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Abstract
We prove that if a directed multigraph D has at most t pairwise arc-disjoint directed

triangles, then there exists a set of less than 2t arcs in D which meets all directed

triangles in D, except in the trivial case t ¼ 0. This answers affirmatively a question

of Tuza from 1990.

Keywords Digraphs � Packing � Covering � Triangles

1 Introduction

In the 1980s, Tuza [9, 10] posed the following conjecture about packing and

covering triangles in undirected simple graphs (hereafter called graphs). Given a

graph G, let mðGÞ be the maximum size of a family of pairwise edge-disjoint

triangles in G, and let sðGÞ be the minimum size of an edge set X such that G� X is

triangle-free. Evidently sðGÞ� mðGÞ, since we are forced to delete at least one edge

from each triangle in a family of edge-disjoint triangles (and these edges must be

distinct), and on the other hand sðGÞ� 3mðGÞ, since it suffices to delete all edges

from each triangle in a maximal family of edge-disjoint triangles. Tuza conjectured

that in fact sðGÞ� 2mðGÞ for every graph G. As Tuza observed, this upper bound is

sharp if true, and in particular it is achieved by K4 and K5.
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The best general result on Tuza’s conjecture is due to Haxell [3], who proved that

sðGÞ� 2:87mðGÞ for every graph G. Other authors have approached the conjecture

by proving that sðGÞ� 2mðGÞ for all graphs in some given family. Tuza [10] showed

that his conjecture holds for all planar graphs, and Lakshmanan et al. [7] showed

that it holds for all four-colorable graphs. The planar result has been generalized to

graphs without K3;3-subdivisions (Krivelevich [6]), and then to graphs with

maximum average degree less than 7 (Puleo [8]). In the case where G is a K4-free

planar graph, the stronger inequality sðGÞ� 3
2
mðGÞ was proved by Haxell et al. [5].

Asymptotic, fractional, and multigraph versions of Tuza’s conjecture have also

been considered. Yuster [12] proved that sðGÞ� ð2þ oð1ÞÞmðGÞ when G is a dense

graph, and this was shown to be asymptotically tight by Kahn and Baron [1]. Yuster

[12] also noted that a combination of results by Krivelevich [6] and Haxell and Rödl

[4] implies that for any graph G with n vertices, sðGÞ\2mðGÞ þ oðn2Þ. Two

fractional versions of Tuza’s Conjecture were proved by Krivelevich [6]. Chapuy

et al. [2] tightened one of these fractional versions, and considered the natural

extension of Tuza’s conjecture to multigraphs. Here by multigraph we mean that

multiple edges are permitted, but not loops (they have no effect on our problem

anyway); the definitions of m and s are identical to those given in the simple graph

case. In [2], planar multigraphs were shown to satisfy Tuza’s conjecture, and

sðGÞ� 2:92mðGÞ was shown to hold for all multigraphs G.

When posing his conjecture in [10], Tuza also discussed the problem of packing

and covering directed triangles. Here by directed multigraph we shall mean any

oriented multigraph; by directed graph we shall mean any directed multigraph

without parallel arcs in the same direction (but we allow digons, i.e., a pair of arcs

u ! v and v ! u). Given a directed multigraph D, let mcðDÞ denote the maximum

size of a family of pairwise arc-disjoint directed triangles, and let scðDÞ denote the

minimum size of an arc set Y such that D� Y has no directed triangles. Tuza asked:

‘‘Is scðDÞ\2mcðDÞ for every digraph D?’’. In this paper we answer this affirmatively

with the following theorem.

Theorem 1.1 If D is a directed multigraph with at least one directed triangle, then

scðDÞ\2mcðDÞ.

Tuza [10] observed that the rotational 5-tournament T5, pictured in Fig. 1,

satisfies scðT5Þ=mcðT5Þ ¼ 3
2
. Our computational efforts have not yielded any

examples with a larger ratio for sc=mc, and in fact we find the following conjecture

plausible.

Fig. 1 The rotational 5-
tournament T5, with scðT5Þ ¼ 3
and mcðT5Þ ¼ 2
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Conjecture 1.2 If D is a directed multigraph, then scðDÞ� 3
2
mcðDÞ.

In [11], Tuza proved that if D is a planar oriented graph, then scðDÞ ¼ mcðDÞ.
This topic of packing and covering directed triangles appears not to have caught on

in the literature however (in contrast to the undirected analogue), and we hope that

Conjecture 1.2 and Theorem 1.1 may create interest.

2 Proof of Theorem 1.1

The main idea of our proof is based on the reducibility argument in Puleo [7]. We

use induction on VðDÞj j, with trivial base case when VðDÞj j ¼ 1. Note that in what

follows ‘‘triangle’’ always means ‘‘directed triangle’’.

