
ORIGINAL PAPER

On Restricted Colorings of (d,s)-Edge Colorable Graphs

Lan Anh Pham1

Received: 24 April 2019 / Revised: 10 February 2020 / Published online: 17 March 2020
� The Author(s) 2020

Abstract
A cycle is 2-colored if its edges are properly colored by two distinct colors. A (d, s)-

edge colorable graph G is a d-regular graph that admits a proper d-edge coloring in

which every edge of G is in at least s� 1 2-colored 4-cycles. Given a (d, s)-edge

colorable graph G and a list assigment L of forbidden colors for the edges of

G satisfying certain sparsity conditions, we prove that there is a proper d-edge

coloring of G that avoids L, that is, a proper edge coloring u of G such that

uðeÞ 62 LðeÞ for every edge e of G. Additionally, this paper also contains a dis-

cussion of graphs belonging to the family of (d, s)-edge colorable graphs.

Keywords (d; sÞ-Edge colorable graph

1 Introduction

A graph G is k-edge list colorable or k-edge choosable if for every assignment of

lists of at least k colors to the edges of G, there is a proper edge coloring of G using

only colors from the lists. The list chromatic index or edge choosability v0lðGÞ of a

graph G is the minimum number k such that G is k-edge list colorable. The most

famous conjecture about list coloring states that v0lðGÞ ¼ v0ðGÞ, where v0ðGÞ is the

chromatic index of G, refering to the smallest number of colors needed to color the

edges of G to obtain a proper edge coloring. In 1994, Galvin [1] proved this

conjecture for bipartite multigraphs, his result also answers a question of Dinitz

(1979) [2] about a generalization of Latin squares which can be formulated as a

result of list edge coloring of the complete bipartite graph Kd;d, that v0lðKd;dÞ ¼ d.

Meanwhile, Häggkvist [3] worked with sparser lists. His conjecture of avoiding

arrays can be rewritten in the language of graph theory to state that there exists a

fixed 0\b� 1
3

such that if each edge e of Kd;d is assigned a list L(e) of at most bd
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colors from f1; . . .; dg and at every vertex v each color is forbidden on at most bd
edges adjacent to v, then there is a proper d-edge coloring u of Kd;d that avoids the

lists, i.e., uðeÞ 62 LðeÞ for every edge e of Kd;d; if such a coloring exists, then L is

avoidable. For the case when d is a power of two, Andrén proved that such a b exists

in [4]; the full conjecture was later settled in the affirmative in [5].

Casselgren et al. [6] demonstrated that a similar result holds for the family of

hypercube graphs. A benefit of working with the complete bipartite graph Kd;d

(d ¼ 2t, t 2 N) and the d-dimensional hypercube graph Qd (d 2 N) is that they are

both regular graphs that have proper edge colorings in which every edge is in

ðd � 1Þ 2-colored 4-cycles. The purpose of this paper is to study this type of

problem for regular graphs where the number of 2-colored 4-cycles each edge is

contained in can be smaller.

To be more specific, we consider the family of (d, s)-edge colorable graphs:

Definition 1 A d-regular graph G is called (d, s)-edge colorable if it admits a

proper d-edge coloring in which every edge of G is contained in at least ðs� 1Þ
2-colored 4-cycles.

Remark For a (d, s)-edge colorable graph G, let H be the set of all proper d-edge

colorings that satisfy the condition in Definition 1. Since jHj� 1, we can pick one

proper d-edge coloring h 2 H (h can be chosen arbitrarily) and let it be our standard

coloring. A standard matching M of G is a maximum set of edges of G all of which

have the same color in the standard coloring h.

The distance between two edges e and e0 is the number of edges in a shortest path

between an endpoint of e and an endpoint of e0. The t-neighborhood of an edge e is

the graph induced by all edges of distance at most t from e.

Note that since the number of 2-colored 4-cycles containing an edge e of G is at

most ðd � 1Þ, s can not exceed d. Throughout, we shall assume that the standard

coloring h for the edges of G uses the set of colors f1; . . .; dg. Next, similarly to [6],

using the colors f1; . . .; dg we define a b-sparse list assignment for the edges of a

(d, s)-edge colorable graph.

