ORIGINAL PAPER

Sub-Ramsey Numbers for Matchings

Fangfang Wu^{1,2} · Shenggui Zhang^{1,2} · Binlong Li^{1,2}

Received: 14 September 2019 / Revised: 12 July 2020 / Published online: 24 July 2020 - Springer Japan KK, part of Springer Nature 2020

Abstract

Given a graph G and a positive integer k, the sub-Ramsey number $sr(G, k)$ is defined to be the minimum number m such that every K_m whose edges are colored using every color at most k times contains a subgraph isomorphic to G all of whose edges have distinct colors. In this paper, we will concentrate on $sr(nK_2, k)$ with nK_2 denoting a matching of size *n*. We first give upper and lower bounds for $sr(nK_2, k)$ and exact values of $sr(nK_2, k)$ for some n and k. Afterwards, we show that $sr(nK_2, k) = 2n$ when *n* is sufficiently large and $k < \frac{n}{8}$ by applying the Local Lemma.

Keywords Sub-Ramsey number · Rainbow matchings · Local lemma

1 Introduction

All graphs considered in this paper are simple and finite. For terminology and notation not defined here, we refer the reader to [[5\]](#page-9-0).

Let G be a graph and k a positive integer. An edge-coloring of G is a mapping $C: E(G) \to \mathbb{N}$, where $\mathbb N$ is the set of natural numbers. We call C k-bounded if each color appears at most k times. If $k = 1$, i.e., all edges of G have distinct colors, then we say that G is rainbow. The *sub-Ramsey number* $sr(G, k)$ is defined to be the minimum number m such that every k-bounded edge-coloring of K_m contains a rainbow subgraph isomorphic to G.

 \boxtimes Shenggui Zhang sgzhang@nwpu.edu.cn Fangfang Wu wufangfang2017@mail.nwpu.edu.cn

> Binlong Li binlongli@nwpu.edu.cn

¹ School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China

² Xi'an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University, Xi'an 710129, Shaanxi, China

The study of sub-Ramsey theory dates back to 1975 when Fred Galvin posed the Advanced Problem 6034 in the American Mathematical Monthly [\[12](#page-10-0)]. The problem description is as follows:

Suppose that the edges of the complete graph on n vertices are colored so that no color appears more than k times. (1) If $n \geq k + 2$, show that there is a rainbow triangle. (2) Show that this is not necessarily so if $n = k + 1$.

Galvin $[12]$ $[12]$ gave a solution to this problem. After that, some related generalizations began to emerge. In Ref. [\[3](#page-9-0)] the authors gave the definition of the sub-Ramsey number and proved that $sr(G, k) \leq r(G, k)$ (the definition of $r(G, k)$) will be given later), and hence each $sr(G, k)$ is guaranteed to be finite. So far the sub-Ramsey number has been considered for several special graph classes-complete graphs, paths, cycles and stars. Denote by K_n , P_n and C_n the complete graph, path and cycle of *n* vertices respectively, and $K_{1,n}$ the star with $n + 1$ vertices. For complete graphs, Alspach et al. [[3\]](#page-9-0) proved that

$$
k(n-1)+1 \le sr(K_n,k) \le \frac{n(n-1)(n-2)(k-1)+3}{4},
$$

where $n \geq 4$ and $k \geq 2$. After that Hell et al. [[16\]](#page-10-0) showed that

$$
cn^{3/2} \le sr(K_n, k) \le (2n - 3)(n - 2)(k - 1) + 3
$$

for some constant c , which improved the results of Alspach et al. For paths and cycles, Hahn and Thomassen proved that $sr(P_n, k) = sr(C_n, k) = n$ when $n \ge ck^3$ in Ref. [\[15](#page-10-0)]. Albert et al. [[1\]](#page-9-0) later showed that if *n* is sufficiently large and $k \leq cn$ for $c<\frac{1}{32}$, then $sr(C_n, k) = n$. The sub-Ramsey numbers of stars have not been completely solved so far. The authors of Refs. [\[9](#page-9-0), [13,](#page-10-0) [14\]](#page-10-0) gave upper and lower bounds for $sr(K_{1,n}, k)$ and some exact values of $sr(K_{1,n}, k)$ when n or k is fixed. In addition to this, sub-Ramsey numbers for arithmetic progressions are also studied $[2, 4]$ $[2, 4]$ $[2, 4]$. In this paper, we will concentrate on the sub-Ramsey number of nK_2 which is a matching of n independent edges.

