Ai ¼ fH : ei; fi 2 EðHÞg:

We will show that Prð
TN

i¼1 AiÞ[ 0 to prove the conclusion we want. For 1� i�N,
let

Yi ¼ fj 6¼ i : one of ej; fj shares a vertex with one of ei; fig

and Xi ¼ ½N�nðYi [ figÞ. Obviously, Yi � 8nk, so m� 8nk. Let X � Xi, then no edge

in X shares an end-vertex with either ei or fi. Let ei ¼ u1u2, fi ¼ v1v2 and M be a

perfect matching containing both ei and fi but no edges of X. Consider two edges

a ¼ a1a2 and b ¼ b1b2 of M. There are at least ðn� 2Þðn� 3Þ � 4 choices for a, b.
For each such M, we construct Ma;b by removing the edges ei; fi; a; b from M and

adding 4 edges u1a1, u2a2, v1b1, v2b2 which does not contain an edge of X. Then,
taking FðMÞ ¼ fMa;b : a; b as aboveg, we have jFðMÞj � 4ðn� 2Þðn� 3Þ and

Fig. 2 5-bounded edge-coloring
of K6 contains no rainbow 3K2

123

Graphs and Combinatorics (2020) 36:1675–1685 1683



FðMÞ \ FðM0Þ ¼ ; for M 6¼ M0. Let M denote the set of perfect matchings con-

taining ei and fi. Then, we have

Pr Aij
\

j2X
Aj

 !

¼
X

M2M
Pr H ¼ Mj

\

j2X
Aj

 !

� 1

4n2 � 20nþ 25

X

M2M
Pr H 2 fMg [ FðMÞj

\

j2X
Aj

 !

� 1

4n2 � 20nþ 25
:

Thus,

b� 1

4n2 � 20nþ 25
:

We choose

a ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ð8þ �Þk=n
p

16nk
;

then

að1� maÞ� 8þ �

32n2
¼ 1þ �=8

4n2
:

Thus að1� maÞ� b when �[ 0 is sufficiently small and n is sufficiently large

which means Prð
TN

i¼1 AiÞ[ 0 by Lemma 2. Therefore, we can find a rainbow

perfect matching in K. This completes the proof of Theorem 6.
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