Take any v 2 VðDÞ, and define an auxiliary directed multigraph N as follows: the

vertex set of N is the disjoint union of a set fs; tg consisting of designated source

and sink vertices, as well as two sets Wþ and W�, where Wþ contains a copy wþ of

each vertex w 2 NþðvÞ, and W� contains a copy w� of each vertex w 2 N�ðvÞ.
(Note that if w 2 NþðvÞ \ N�ðvÞ, then there is a copy of w in each of Wþ and W�).
Given vertices uþ 2 Wþ and z� 2 W�, we include the arc uþ ! z� in E(N) with the

same multiplicity as the arc u ! z in E(D). For each wþ 2 Wþ, we include the arc

s ! wþ in E(D) with the same multiplicity as the arc v ! w, and for each

w� 2 W�, we include the arc w� ! t in E(N) with the same multiplicity as the arc

w ! v in E(D).

Observe that there is a bijection between directed triangles in D containing v, and

directed (s, t)-paths in N; triangle z ! v ! u ! z in D corresponds to directed path

suþz�t in N. Furthermore, two directed triangles in D are arc-disjoint if and only if

the corresponding paths in N are arc-disjoint. (Whenever two triangles use different

parallel arcs, the corresponding paths have parallel arcs as well).

Let P be a maximum-size set of arc-disjoint (s, t)-paths in N, say with jPj ¼ p.

Let R be the corresponding set of pairwise arc-disjoint triangles in D, all of which

contain v. Each triangle in R has exactly one arc that is not incident to v; let Rv be

the set consisting of these p arcs.

Let X be a minimum-size set of arcs in N so that N � X has no directed (s, t)-

path. By Menger’s Theorem, jXj ¼ jPj ¼ p. Note that in D, the set X corresponds to

a set XD of p arcs, and every triangle incident to v has at least one arc in XD. Let

C ¼ XD [Rv, and observe that C is a triangle arc cover of every triangle involving

v as well as every triangle sharing an arc with R. We have jCj � 2p, with equality if

and only if XD and Rv are disjoint.

Let D0 ¼ D� v�Rv, and suppose first that D0 has at least one directed triangle.

By induction, scðD0Þ\2mcðD0Þ. Let R0 be a maximum-size set of arc-disjoint

directed triangles in D0 and let C0 be a minimum-size triangle arc cover in D0. By our
observations above, note that C [ C0 is a triangle arc cover of D, and R0 [ R is a set

of arc-disjoint triangles in D. We get that
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jC0 [ Cj\2jR0j þ 2p ¼ 2jR [ R0j;

as desired.

We may now assume that D0 has no directed triangles. In this case, C is a triangle

arc cover for D with size at most 2p. Since R is a set of p arc-disjoint triangles in D,

we may assume that scðDÞ ¼ 2p. We will show that mcðDÞ� pþ 1.

There exists a directed triangle T0 in D that is disjoint from Rv, since

jRvj ¼ p\scðDÞ. Since D0 has no directed triangles, T0 must be incident to v; let e0
be the arc of T0 that is not incident to v. If T0 has no arcs in common with R, then

R [ fT0g is our desired triangle packing of size pþ 1. Let R0 be the set of triangles

in R with at least one arc in common with T0. Since e0 62 Rv, we know that

jR0j 2 f1; 2g. We will show that we can find a set T of jR0j directed triangles so

that ðR �R0Þ [ fT0g [ T is a set of pþ 1 arc-disjoint triangles in D.

Let R0
v be the subset of Rv that corresponds to R0. Consider

D� ¼ D� v� ðRv �R0
vÞ. Note that D� contains at least one triangle, because if

not, the arc set XD [ ðRv �R0
vÞ is a triangle arc cover for D. Since D0 is triangle-

free, every triangle in D� must contain at least one arc from R0
v . Hence jR0

v j 2
f1; 2g implies that mcðD�Þ 2 f1; 2g. Let T be a maximum packing of directed

triangles in D�.

We first claim that jT j ¼ jR0j. If not, then mcðD�Þ ¼ 1 and jR0j ¼ 2, since every

triangle in T must contain at least one arc from R0
v . However mcðD�Þ ¼ 1 implies

(by applying the induction hypothesis to D�) that scðD�Þ ¼ 1, so there is an arc f �

that covers all directed triangles in D�, and hence XD [ ðRv �R0
vÞ [ ff �g is a

triangle arc cover in D that is smaller than C.

We now complete our proof by showing that T is arc-disjoint from R�R0
� �

[
T0f g: Each arc used in this second set of triangles, aside from e0, is either incident to

v or from the set Rv �R0
v : Given that T is chosen from D*, we need only worry

about e0 appearing in some triangle T 2 T : As observed above, such a T must

contain at least one arc from R0
v ; say the arc e1 from the triangle R1 2 R0. As R1

and T0 share an arc incident to v, their arcs e1 and e0 either have a common head or a

common tail (or both, if they are parallel). Either way, no directed triangle can

contain both of the arcs e1 and e0, and in particular T cannot contain the arc e0.
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