Definition 2 A list assignment L for a (d, s)-edge colorable graph G is b-sparse if

the list of each edge is a (possibly empty) subset of f1; . . .; dg, and

(i) jLðeÞj � bs for each edge e 2 G;

(ii) for every vertex v 2 VðGÞ, each color in f1; . . .; dg occurs in at most bs
lists of edges incident to v;

(iii) for every 6-neighborhood W of G, and every standard matching M of G,

any color appears at most bs times in lists of edges of M contained in W.

The 6-neighborhood used in Definition 2 is solely due to proof technical reasons.

The neighborhood size might be decreased, but this seems to be out of reach with

current method. We can now formulate our main result.
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Theorem 1 For any positive integers n, d, s such that s� 11 and any positive b

such that b� 2�11sd�1ð2nÞ�29ds�2

; if G is a (d, s)-edge colorable graph of order n

then any b-sparse list assignment L for G is avoidable.

The rest of the paper is organized as follows. In Sect. 2, after introducing some

terminology and notation, we prove Theorem 1. Section 3 contains several

corollaries that are deduced directly from the proof of Theorem 1. In Sect. 4, we

give some examples of classes of graphs that belong to the family of (d, s)-edge

colorable graphs.

2 Proof the Main Theorem

Given a (d, s)-edge colorable graph G of order n, for a vertex u 2 G, we denote by

Eu the set of edges with one endpoint being u, and for a (partial) edge coloring f of

G, let f(u) denote the set of colors on edges in Eu under f. If two edges uv and zt of

G are in a 2-colored 4-cycle in G then the edges uv and zt are parallel.

Given a proper coloring h0 of the edges of G, for an edge e 2 G, any edge e0 2 G

(e0 6¼ e) belongs to at most one 2-colored 4-cycle containing e. This property is

obvious if e0 and e are not adjacent; in the case when they have the same endpoint u,

assume e ¼ uv, e0 ¼ uv0 and uvv1v
0u and uvv2v

0u are two 2-colored 4-cycles

containing e and e0; then h0ðvv1Þ ¼ h0ðvv2Þ ¼ h0ðuv0Þ, a contradiction since vv1 and

vv2 are adjacent.

Consider a b-sparse list assignment L for G and a proper edge coloring / of G.

An edge e of G is called a conflict edge (of / with respect to L) if /ðeÞ 2 LðeÞ. An

allowed cycle (under / with respect to L) of G is a 4-cycle C ¼ uvztu in G that is 2-

colored under /, and such that interchanging colors on C yields a proper d-edge

coloring /0 of G where none of uv, vz, zt, tu is a conflict edge. We call such an

interchange a swap in /.

In the following, G is a (d, s)-edge colorable graph of order n, L is a b-sparse list

assignment for G, and h is the standard coloring of G. For simplicity of notation, we

shall omit floor and ceiling signs whenever these are not crucial. Below we outline

the proof of Theorem 1.

Step I. We prove that there exists a permutation q of the elements of the set

f1; . . .; dg such that in the proper d-edge coloring h0 obtained by

applying q to the colors used in h, locally, each standard matching in G

contains ‘‘sufficiently few’’ conflict edges with L, and each vertex u of

G satisfies that Eu contains ‘‘sufficiently few’’ conflict edges, and that

each edge of G belongs to ‘‘many’’ allowed cycles. These conditions

shall be more precisely articulated below.

Step II. We find a set of allowed cycles in h0 such that each conflict edge

belongs to one of them, with no two of the cycles intersecting, and

swap on those cycles to obtain a proper d-edge coloring h00 of G which

avoids L.
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In the proof we shall verify that it is possible to perform Steps I–II described above

to obtain a proper d-edge coloring of G that avoids L. This is done by proving a

lemma in each step.

Step I We use Lemma 1 to prove that there exists a permutation q such that

applying q to the colors used in h, we obtain a required proper d-edge coloring h0.

Lemma 1 Let 0\c; s\1 be parameters such that b� c and

n
ðbsÞcs

ðcsÞ! þ
nd

2

ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!\1 ð1Þ

Then there is a permutation q of f1; . . .; dg, such that applying q to the set of colors

f1; . . .; dg used in h, we obtain a proper d-edge coloring h0 of G satisfying the

following:

(a) For every 6-neighborhood W of G, and every standard matching M of G, at

most cs edges of M \ EðWÞ are conflict edges.

(b) For each vertex u in G, Eu contains at most cs conflict edges.
(c) Each edge in G belongs to at least ð1 � sÞs allowed cycles.

