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Abstract
In this paper, we consider the average size of independent edge sets, also called

matchings, in a graph. We characterize the extremal graphs for the average size of

matchings in general graphs and trees. In addition, we obtain inequalities between

the average size of matchings and the number of matchings as well as the matching

energy, which is defined as the sum of the absolute values of the zeros of the

matching polynomial.

Keywords Matchings � Average size � Trees � Extremal problems
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1 Introduction

An independent vertex set in a graph is a set of vertices such that no two vertices are

adjacent. An independent edge set, also called a matching, is a set of edges such that

no two edges are adjacent. It is not surprising that these two concepts are closely
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related, an elementary example being the fact that a matching in a graph is an

independent set in the corresponding line graph. Two popular graph invariants

associated with these concepts are the Merrifield–Simmons index and the Hosoya

index, which are the total number of independent sets and the total number of

matchings respectively. Extremal problems, where one is looking for the maximum

or minimum of an invariant in a specified class of graphs, have been studied quite

thoroughly for both the Merrifield–Simmons index and the Hosoya index. It is

straightforward that among all n-vertex graphs, the complete graph has the

maximum Hosoya index and the minimum Merrifield–Simmons index, while on the

other hand the empty graph has the minimum Hosoya index and the maximum

Merrifield–Simmons index. Among n-vertex trees, the path and the star are

extremal, and there are numerous other examples of graph classes where the graphs

that minimize the Merrifield–Simmons index also maximize the Hosoya index, and

vice versa [13].

In a recent paper [1], we were interested in extremal questions for the average

size of independent sets of graphs rather than their number. This was partly inspired

by the work of Jamison [6, 7] and later authors [5, 10, 12, 14] on the average size of

subtrees of trees. In the present paper, which complements our paper [1], we are

concerned with the study of the average size of matchings in a graph. In view of the

aforementioned relation between independent sets and matchings, we expect to get

similar results as for the average size of independent sets. Indeed, we find that the

graphs that minimize the average size of independent sets are also those that

maximize the average size of matchings and vice versa in all instances that we treat.

Specifically, it holds true for arbitrary graphs and trees of a prescribed size.

Finally, we also prove inequalities between the average size of matchings and the

number of matchings as well as the matching energy of a graph, an invariant

introduced in [4].

2 Preliminaries

Let G be a graph. A subset A of E(G) is called a matching of G if no pair of edges of

A share a common vertex. Let mðG; kÞ be the number of matchings of cardinality k

(also called k-matchings) in G. We use the following notation for the total number

of matchings in G, the sum of the sizes of all matchings in G and the average size of

matchings in G:

MðGÞ ¼
X

k� 0

mðG; kÞ;

SðGÞ ¼
X

k� 0

kmðG; kÞ;

avmðGÞ ¼ SðGÞ
MðGÞ :

The greatest cardinality of a matching in G is called the matching number of G and

denoted by lðGÞ.
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As examples, let us consider the n-vertex edgeless graph En and the star Sn. We

have

MðEnÞ ¼ 1; MðSnÞ ¼ n; SðEnÞ ¼ 0; SðSnÞ ¼ n� 1

and hence

avmðEnÞ ¼ 0; avmðSnÞ ¼
n� 1

n
:

The following standard and well-known proposition gives us a recursion for the

total number and size of matchings.

Proposition 1 If e ¼ uv is an edge of G, then

MðGÞ ¼ MðG� eÞ þMðG� v� uÞ ð1Þ

and

SðGÞ ¼ SðG� eÞ þ SðG� v� uÞ þMðG� v� uÞ: ð2Þ

Similarly, if v is a vertex of G, then

MðGÞ ¼ MðG� vÞ þ
X

u:uv2EðGÞ
MðG� v� uÞ ð3Þ

and

SðGÞ ¼ SðG� vÞ þ
X

u:uv2EðGÞ
ðSðG� v� uÞ þMðG� v� uÞÞ: ð4Þ

Proof A matching in G either contains the edge e or not. The number of matchings

containing e is MðG� v� uÞ, and the number of those not containing e is

MðG� eÞ. Hence, the first equation holds. The argument for the second equation is

similar, with the last term taking the edge e itself into account.