First, according to the definition of $sr(nK_2, k)$, we can get the following simple results:

- 1. $sr(nK_2, k) \ge 2n$. Note that K_m contains no nK_2 for $m<2n$.
- 2. $sr(nK_2, k) \ge \left(\frac{3+\sqrt{1+8k(n-1)}}{2}\right)$ 2 $\frac{1}{2}$ contains no m .

Since K_m can be colored with at most $n-1$ colors when $\binom{m}{2}$ \sqrt{m} $\leq k(n-1)$, we have

$$
sr(nK_2,k) \ge \left\lfloor \frac{1+\sqrt{1+8k(n-1)}}{2} \right\rfloor + 1 \ge \left\lfloor \frac{3+\sqrt{1+8k(n-1)}}{2} \right\rfloor.
$$

3. $sr(nK_2, 1) = 2n$.

When $m = 2n$ and $k = 1$, K_m must contain a rainbow nK_2 , and hence $sr(nK_2, 1) \leq 2n$. Since $sr(nK_2, 1) \geq 2n$, we can get $sr(nK_2, 1) = 2n$. Therefore, we assume $k \geq 2$ in the rest of the paper.

Let $r(G, k)$ denote the Ramsey number for graph G, that is, $r(G, k)$ is the minimum number m such that if the edges of K_m are partitioned into at most k classes then some class contains a subgraph isomorphic to G . The following proposition shows the relationship between $sr(G, k)$ and $r(G, k)$.

Proposition 1 (Alspach et al. $[3]$ $[3]$) Let G be a given graph and k a positive integer. Then $sr(G, k) \le r(G, k)$.

So knowing what is the value of $r(nK_2, k)$ is necessary to solve for $sr(nK_2, k)$. In 1975, the Ramsey numbers for matchings are given by Cockayne and Lorimer [[7\]](#page-9-0).

Theorem 1 (Cockayne and Lorimer [\[7](#page-9-0)]) If n_1, n_2, \ldots, n_c are positive integers and $n_1 = max(n_1, n_2, \ldots, n_c)$, then $r(n_1K_2, n_2K_2, \ldots, n_cK_2) = n_1 + 1 + \sum_{i=1}^{c} (n_i - 1)$.

From this theorem we can know that if $c = k$ and $n_1 = n_2 = \cdots = n_k = n$ then $r(nK_2, k) = n(k + 1) + 1 - k$, so $sr(nK_2, k) \le r(nK_2, k) = n(k + 1) + 1 - k$. Our following result improves the upper bound of $sr(nK_2, k)$ from $O(nk)$ to $O(nk^{\frac{1}{2}})$.

Theorem 2 Let $n \geq 3$ and $k \geq 5$ be two integers. Then

$$
sr(nK_2, k) \leq \left\lfloor \frac{5 + \sqrt{1 + 4n(n-1)(k-1)}}{2} \right\rfloor.
$$

It is easy to verify that the upper bound of Theorem 2 is also true for $sr(3K_2, 3)$ and $sr(nK_2, 4)$ with $n \in \{3, 4, 5, 6\}$. Our next theorems give some exact values of $sr(nK_2, k)$ when n or k is fixed. It is clear that $sr(K_2, k) = 2$ so that $n \ge 2$ is assumed.

Theorem 3 $sr(2K_2, k) = max\left\{5, \left|\frac{3+\sqrt{1+8k}}{2}\right|\right\}.$

Theorem 4

- (1) $sr(nK_2, 2) = 2n$ for all $n \ge 3$;
- (2) $sr(nK_2, 3) = 2n$ for all $n \ge 3$;
- (3) $sr(nK_2, 4) = 2n$ for all $n \ge 3$;
- (4) $2n \leq sr(nK_2, 5) \leq 2n + 1$.