Proof Let A, B, C be the number of permutations which do not fulfill the conditions

(a), (b), (c), respectively. Let X be the number of permutations satisfying the three

conditions (a), (b), (c). There are d! ways to permute the colors, so we have

X� d!� A� B� C

We will now prove that X is greater than 0.

Let’s start by counting A. Since all edges that are in the same standard matching

have the same color under h and for every 6-neighborhood W of G, and every

standard matching M of G, any color appears at most bs times in lists of edges of M

contained in W, we have that the maximum number of conflict edges in a subset of a

given standard matching contained in a 6-neighborhood is bs.
Since c� b, this means that all permutations satisfy condition (a); so A ¼ 0.

To estimate B, let u be a fixed vertex of G, and let P be a set of size cs (jPj ¼ cs)
of edges from Eu. For a vertex v adjacent to u, if uv is a conflict edge, then the colors

used in h should be permuted in such a way that in the resulting coloring h0, the

color of uv is in L(uv). Since jLðuvÞj � bs, there are at most ðbsÞcs ways to choose

which colors from f1; 2; . . .; dg to assign to the edges in P so that all edges in P are

conflict. The rest of the colors can be arranged in any of the ðd � csÞ! possible ways.

In total this gives at most

d

cs

� �
ðbsÞcsðd � csÞ! ¼ d!ðbsÞcs

ðcsÞ!

permutations that do not satisfy condition (b) on vertex u. There are n vertices in G,

so we have
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B� n
d!ðbsÞcs

ðcsÞ!

To estimate C, let uv be a fixed edge of G. Each 2-colored 4-cycle C ¼ uvztu

containing uv is uniquely defined by an edge zt which is parallel with uv. Moreover,

a permutation 1 contributes to C if and only if there are at least ss choices for zt so

that C is not allowed. We shall count the number of ways 1 could be constructed for

this to happen. First, note that for each choice of a color c1 from f1; . . .; dg, for the

standard matching which contains uv, there are up to 2bs cycles that are not allowed

because of this choice. This follows from the fact that there are at most bs choices

for t (or z) such that L(ut) (or L(vz)) contains c1. So for a permutation 1 to contribute

to C, 1 must satisfy that at least ðs� 2bÞs cycles containing uv are forbidden

because of the color assigned to the standard matching containing ut and vz.

Let Cuv be the set of edges that are parallel with uv. It is obvious that

s� 1� jCuvj � d � 1. Let S � Cuv, jSj ¼ ðs� 2bÞs, such that for every edge zt 2 S,

the 2-colored 4-cycle C ¼ uvztu is not allowed because of the color assigned to ut

and vz. There are at most d�1
ðs�2bÞs

� �
ways to choose S. Furthermore, L(uv) and L(zt)

contain at most bs colors each, so there are at most 2bs choices for a color for the

standard matching containing ut and vz that would make C disallowed because of the

color assigned to this standard matching. The remaining colors can be permuted in

ðd � 1 � ðs� 2bÞsÞ! ways. Thus, the total number of permutations r with not

enough allowed cycles for a given edge is bounded from above by

d
d � 1

ðs� 2bÞs

� �
ð2bsÞðs�2bÞsðd � 1 � ðs� 2bÞsÞ!

Notice that any d-regular graph G of order n has
nd

2
edges, so the total number of

permutations r that have too few allowed cycles for at least one edge is bounded

from above by

C� nd

2
d

d � 1

ðs� 2bÞs

� �
ð2bsÞðs�2bÞsðd � 1 � ðs� 2bÞsÞ!

¼ nd

2

d!ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!

Hence,

X� d!� n
d!ðbsÞcs

ðcsÞ! � nd

2

d!ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!

¼d! 1 � n
ðbsÞcs

ðcsÞ! �
nd

2

ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!

 !

By assumption, we now deduce that X[ 0. h
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Step II We use Lemma 2 to prove that by performing a sequence of swaps on

disjoint allowed 2-colored 4-cycles in h0, we obtain a proper d-edge coloring h00 of

G which avoids L.

Lemma 2 Let h0 be a proper d-edge coloring satisfying conditions (a), (b), (c) of

Lemma 1 and c, s be parameters satisfying condition of Lemma 1. If there exists �
such that 0\�\1 and

s� ss� 9cs� 3�s� 20c
�

d � 3[ 0 ð2Þ

Then, by performing a sequence of swaps on disjoint allowed 2-colored 4-cycles in

h0, we obtain a proper d-edge coloring h00 of G which avoids L.