Using similar reasoning, the last two equations are obtained by distinguishing

between matchings that do not contain an edge with v as an endpoint and those that

do contain such an edge. h

Remark 1 In particular, if v is a leaf of a tree and w its unique neighbor, we obtain

the relations

MðGÞ ¼ MðG� vÞ þMðG� v� wÞ

and

SðGÞ ¼ SðG� vÞ þ SðG� v� wÞ þMðG� v� wÞ:

Moreover, we have the following basic result on disjoint unions:
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Proposition 2 Let G1;G2; . . .;Gk be the connected components of a graph G. Then

we have

MðGÞ ¼
Yk

j¼1

MðGjÞ

and

SðGÞ ¼
Xk

i¼1

SðGiÞ
Yk

j ¼ 1

j 6¼ i

MðGjÞ ¼ MðGÞ
Xk

i¼1

SðGiÞ
MðGiÞ

;

thus

avmðGÞ ¼
Xk

i¼1

avmðGiÞ:

Proof This follows easily from the fact that every matching of G decomposes

uniquely into matchings of its connected components. h

3 General Graphs

Unlike the total number of matchings M, the average size of matchings avm is not

always a monotone function under addition of edges to the graph. For example,

consider the tree in Fig. 1. We have

avmðT � e1Þ ¼
7

6
[

8

7
¼ avmðTÞ; but avmðT � e2Þ ¼

3

4
\

8

7
¼ avmðTÞ:

However, we can make use of the following result obtained in [1]:

Theorem 1 Let X be a nonempty finite set, and PðXÞ its powerset. For a set

A � PðXÞ, we define

avðAÞ ¼ 1

jAj
X

A2A
jAj:

Let B � PðXÞ, such that the cardinalities of the elements of B are not all the same

and for every x 2 X there exists B 2 B with x 2 B. Then there exists x0 2 X such

that

e1 e2

Fig. 1 A tree T and two of its
edges
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avðBÞ[ av B \ PðX � fx0gÞð Þ:

Applying Theorem 1, with B being the set of matchings of G, we immediately

obtain the following theorem.

Theorem 2 If G is a nonempty graph, then there exists an edge e in E(G) such that

avmðG� eÞ\avmðGÞ:

As an immediate consequence, we have the following corollary (which of course

is also rather trivial without Theorem 2).

Corollary 1 For every n-vertex graph G that is not the edgeless graph En,

0 ¼ avmðEnÞ\avmðGÞ.

One might wonder whether there is an analogous statement for adding edges. If it

was possible to add an edge to every non-complete graph in such a way that the

average matching size increases, it would follow immediately that complete graphs

maximize the invariant avm. While the latter is true (as will be shown in the

following), the analogue of Theorem 1 fails, as the example of a four-vertex cycle

shows: when an edge e is added to the cycle C4, we have

avmðC4Þ ¼
8

7
[

9

8
¼ avmðC4 þ eÞ:

Thus we need another approach to show that the complete graph is still extremal.

For this purpose, we first introduce some notation.

In analogy to MðGÞ, SðGÞ and avmðGÞ, we define the following partial quantities

for every nonnegative integer k:

MkðGÞ ¼
Xk

i¼0

mðG; iÞ;

SkðGÞ ¼
Xk

i¼0

imðG; iÞ;

avmkðGÞ ¼
SkðGÞ
MkðGÞ

:

We have the following lemmas.

Lemma 1 For every nonnegative integer k and every graph G, we have

avmkþ1ðGÞ� avmkðGÞ:

If k� lðGÞ, then
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avmkþ1ðGÞ ¼ avmkðGÞ ¼ avmðGÞ:

Proof This is straightforward from the definition of avmk. h

Lemma 2 For every n-vertex graph G and every nonnegative integer k such that

k\lðGÞ, we have

mðKn; kÞ
mðKn; k þ 1Þ �

mðG; kÞ
mðG; k þ 1Þ :