Theorem 4 shows that $sr(nK_2, 2) = sr(nK_2, 3) = sr(nK_2, 4) = 2n$ attains the lower bound $2n$ and the upper bound of Theorem 2 for some n. A case is now considered which shows that $sr(3K_2, 5) = 7$. It is probably the case that the upper bound of Theorem 2 is closer to the truth than the lower bound $2n$ for some k.

Proposition 2 $sr(3K_2, 5) = 7$.

It became clear that $sr(nK_2, k) \leq sr(nK_2, k + 1)$. Judging from these results, the gap between the lower bound $2n$ and the upper bound of Theorem 2 is not large. A question mentioned in Erdős et al. [[8\]](#page-9-0) is that of how fast can we allow k to grow and guarantee that there exists a rainbow Hamilton cycle in a k-bounded edge-colored K_n . After that, this question was considered by many researchers. Albert et al. [\[1](#page-9-0)] proved the following theorem, which showed that the growth rate of k can be linear.

Theorem 5 (Albert et al. [[1\]](#page-9-0)) If n is sufficiently large and k is at most $\lceil cn \rceil$, where $c<\frac{1}{32}$, then any k-bounded coloring of K_n contains a rainbow Hamilton cycle.

For other results related to the above question, we recommend papers $[10, 11, 15]$ $[10, 11, 15]$ $[10, 11, 15]$ $[10, 11, 15]$ $[10, 11, 15]$ $[10, 11, 15]$. From Theorem 5 we can easily conclude that if *n* is sufficiently large and k is at most $\lceil cn \rceil$, where $c < \frac{1}{16}$, then any k-bounded coloring of K_{2n} contains a rainbow nK_2 . Here, we show that $c < \frac{1}{8}$ is enough by giving the following theorem.

Theorem 6 If *n* is sufficiently large and $k < \frac{n}{8}$, then $sr(nK_2, k) = 2n$.

We give the proofs of our results in the rest of this paper. Before that, we need to introduce a definition. An (H, k) -colored graph G is a k-bounded edge-colored G so that no $H \subseteq G$ is rainbow. We use $C(G)$ to denote the set of colors appearing on the edges of G.

2 Proof of Theorem [2](#page-2-0)

Let K_m be (nK_2, k) -colored and let the colors used be c_1, c_2, \ldots, c_p . Denote by m_i the number of edges colored c_i , where $i = 1, 2, \ldots, p$, then $m_i \leq k$ and

$$
\sum_{i=1}^p m_i = \binom{m}{2} = \frac{m(m-1)}{2}.
$$

Let W denote the number of unordered pairs of disjoint edges of K_m colored by the same color. Clearly,

$$
W \le \sum_{i=1}^p {m_i \choose 2} = \sum_{i=1}^p m_i \frac{m_i - 1}{2} \le \sum_{i=1}^p m_i \frac{k-1}{2} = {m \choose 2} \frac{k-1}{2}.
$$
 (1)

Let $\mathscr G$ denote the set of all subgraphs of K_m isomorphic to nK_2 . Each unordered pairs of disjoint edges colored by the same color appears in

$$
\frac{\binom{m-4}{2}\binom{m-6}{2}\cdots\binom{m-(2n-2)}{2}}{(n-2)!}
$$

graphs in $\mathscr G$. But K_m contains

$$
\binom{m}{2}\binom{m-2}{2}\binom{m-4}{2}\cdots\binom{m-(2n-2)}{2}
$$

 nK_2 's each of which must contain a pair of edges of the same color by K_m be (nK_2, k) -colored. Thus,

$$
W\frac{{\binom{m-4}{2}}{\binom{m-6}{2}}...{\binom{m-(2n-2)}{2}}}{{\binom{(n-2)!}{2}}\cdots{\binom{m-(2n-2)}{2}}}\\\geq \frac{{\binom{m}{2}}{\binom{m-2}{2}}{\binom{m-4}{2}}...{\binom{m-(2n-2)}{2}}}{n!}.
$$