Proof For constructing h00 from h0, we will perform a number of swaps on G, and

we shall refer to this procedure as P-swap. We are going to construct a set P of

disjoint allowed 2-colored 4-cycles such that each conflict of h0 with L belongs to

one of them. An edge that belongs to a 2-colored 4-cycle in P is called used in P-

swap. Suppose we have included a 2-colored 4-cycle C in P. Since for every 6-

neighborhood W of G, and every standard matching M of G, the number of conflict

edges in M \ EðWÞ is not greater than cs, for every 5-neighborhood W of G, the

total number of edges in W that are used in P-swap is at most 4cds. A vertex u in G

is P-overloaded if Eu contains at least �s edges that are used in P-swap; note that

each used edge is incident to two vertices, thus no more than
2 � 4cds

�s
¼ 8c

�
d

vertices of each 4-neighborhood are P-overloaded. A standard matching M in G is

P-overloaded in a t-neighborhood W if M \ EðWÞ contains at least �s edges that are

used in P-swap; note that for each 5-neighborhood W, no more than
4c
�
d standard

matchings of G are P-overloaded in W.

Using these facts, let us now construct our set P by steps; at each step we

consider a conflict edge e and include an allowed 2-colored 4-cycle containing e in

P. Initially, the set P is empty. Next, for each conflict edge e ¼ uv in G, there are at

least s� ss allowed cycles containing e. We choose an allowed cycle uvztu which

contains e and satisfies the following:

(1) z and t and the standard matching that contains vz and ut are not P-overloaded

in the 4-neighborhood We of e; this eliminates at most
2 � 8c

�
d þ 4c

�
d ¼

20c
�

d choices. Note that with this strategy for including 4-cycles in P, after

completing the construction of P, every vertex is incident with at most 2csþ
ð�s� 1Þ þ 2 ¼ 2csþ �sþ 1 edges that are used in P-swap. Furthermore, after

we have constructed the set P, no standard matching contains more than

2csþ �sþ 1 edges that are used in S-swap in a 1-neighborhood of G ; this

follows from the fact that every 1-neighborhood W 0 in G that ut, vz or zt

belongs to is contained in We.
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(2) None of the edges vz, zt, ut are conflict, or used before in P-swap. All possible

choices for these edges are in the 1-neighborhood We of e in G . Since no

vertex in We or subset of a standard matching that is in We contains more than

cs conflict edges and P-swap uses at most 2csþ �sþ 1 edges at each vertex

and in each subset of a standard matching contained in We, these restrictions

eliminate at most 3csþ 3ð2csþ �sþ 1Þ or 9csþ 3�sþ 3 choices.

It follows that we have at least

s� ss� 9cs� 3�s� 20c
�

d � 3

choices for an allowed cycle uvztu which contains uv. By assumption, this

expression is greater than zero, so we conclude that there is a cycle satisfying these

conditions, and thus we may construct the set P by iteratively adding disjoint

allowed 2-colored 4-cycles such that each cycle contains a conflict edge. After this

process terminates we have a set P of disjoint allowed cycles; we swap on all the

cycles in P to obtain a coloring h00 which avoids L. h

We can now prove Theorem 1.

Proof of Theorem 1 Firstly, using Stirling’s approximation x!� xxe�x, we have

n
ðbsÞcs

ðcsÞ! þ
nd

2

ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!

� n
ecsðbsÞcs

ðcsÞcs þ nd

2

eðs�2bÞsð2bsÞðs�2bÞs

ððs� 2bÞsÞðs�2bÞs

� n
eb
c

� �cs

þ nd

2

2eb
s� 2b

� �ðs�2bÞs
:

By assumption, we have b� 2�11sd�1ð2nÞ�29ds�2

. Since s� d and ð2nÞ�29ds�2

� 1, it

follows that b� 2�11sd�1 � 2�11. Let c ¼ 2�9sd�1, then b� c and

n
eb
c

� �cs

\n
222�11sd�1ð2nÞ�29ds�2

2�9sd�1

 !2�9sd�1s

¼ nð2nÞ�1 ¼ 1

2
: ð3Þ

Let s ¼ 2�7, then s� 2b� 2�7 � 2:2�11 [ 2�8 and

s� 2b
2eb

[
2�8

2e2�11sd�1ð2nÞ�29ds�2 [
1

ð2nÞ�29ds�2 [ ð2nÞ29ds�2

[ 1

This implies

s� 2b
2eb

� �ðs�2bÞs
[

s� 2b
2eb

� �2�8s

[ ð2nÞ29ds�2
� �2�8s

¼ ð2nÞ2ds�1

[ ð2nÞ2

Using the fact that d\n, we have
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nd