Proof Let N be any k-matching of the complete graph Kn. When the 2k vertices that

are covered by N are removed, a complete graph on n� 2k vertices remains. Thus

there are mðKn�2k; 1Þ ¼
n� 2k

2

� �
possible ways to extend N to a ðk þ 1Þ-

matching. Conversely, every ðk þ 1Þ-matching can be obtained as an extension of

k þ 1 different k-matchings. It follows that

mðKn; k þ 1Þ ¼ mðKn; kÞ �
mðKn�2k; 1Þ

k þ 1
: ð5Þ

Likewise, if N is a k-matching of G and v(N) the set of vertices covered by N in G,

then there are mðG� vðNÞÞ ways to extend N to a ðk þ 1Þ-matching of G. So by the

same double-counting argument, we have

mðG; k þ 1Þ ¼ 1

k þ 1

X

N: k�matchingofG

mðG� vðNÞ; 1Þ:

Clearly, mðG� vðNÞ; 1Þ�mðKn�2k; 1Þ for all k-matchings N (with equality if and

only if G� vðNÞ is complete), thus

mðG; k þ 1Þ� 1

k þ 1
�mðG; kÞ �mðKn�2k; 1Þ; ð6Þ

and the desired inequality results from (5) and (6). h

Remark 2 Equality in Lemma 2 may hold for some (but not all) k even if G is not

complete: for example, for the 4-cycle C4, we have

mðK4; 2Þ
mðK4; 1Þ

¼ 3

6
¼ 2

4
¼ mðC4; 2Þ

mðC4; 1Þ
:

Lemma 2 can easily be extended to the following lemma by induction:

Lemma 3 For every n-vertex graph G and for every pair of integers k, l with

lðGÞ� k� l� 0, we have

mðKn; lÞ
mðKn; kÞ

� mðG; lÞ
mðG; kÞ
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and thus

MlðKnÞ
mðKn; kÞ

¼
Pl

i¼0 mðKn; iÞ
mðKn; kÞ

�
Pl

i¼0 mðG; iÞ
mðG; kÞ ¼ MlðGÞ

mðG; kÞ :

Theorem 3 For every n-vertex graph G and every integer k with lðGÞ� k[ 0, we

have

avmkðKnÞ� avmkðGÞ;

with equality if and only if G is a complete graph.

Proof We only need to consider the case that G is not complete.

We proceed by induction on k. For k ¼ 1 we have

avm1ðKnÞ ¼
jEðKnÞj

jEðKnÞj þ 1
[

jEðGÞj
jEðGÞj þ 1

¼ avm1ðGÞ:

The inequality holds because x
xþ1

is an increasing function of x on the interval

½0;1Þ.
Assume that avmkðKnÞ[ avmkðGÞ for some positive integer k, where k\lðGÞ.

Then we have mðk þ 1;GÞ 6¼ 0 and

avmkþ1ðKnÞ ¼
ðk þ 1ÞmðKn; k þ 1Þ þ

Pk
i¼0 imðKn; iÞ

mðKn; k þ 1Þ þ
Pk

i¼0 mðKn; iÞ

¼ ðk þ 1ÞmðKn; k þ 1Þ þ SkðKnÞ
mðKn; k þ 1Þ þMkðKnÞ

¼ ðk þ 1ÞmðKn; k þ 1Þ þ avmkðKnÞMkðKnÞ
mðKn; k þ 1Þ þMkðKnÞ

¼
ðk þ 1Þ þ avmkðKnÞ MkðKnÞ

mðKn;kþ1Þ

1þ MkðKnÞ
mðKn;kþ1Þ

:

ð7Þ

Since k þ 1[ avmkðKnÞ, we know that
ðkþ1ÞþavmkðKnÞx

1þx
is decreasing as a function of

x on the interval ½0;1Þ, so Lemma 3 and (7) imply that

avmkþ1ðKnÞ�
ðk þ 1Þ þ avmkðKnÞ MkðGÞ

mðG;kþ1Þ

1þ MkðGÞ
mðG;kþ1Þ

: ð8Þ

Finally, using the induction hypothesis avmkðKnÞ[ avmkðGÞ, we obtain

avmkþ1ðKnÞ[
ðk þ 1Þ þ avmkðGÞ MkðGÞ

mðG;kþ1Þ

1þ MkðGÞ
mðG;kþ1Þ

¼ avmkþ1ðGÞ: ð9Þ

h
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Corollary 2 For every n-vertex graph G we have avmðKnÞ� avmðGÞ, with equality

only if G is a complete graph.