By inequality (1) (1) , we have

$$
{m \choose 2} \frac{k-1}{2} \frac{{m-4 \choose 2}{m-6 \choose 2}...{m-(2n-2) \choose 2}}{(n-2)!}
$$

$$
\geq \frac{{m \choose 2}{m-2 \choose 2}{m-4 \choose 2}...{m-(2n-2) \choose 2}}{n(n-1)(n-2)!}.
$$

Finally,

$$
\frac{k-1}{2} \ge \frac{\binom{m-2}{2}}{n(n-1)}.
$$

This yields

$$
m\leq \left\lfloor \frac{5+\sqrt{1+4n(n-1)(k-1)}}{2} \right\rfloor.
$$

Since the upper bound must be greater than or equal to the lower bound, we assume that $k \geq 5$. Then we have

$$
\left\lfloor \frac{5 + \sqrt{1 + 4n(n-1)(k-1)}}{2} \right\rfloor \ge \left\lfloor \frac{5 + \sqrt{1 + 16n(n-1)}}{2} \right\rfloor
$$

$$
\ge \left\lfloor \frac{5 + \sqrt{16(n-1)(n-1)}}{2} \right\rfloor
$$

$$
= \left\lfloor 2n + \frac{1}{2} \right\rfloor
$$

$$
= 2n.
$$

Hence the theorem holds.

3 Proof of Theorem [3](#page-2-0)

Consider the complete graph K_4 on the vertex set $\{v_1, v_2, v_3, v_4\}$. Clearly, K_4 contains

$$
\frac{\binom{4}{2}\binom{2}{2}}{2} = 3
$$

matchings of size 2. Color each of the three matchings with one color (see Fig. 1).

If K_4 is edge-colored with 3 colors such that $C(v_1v_2) = C(v_3v_4) = 1$, $C(v_1v_3) =$ $C(v_2v_4)=2$ and $C(v_1v_4)=C(v_2v_3)=3$, then it contains no rainbow $2K_2$. So, $sr(2K_2, k) \ge 5$. Note that we already showed that $sr(2K_2, k) \ge \left|\frac{3+\sqrt{1+8k}}{2}\right|$. Now, we proceed by proving the following lemma which also appears in Ref. [\[6](#page-9-0)].

Lemma 1 Any edge-coloring of K_m $(m \geq 5)$ with at least 2 colors contains a rainbow subgraph isomorphic to $2K_2$.

Proof For $m \geq 5$, let the edges of K_m be colored with at least 2 colors. Suppose that K_m contains no rainbow $2K_2$. Let $e_1 = v_1v_2$ be an arbitrary edge of K_m . Assume that $C(e_1) = 1$ and $U = V(K_m) - \{v_1, v_2\}$. Then $C(e) = 1$ for all edges $e \in E(K_m[U])$. Moreover, $C(e) = 1$ for all edges $e \in \{ \{v_1, v_2\}, U, \text{ since } |U| \geq 3$, where $\{ \{v_1, v_2\}, U\}$ is the set of edges between $\{v_1, v_2\}$ and U. Then K_m is monochromatic, a contradiction. \Box

Fig. 1 2-bounded edge-coloring of K_4 contains no rainbow $2K_2$

If $\binom{m}{2}$ $\binom{m}{2}$ > k, which yields $m \geq \left| \frac{3+\sqrt{1+8k}}{2} \right|$, then, clearly, K_m is colored such that at least two colors are used. By Lemma [1](#page-5-0), K_m contains a rainbow $2K_2$. Therefore, $sr(2K_2, k) \leq \left|\frac{3+\sqrt{1+8k}}{2}\right|$. In conclusion, we have this theorem.