2

2eb
s� 2b

� �ðs�2bÞs
\

nd

2

1

ð2nÞ2
\

1

8
: ð4Þ

Combining (3) and (4), we obtain n
eb
c

� �cs

þ nd

2

2eb
s� 2b

� �ðs�2bÞs
\1. This implies

n
ðbsÞcs

ðcsÞ! þ
nd

2

ð2bsÞðs�2bÞs

ððs� 2bÞsÞ!\1. Since the values of c; s satisfy the conditions in

Lemma 1, there is a permutation q of the colors in the standard d-edge coloring h of

G from which we obtain a proper d-edge coloring h0 of G satisfying the conditions

(a), (b), (c) in Lemma 1. Furthermore, since d� s� 11, if we let � ¼ 2�3, then we

have

s� ss� 9cs� 3�s� 20c
�

d � 3[ 0:

It follows from Lemma 2 that there exits a proper d-edge coloring h00 of G which

avoids L.

Remark

(1) If 2�11sd�1ð2nÞ�29ds�2

\1=s, then bs\1, Theorem 1 becomes obvious. So our

result is only meaningful if 2�11sd�1ð2nÞ�29ds�2

� 1=s.
(2) Our proof relies heavily on the fact that every edge is contained in a large

number of 2-colored 4-cycles. It would be interesting to investigate if a

similar result holds for graphs containing a certain amount of 2-colored 2c-

cycles (c 2 N, c[ 2).

h

3 Corollaries

The following corollaries are deduced directly from the proof of Theorem 1.

Corollary 1 For any positive integers n, d and any constant j such that

11� jd� d, if G is a ðd; jdÞ-edge colorable graph G of order n then there exits

positive constants c1; c2 such that for any b� c1ð2nÞ�c2d
�1

, any b-sparse list

assignment L for G is avoidable.

Corollary 2 For any positive integers n, d and any constants c; j such that

11� jd� d and d� c log n, if G is a ðd; jdÞ-edge colorable graph G of order n then

there exits a positive constant b such that any b-sparse list assignment L for G is

avoidable.

Note that the complete bipartite graph Kd;d (d ¼ 2t, t 2 N) and the d-dimensional

hypercube graph Qd (d 2 N) are both (d, d)-edge colorable graphs satisfying the
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condition in Corollary 2. Thus this corollary generalizes the results in [4–6]. The

next corollary examines the condition on d and s so that for every (d, s)-edge

colorable graph G of order n and any b-sparse list assignment L for G satisfying that

the length of every list in L is constant, there is a proper d-edge coloring of G which

avoids L.

Corollary 3 For any positive integers n, d, s and any constant c such that s� 11

and
1

2
ð2�11c�1s2d�1Þ2�9d�1s2

� n, if G is a (d, s)-edge colorable graph G of order n

then any
c

s
-sparse list assignment L for G is avoidable.

If the length of every list in L is bounded by a power of s, we have a slightly

different condition as follows.

Corollary 4 For any positive integers n, d, s and any constant c such that s� 11

and
1

2
ð2�11s2�cd�1Þ2�9d�1s2

� n, if G is a (d, s)-edge colorable graph G of order n

then any sc�1-sparse list assignment L for G is avoidable.

A distance-t matching is a matching where any two edges are at distance at least t

from each other. Consider an arbitrary list assignment L0 (not necessariliy b-sparse)

for a (d, s)-edge colorable graph. In general, it is difficult to determine if L0 is

avoidable or not. However, if the edges with forbidden lists are placed on a distance-

3 matching, our method in fact immediately yields the following.

Corollary 5 Let L0 be a list assignment for the edges of a (d, s)-edge colorable

graph G such that for each edge e of G, L0ðeÞ� s� 1. If every edge e satisfying

L0ðeÞ 6¼ ; belongs to a distance-3 matching in G, then L0 is avoidable.