Proof Theorem 3 and Lemma 1 give us

avmðKnÞ ¼ avmbn=2cðKnÞ� avmlðGÞðKnÞ� avmlðGÞðGÞ ¼ avmðGÞ:

h

Remark 3 While there is no simple explicit formula for avmðKnÞ, it can be

expressed in terms of the number of matchings in complete graphs. Every edge of

the complete graph Kn is contained in MðKn�2Þ matchings, thus we have SðKnÞ ¼

n

2

� �
MðKn�2Þ and consequently

avmðKnÞ ¼
SðKnÞ
MðKnÞ

¼
n

2

� �
MðKn�2Þ
MðKnÞ

:

A relatively simple asymptotic formula can be provided as well. There is a

straightforward bijection between matchings of Kn and involutions of an n-element

set (a permutation is called an involution if it is equal to its own inverse, or

equivalently if all cycles are of length 1 or 2). Thus the number of matchings of Kn

is the same as the number of involutions of an n-element set, for which there is a

well-known asymptotic formula (see [3, Proposition VIII.2]):

MðKnÞ�
1ffiffiffi
2

p nn=2e�n=2þ
ffiffi
n

p
�1=4:

It follows that

avmðKnÞ�
n

2

as n ! 1.

4 Trees

In this section, we will be concerned with trees. Our main goal is to determine the

maximum and minimum of avmðTÞ when T is a tree with n vertices. Let us first

consider the problem of minimizing the average size of matchings. As it turns out,

the minimum for trees is also the minimum for connected graphs in general.

Theorem 4 For every connected n-vertex graph, avmðSnÞ� avmðGÞ, with equality

only if G is a star.

Proof We have shown earlier that avmðSnÞ ¼ n�1
n
\1. However any other

connected graph G (except for the complete graph K3, for which
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avmðK3Þ ¼ 3
4
[ 2

3
) on n vertices satisfies avmðGÞ� 1, since it possesses matchings

of size greater than 1, which make up for the empty set. h

The maximization problem requires more effort. Note that the line graph of the n-

vertex path Pn is the ðn� 1Þ-vertex path Pn�1. This implies that the matchings of Pn

can be identified with the independent sets of Pn�1. Thus, the average size of

matchings of Pn is the same as the average size of the independent sets of Pn�1. A

formula for this average size was determined in [1], where it was also shown that

this average is in fact the minimum among trees of the same size.

Lemma 4 The average size of matchings of the n-vertex path Pn is

avmðPnÞ ¼
5�

ffiffiffi
5

p

10
nþ 1�

ffiffiffi
5

p

10
� nþ 1ffiffiffi

5
p

ðð�/2Þnþ1 � 1Þ
; ð10Þ

where / ¼
ffiffi
5

p
þ1
2

is the golden ratio. In particular,

(a) limn!1 avmðPnÞ � 5�
ffiffi
5

p

10
n ¼ 1�

ffiffi
5

p

10
;

(b) avmðPnÞ�
5�

ffiffiffi
5

p

10
nþ 1ffiffiffi

5
p � 1

2
, with equality only for n ¼ 2. For all positive

integers n 6¼ 2, we even have avmðPnÞ�
5�

ffiffiffi
5

p

10
nþ 2ffiffiffi

5
p � 1.

Proof The formula for avmðPnÞ is taken from [1] (using the aforementioned

correspondence between matchings of Pn and independent sets of Pn�1). The limit

in (a) is a straightforward consequence. For (b), one only needs to note that the sign

of the final term in (10) alternates, and that its absolute value is decreasing in n (see

also [1]). It follows that its maximum is attained for n ¼ 2, and the second largest

value for n ¼ 4. h

For ease of notation, we set a ¼ 5�
ffiffi
5

p

10
� 0:27639320 and cn ¼ avmðPnÞ � an. As

mentioned above, the final in (10) has alternating sign, and its absolute value is

decreasing. Thus we have

c1\c3\c5\ � � �\c6\c4\c2: ð11Þ

Table 1 gives values of cn for small n.