4 Proof of Theorem [4](#page-2-0)

The lower bounds are obvious. For the upper bounds of (1) (1) – (3) of Theorem [4,](#page-2-0) we prove them by contradiction. Before giving the proofs, we first make some assumptions. Suppose that $m = 2n$ and K_m is (nK_2, k) -colored where $k \in \{2, 3, 4\}$. Let $C(E(K_m)) = \{c_1, c_2, \ldots, c_p\}$ and denote by e_i the number of edges colored c_i . Then $e_i \leq k$ and

$$
\sum_{i=1}^{p} e_i = \binom{2n}{2} = \frac{2n(2n-1)}{2} = 2n^2 - n \leq kp.
$$

Let $\mathscr G$ denote the set of all subgraphs of K_m isomorphic to nK_2 , s denote the number of unordered pairs of disjoint edges of K_m colored by the same color. Clearly,

$$
s \le \sum_{i=1}^{p} {e_i \choose 2} = \sum_{i=1}^{p} e_i \frac{e_i - 1}{2} \le \sum_{i=1}^{p} e_i \frac{k-1}{2} = \frac{(2n^2 - n)(k-1)}{2},
$$
 (2)

and each pair of edges of the same color appears in

$$
\frac{\binom{2n-4}{2}\binom{2n-6}{2}\cdots\binom{2}{2}}{(n-2)!}
$$

graphs in $\mathscr G$ if the edges are vertex-disjoint. Note that K_m contains

$$
\frac{\binom{2n}{2}\binom{2n-2}{2}\binom{2n-4}{2}\cdots\binom{2}{2}}{n!}
$$

subgraphs isomorphic to nK_2 each of which must contain a pair of edges of the same color. Thus,

$$
s\frac{\binom{2n-4}{2}\binom{2n-6}{2}\cdots\binom{2}{2}}{(n-2)!} \ge \frac{\binom{2n}{2}\binom{2n-2}{2}\binom{2n-4}{2}\cdots\binom{2}{2}}{n!}.
$$
 (3)

Then we have

(1) When $k = 2$, it follows that $s \leq \frac{2n^2 - n}{2}$ from inequality ([2\)](#page-6-0), and hence

$$
\frac{2n^2-n}{2} \ge \frac{\binom{2n}{2}\binom{2n-2}{2}}{n(n-1)}
$$

by inequality ([3\)](#page-6-0). This yields $\frac{1}{2} \le n \le 2$. But $n \ge 3$, a contradiction.

([2\)](#page-6-0) When $k = 3$, $s \le 2n^2 - n$ can be obtained from inequality (2). Hence, we have

$$
2n^2 - n \ge \frac{\binom{2n}{2}\binom{2n-2}{2}}{n(n-1)}
$$

by inequality [\(3](#page-6-0)). This yields $\frac{1}{2} \le n \le 3$. Recall that $n \ge 3$. We have $n = 3$. Then, by Theorem [2,](#page-2-0)

$$
sr(3K_2,3) \leq \left\lfloor \frac{5+\sqrt{1+4\times 3\times 2\times 2}}{2} \right\rfloor = 6.
$$

(3) Similarly, we know that $s \leq \frac{3(2n^2-n)}{2}$ $s \leq \frac{3(2n^2-n)}{2}$ $s \leq \frac{3(2n^2-n)}{2}$ when $k = 4$ by inequality (2). Then, we have

$$
\frac{3(2n^2-n)}{2} \ge \frac{\binom{2n}{2}\binom{2n-2}{2}}{n(n-1)}
$$

by inequality [\(3](#page-6-0)). This yields $\frac{1}{2} \le n \le 6$. Recall that $n \ge 3$. We have $n \in \{3, 4, 5, 6\}$. Then, by Theorem [2,](#page-2-0)

$$
sr(nK_2,4) \leq \left\lfloor \frac{5+\sqrt{1+4 \times n \times (n-1) \times 3}}{2} \right\rfloor \leq 2n.
$$

(4) By Theorem [2](#page-2-0),

$$
sr(nK_2,5) < \frac{5+\sqrt{1+4n(n-1)(5-1)}}{2} < 2n+2.
$$

So $2n \leq sr(nK_2, 5) \leq 2n + 1$.