4 Families of (d, s)-Edge Colorable Graphs

The results in [3] and [4] allow us to conclude that the complete bipartite graph Kd;d

(d ¼ 2t; t 2 N) and the hypercube graph Qd (d 2 N) are (d, d)-edge colorable

graphs. Compared to the hypercube graph Qd (d 2 N), the complete bipartite graph

Kd;d (d ¼ 2t; t 2 N) is much denser, so it is interesting to see how this complete

bipartite graph behaves if some edges are removed. Lemma 3 considers the case

when we take a set of k standard matchings out of Kd;d (d ¼ 2t; t 2 N).

Lemma 3 The graph G obtained by removing k standardmatchings from the complete

bipartite graph Kd;d ðd ¼ 2t; t 2 NÞ is a ðd � k; d � kÞ-edge colorable graph.

Proof It is straightforward that G is a ðd � kÞ-regular graph. Let h be the standard

coloring of Kd;d such that all edges in a standard matching of Kd;d receive the same

color in h. We define the proper ðd � kÞ-edge coloring h0 of G from h by retaining

the color of every non-deleted edge in E(G). For any edge e of G, removing one

standard matching from Kd;d eliminates one 2-colored 4-cycle that contains e.

Hence, the number of 2-colored 4-cycles containing e is d � 1 � k, which implies

that G is a ðd � k; d � kÞ-edge colorable graph. h
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Recall that the Cartesian product G ¼ G1hG2 of the graphs G1 and G2 is a graph

whose vertex set is the Cartesian product VðG1Þ � VðG2Þ and where two vertices

u ¼ ðu1; u2Þ and v ¼ ðv1; v2Þ are adjacent in G whenever u1 ¼ v1 and u2 is adjacent

with v2 in G2, or u2 ¼ v2 and u1 is adjacent with v1 in G1. The following lemma

concerns the (d, s)-edge colorability of Cartesian products of graphs.

Lemma 4 Let G1 be a ðd1; s1Þ-edge colorable graph and G2 be a ðd2; s2Þ-edge
colorable graph. Then G ¼ G1hG2 of graphs G1 and G2 is a (d, s)-edge colorable

graph with d ¼ d1 þ d2 and s ¼ minfd1 þ s2; d2 þ s1g.

Proof By the definition of the Cartesian product of graphs, it is straightforward that

G is d-regular graph with d ¼ d1 þ d2. Let h1 be the standard coloring of G1 and h2

be the standard coloring of G2 such that the set of colors in h1 and the set of colors

in h2 are disjoint. We define an edge coloring h of G: for two adjacent vertices

u ¼ ðu1; u2Þ and v ¼ ðu1; v2Þ in G, the edge uv is given the color hðuvÞ ¼ h2ðu2v2Þ
and for two adjacent vertices u ¼ ðu1; u2Þ and v ¼ ðv1; u2Þ in G, the edge uv is given

the color hðuvÞ ¼ h1ðu1v1Þ. Thus h is a proper d-edge coloring of G.

Note that an edge uv of G with u ¼ ðu1; u2Þ and v ¼ ðu1; v2Þ is contained in a 2-

colored 4-cycle uvztu with z ¼ ðui; v2Þ and t ¼ ðui; u2Þ (ui is neighbour of u1 in G1).

Furthermore, if u2v2z2t2u2 is a 2-colored 4-cycle in G2, then uvz0t0u with z0 ¼
ðu1; z2Þ and t0 ¼ ðu1; t2Þ is a 2-colored 4-cycle in G. Since the degree of u1 is d1 and

every edge of G2 is in at least s2 � 1 2-colored 4-cycles, an edge uv of G with

u ¼ ðu1; u2Þ and v ¼ ðu1; v2Þ belongs to at least d1 þ s2 � 1 2-colored 4-cycles.

Similarly, an edge uv of G with u ¼ ðu1; u2Þ and v ¼ ðv1; u2Þ belongs to at least

d2 þ s1 � 1 2-colored 4-cycles. Therefore, we can conclude that G is a (d, s)-edge

colorable graph with d ¼ d1 þ d2 and s ¼ minfd1 þ s2; d2 þ s1g. h

In the remaining part of this section, we examine some other graphs that belong

to the family of (d, s)-edge colorable graphs.