Before we prove the main result of this section, we require one more lemma:

Lemma 5 For every graph G and every vertex v of G, we have

1

1þ dðvÞ �
MðG� vÞ
MðGÞ � 1;

where d(v) denotes the degree of v.

Proof Note first that MðGÞ ¼ MðG� vÞ þ
P

u:uv2EðGÞ MðG� v� uÞ. Since G�
v� u is a subgraph of G� v, we have MðG� v� uÞ�MðG� vÞ, hence

MðGÞ� ð1þ dðvÞÞMðG� vÞ, which proves the first inequality. The second
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inequality simply follows from the fact that G� v is a subgraph of G, so matchings

of G� v are also matchings of G. h

Theorem 5 For every tree T of order n that is not a path, we have the inequality

avmðTÞ� anþ b, where b ¼ ð7
ffiffiffi
5

p
� 17Þ=10 � �0:13475241. Consequently, the

path maximizes the value of avmðTÞ among all trees of order n.

Proof We prove the inequality by induction on n. For n� 3, there is nothing to

prove since the only trees with three or fewer vertices are paths. Thus assume now

that n� 4, and consider a vertex v of the tree T whose degree is at least 3 (which

must exist if T is not a path). Denote the neighbors of v by v1; v2; . . .; vk and the

components of T � v by T1; T2; . . .; Tk (in such a way that vj is contained in Tj). Let e
be the edge between v and vk, and T 0 ¼ T � Tk be the tree obtained by removing Tk
from T. We have

avmðTÞ ¼ SðTÞ
MðTÞ ¼

SðT � eÞ þ SðT � v� vkÞ þMðT � v� vkÞ
MðTÞ

¼ MðT � eÞ
MðTÞ � SðT � eÞ

MðT � eÞ þ
MðT � v� vkÞ

MðTÞ � 1þ SðT � v� vkÞ
MðT � v� vkÞ

� �

¼ MðT � eÞ
MðTÞ avmðT � eÞ þMðTÞ �MðT � eÞ

MðTÞ ð1þ avmðT � v� vkÞÞ

¼ MðT � eÞ
MðTÞ ðavmðT 0Þ þ avmðTkÞÞ

þ 1�MðT � eÞ
MðTÞ

� �
1þ

Xk�1

j¼1

avmðTjÞ þ avmðTk � vkÞ
 !

:

ð12Þ

Set A ¼ avmðT 0Þ þ avmðTkÞ and B ¼ 1þ
Pk�1

j¼1 avmðTjÞ þ avmðTk � vkÞ.
Assume first that k� 4. By Lemma 4 and the induction hypothesis, we have

avmðTjÞ� ajTjj þ 1ffiffi
5

p � 1
2
for all j and avmðT 0Þ � ajT 0j þ b. It follows that

A� aðjT 0j þ jTkjÞ þ bþ 1ffiffiffi
5

p � 1

2
¼ ajT j þ bþ 1ffiffiffi

5
p � 1

2
\ajT j þ b:

If B� ajT j þ b, then we are done immediately. Hence we can assume that

A\ajT j þ b�B. This implies that the expression for avmðTÞ in (12) is decreasing

Table 1 Values of c1; c2; . . .; c5

n 1 2 3

cn
ffiffi
5

p

10
� 1

2
� �0:2764

1ffiffi
5

p � 1
2
� �0:0528 3

2
ffiffi
5

p � 5
6
� �0:1625

n 4 5 6

cn 2ffiffi
5

p � 1 � �0:1056
ffiffi
5

p

2
� 5

4
� �0:1320

3ffiffi
5

p � 19
13
� �0:1199
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regarded as a function of
MðT�eÞ
MðTÞ , which means that we will need lower bounds for

this quotient. So let us first find a formula for
MðT�eÞ
MðTÞ . We observe that

MðT � eÞ
MðTÞ ¼ MðT 0ÞMðTkÞ

MðT 0ÞMðTkÞ þMðT 0 � vÞMðTk � vkÞ
;

thus

MðT � eÞ
MðTÞ ¼ 1þMðT 0 � vÞ

MðT 0Þ �MðTk � vkÞ
MðTkÞ

� ��1

: ð13Þ

Let us also find an expression for
MðT 0�vÞ
MðT 0Þ :