5 Proof of Proposition [2](#page-2-0)

By Theorem [4](#page-2-0) (4), we have $sr(3K_2, 5) \le 7$. Now, consider K_6 on the vertex set $\{v_1, v_2, v_3, v_4, v_5, v_6\}$. Color the edges $\{v_2v_4, v_2v_6, v_3v_4, v_3v_6, v_5v_6\}$ with red color and the edges $\{v_1v_2, v_1v_3, v_1v_5, v_4v_5, v_4v_6\}$ with blue color and the edges $\{v_1v_4, v_1v_6, v_2v_3, v_2v_5, v_3v_5\}$ with green color. It is routine to verify that any completion of this coloring to a 5-bounded edge-coloring will result in a $(3K_2, 5)$ colored graph. Thus, $sr(3K_2, 5) \ge 7$ $sr(3K_2, 5) \ge 7$ $sr(3K_2, 5) \ge 7$ (see Fig. 2). This proposition holds.

6 Proof of Theorem [6](#page-3-0)

It is clear that $sr(nK_2, k) \geq 2n$. To prove that $sr(nK_2, k) \leq 2n$, we just have to show that if *n* is sufficiently large and $k \lt \frac{n}{8}$, then any k-bounded edge-coloring of K_{2n} contains a rainbow perfect matching. This proof technique follows the lines of modification of the Local Lemma listed by Albert et al. in Ref. [\[1](#page-9-0)].

Lemma 2 (Albert et al. [[1\]](#page-9-0)) Let A_1, A_2, \ldots, A_N denote events in some probability space. Suppose that for each i there is a partition of $[N]\setminus\{i\}$ into X_i and Y_i . Let $m = \max\{|Y_i| : i \in [N]\}$ and $\beta = \max\{Pr(A_i | \bigcap_{j \in X} \overline{A_j}) : i \in [N], X \subseteq X_i\}$. If there exists $0 \leq \alpha < 1$ such that $\alpha(1 - m\alpha) \geq \beta$ then $Pr(\bigcap_{i=1}^{N} \overline{A_i}) > 0$.

Let $K = K_{2n}$ be a k-bounded edge-colored complete graph satisfying n is sufficiently large and $k \lt \frac{n}{8}$. Now, construct a graph G whose vertex set is the edge set of K and two edges e, f of K correspond to the two end-vertices of an edge of G if and only if $C(e) = C(f)$. Thus a set of vertices of G is independent if and only if it corresponds to a rainbow set of edges of K. Then we only need to prove that K contains a perfect matching whose edge set is an independent vertex set in G.

Let H be a perfect matching chosen randomly and independently from the set of $\frac{(2n)!}{2^n n!}$ perfect matchings of K. Let $\{e_i f_i : 1 \le i \le N\}$ be the edge set of G and

$$
A_i = \{H : e_i, f_i \in E(H)\}.
$$

We will show that $Pr(\bigcap_{i=1}^{N} \overline{A_i}) > 0$ to prove the conclusion we want. For $1 \le i \le N$, let

$$
Y_i = \{j \neq i : \text{one of } e_j, f_j \text{ shares a vertex with one of } e_i, f_i\}
$$

and $X_i = [N] \setminus (Y_i \cup \{i\})$. Obviously, $Y_i \leq 8nk$, so $m \leq 8nk$. Let $X \subseteq X_i$, then no edge in X shares an end-vertex with either e_i or f_i . Let $e_i = u_1u_2$, $f_i = v_1v_2$ and M be a perfect matching containing both e_i and f_i but no edges of X. Consider two edges $a = a_1 a_2$ and $b = b_1 b_2$ of M. There are at least $(n-2)(n-3) \cdot 4$ choices for a, b. For each such M, we construct $M_{a,b}$ by removing the edges e_i, f_i, a, b from M and adding 4 edges u_1a_1 , u_2a_2 , v_1b_1 , v_2b_2 which does not contain an edge of X. Then, taking $F(M) = \{M_{a,b} : a, b \text{ as above}\}\$, we have $|F(M)| \geq 4(n-2)(n-3)$ and

 $F(M) \cap F(M') = \emptyset$ for $M \neq M'$. Let M denote the set of perfect matchings containing e_i and f_i . Then, we have

$$
Pr\left(A_i | \bigcap_{j \in X} \overline{A_j}\right) = \sum_{M \in \mathcal{M}} Pr\left(H = M | \bigcap_{j \in X} \overline{A_j}\right)
$$

\$\leq \frac{1}{4n^2 - 20n + 25} \sum_{M \in \mathcal{M}} Pr\left(H \in \{M\} \cup F(M) | \bigcap_{j \in X} \overline{A_j}\right)\$
\$\leq \frac{1}{4n^2 - 20n + 25}.