Let G be a finite group and let S be a generating set of G such that S does not

contain the identity element e, jSj ¼ d and S ¼ S�1 (which means if a 2 S then

a�1 2 S). The undirected Cayley graph Cay(G, S) over the set S is defined as the

graph whose vertex set is G and where two vertices a; b 2 G are adjacent whenever

fab�1; ba�1g � S. It is straightforward that Cay(G, S) is a d-regular graph, Lemmas

5 and 6 show that if S satisfies some further conditions then Cay(G, S) is a (d, s)-

edge colorable graph.

Lemma 5 Let Cay(G, S) be an undirected Cayley graph on a group G over the

generating set S � G n feg. If a ¼ a�1 for every a 2 S, jSj ¼ d and there exits a

subset Sc � S, jScj ¼ s, satisfying that every element of Sc is commutative with all

elements in S, then Cay(G, S) is a (d, s)-edge colorable graph.

Proof Let h be the proper d-edge coloring of Cay(G, S) such that every edge uv in

Cay(G, S) is colored a if uv�1 ¼ vu�1 ¼ a 2 S. For an edge uv colored a, consider

an arbitrary element b 2 Sc and let z ¼ vb, t ¼ ub, then the edges vz and uv are

colored b in h. Furthermore, since b is commutative with a, i.e. ab ¼ ba, we have

z ¼ vb ¼ uab ¼ uba ¼ ta. This implies that there is an edge between z and t, and
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this edge is colored a in h. Hence, uvztu is a 2-colored 4-cycle. Because jScj ¼ s,

each edge of Cay(G, S) is in at least s� 1 2-colored 4-cycles. It follows that Cay(G,

S) is a (d, s)-edge colorable graph.

Lemma 6 Let Cay(G, S) be an undirected Cayley graph on an Abelian group G

over the generating set S � G n feg, S ¼ S�1 and jSj ¼ d. Let Sk ¼ fs1; s2; :::; skg be
a subset of S such that Sk [ S�1

k ¼ S and Sk does not contain two different elements

si 6¼ sj satisfying that si ¼ s�1
j . If S has the following properties:

(i) every element si of Sk has even order di ðsidi ¼ s0
i ¼ eÞ;

(ii) for every element g 2 G, there is exactly one sequence ðx1; x2; . . .; xkÞ ðxi 2
½0; di � 1� for i 2 ½1; k�Þ such that g ¼ s1

x1s2
x2 . . .sk

xk ;

then Cay(G,S) is a (d, d)-edge colorable graph.

Proof We write S ¼ fs1; . . .; sk; s
�1
1 ; . . .; s�1

k g; note that the size of S may not be 2k,

since S may contain some element sx with sx ¼ s�1
x . Consider an edge uv of Cay(G,

S); without loss of generality assume that v ¼ usi (u ¼ vs�1
i ) for some i 2 ½1; k�. The

condition (ii) implies that there exists exactly one sequence ðx1; x2; . . .; xkÞ such that

u ¼ s1
x1 . . .si

xi . . .sk
xk and v ¼ s1

x1 . . .si
ðxiþ1Þ mod di . . .sk

xk . We color the edge uv by

color si if xi is even, and by color s�1
i if xi is odd. By repeating this for all edges of

Cay(G, S), we obtain the proper d-edge coloring h.

Given an edge e of Cay(G, S), let u and v be the two endpoints of e, where v ¼ usi
(for some i 2 ½1; k�). Let u ¼ s1

x1 . . .si
xi . . .sk

xk ; xi is called the power of si in u

(i 2 ½1; k�) and denoted by puðsiÞ. Consider an arbitrary element s 2 S, if s ¼ sj 2 Sk,

let z ¼ vsj, t ¼ usj, then hðvzÞ ¼ hðutÞ ¼ sj or hðvzÞ ¼ hðutÞ ¼ s�1
j since puðsjÞ ¼

pvðsjÞ and ptðsjÞ ¼ pzðsjÞ ¼ puðsjÞ þ 1. Furthermore, since G is an Abelian group,

we have z ¼ vsj ¼ usisj ¼ usjsi ¼ tsi. Thus there is an edge between z and t, and

hðuvÞ ¼ hðtzÞ since puðsiÞ ¼ ptðsiÞ and pvðsiÞ ¼ pzðsiÞ ¼ puðsiÞ þ 1; hence uvztu is a

2-colored 4-cycle. If s 2 S�1
k , we proceed similarly. Because jSj ¼ d, each edge of

Cay(G,S) is in at least d � 1 2-colored 4-cycles. It follows that Cay(G, S) is a (d, d)-

edge colorable graph. h
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