Thus,

$$
\beta\leq \frac{1}{4n^2-20n+25}.
$$

We choose

$$
\alpha=\frac{1-\sqrt{1-(8+\epsilon)k/n}}{16nk},
$$

then

$$
\alpha(1 - m\alpha) \ge \frac{8 + \epsilon}{32n^2} = \frac{1 + \epsilon/8}{4n^2}.
$$

Thus $\alpha(1 - m\alpha) \ge \beta$ when $\epsilon > 0$ is sufficiently small and *n* is sufficiently large which means $Pr(\bigcap_{i=1}^{N} \overline{A_i}) > 0$ by Lemma [2.](#page-8-0) Therefore, we can find a rainbow perfect matching in K. This completes the proof of Theorem [6](#page-3-0).

Acknowledgements Supported by NSFC (nos. 11671320, 11601429 and U1803263) and the Fundamental Research Funds for the Central Universities (no. 3102019GHJD003).

References

- 1. Albert, M., Frieze, A., Reed, B.: Multicoloured Hamilton cycles. Electron J. Combin. 2, \sharp R10 (1995)
- 2. Alon, N., Caro, Y., Tuza, Z.: Sub-Ramsey numbers for arithmetic progressions. Gr. Combin. 5(4), 307–314 (1989)
- 3. Alspach, B., Gerson, M., Hahn, G., Hell, P.: On sub-Ramsey numbers. Ars Combin. 22, 199–206 (1986)
- 4. Axenovich, M., Martin, R.: Sub-Ramsey numbers for arithmetic progressions. Gr. Combin. 22(3), 297–309 (2006)
- 5. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan London and Elsevier, New York (1976)
- 6. Chen, H., Li, X., Tu, J.: Complete solution for the rainbow numbers of matchings. Discret. Math. 309, 3370–3380 (2009)
- 7. Cockayne, E.J., Lorimer, P.J.: The Ramsey number for stripes. J. Aust. Math. Soc. 19(2), 5 (1975)
- 8. Erdős, P., Nestril, J., Rödl, V.: Some Problems Related to Partitions of Edges of a Graph in Graphs and Other Combinatorial Topics, pp. 54–63. Teubner, Leipzing (1983)
- 9. Fraisse, P., Hahn, G., Sotteau, D.: Star sub-Ramsey numbers. Discret. Math. 149(2), 153–163 (1987)
- 10. Frieze, A., Reed, B.: Polychromatic Hamilton cycles. Discret. Math. 118(1–3), 69–74 (1993)
- 11. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory—a dynamic survey, Theory Appl. Gr. 0(1) (2014[\)https://doi.org/10.20429/tag.2014.000101](https://doi.org/10.20429/tag.2014.000101)
- 12. Galvin, F.: Advanced problem number 6034. Am. Math. Mon. 82, 529 (1975)
- 13. Hahn, G.: Anti-Ramsey numbers: an introduction. M.Sc. thesis, Simon Fraser University, Burnaby, BC (1977)
- 14. Hahn, G.: More star sub-Ramsey numbers. Discret. Math. 34(2), 131–139 (1981)
- 15. Hahn, G., Thomassen, C.: Path and cycle sub-Ramsey numbers and an edge colouring conjecture. Discret. Math. 62(1), 29–33 (1986)
- 16. Hell, P., Jose, J., Montellano-Ballesteros, : Polychromatic cliques. Discret. Math. 285(1–3), 319–322 (2004)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.