MðT 0 � vÞ
MðT 0Þ ¼

Qk�1
j¼1 MðTjÞ

Qk�1
j¼1 MðTjÞ þ

Pk�1
j¼1 MðTj � vjÞ

Qk�1

i ¼ 1

i 6¼ j

MðTiÞ

¼ 1þ
Xk�1

j¼1

MðTj � vjÞ
MðTjÞ

 !�1

:

ð14Þ

Moreover, by Lemma 5, we have
MðT 0�vÞ
MðT 0Þ � 1, and plugging this estimate into (13),

we obtain

MðT � eÞ
MðTÞ � 1þMðTk � vkÞ

MðTkÞ

� ��1

: ð15Þ

We have to consider two different cases:

Case 1: One of the Tj’s is the two-vertex path P2. Then we can without loss of

generality assume that Tk ¼ P2, so that avmðTkÞ ¼ 1
2
and avmðTk � vkÞ ¼ 0. Let us

distinguish two subcases depending on the number of other branches Tj that are

isomorphic to P2.

– At least one of the Tj’s is different from P2. We have

A� ajTj þ bþ 1ffiffiffi
5

p � 1

2
;

as it was established earlier. Moreover, by Lemma 4 and the induction

hypothesis,

avmðTjÞ� ajTjj þ
1ffiffiffi
5

p � 1

2

for all j, and

123

Graphs and Combinatorics (2020) 36:539–560 549



avmðTjÞ� ajTjj þ
2ffiffiffi
5

p � 1

if Tj is different from P2. Since this is the case for at least one index j, it follows

that

B ¼ 1þ
Xk�1

j¼1

avmðTjÞ

� 1þ
Xk�1

j¼1

ajTjj þ ðk � 2Þ 1ffiffiffi
5

p � 1

2

� �
þ 2ffiffiffi

5
p � 1

¼ aðjT j � 3Þ þ ðk � 2Þ 1ffiffiffi
5

p � 1

2

� �
þ 2ffiffiffi

5
p

� aðjTj � 3Þ þ 2
1ffiffiffi
5

p � 1

2

� �
þ 2ffiffiffi

5
p

¼ ajT j � 3aþ 4ffiffiffi
5

p � 1:

Since we are assuming that Tk is a two-vertex path, we have
MðTk�vkÞ
MðTkÞ

¼ 1
2
.

Plugging this into (15), we obtain
MðT�eÞ
MðTÞ � 2

3
. Hence, (12) gives us

avmðTÞ� ajT j þ 2

3
bþ 1ffiffiffi

5
p � 1

2

� �
þ 1

3
�3aþ 4ffiffiffi

5
p � 1

� �

¼ ajT j þ 29

6
ffiffiffi
5

p � 23

10
� ajT j � 0:13847\ajTj þ b:

– All of the Tj’s are equal to P2. In this case, we can determine MðTÞ and SðTÞ
explicitly (as functions of k only) by means of Proposition 1:

MðTÞ ¼ 2k þ k2k�1

and

SðTÞ ¼ k2k�1 þ kðk þ 1Þ2k�2;

thus

avmðTÞ ¼ k2 þ 3k

2k þ 4
:

Now one verifies easily that

avmðTÞ ¼ k2 þ 3k

2k þ 4
� að2k þ 1Þ þ b ¼ ajTj þ b

holds for all k� 4, completing the proof in Case 1.

123

550 Graphs and Combinatorics (2020) 36:539–560



Case 2: None of the Tj’s is a 2-vertex path P2.

Let us distinguish different cases depending on the shape of Tk. We may assume

that Tk is the smallest branch, i.e. jTkj ¼ min1� j� k jTjj.

– If jTkj ¼ 1, then avmðTkÞ ¼ avmðTk � vkÞ ¼ 0. It follows that

A ¼ avmðT 0Þ � ajT 0j þ b ¼ ajT j þ b� a:

Moreover, since avmðTjÞ� jTjj þ 2ffiffi
5

p � 1 for every j by the induction hypothesis

and Lemma 4 (and the assumption that none of the Tj is a 2-vertex path), we

have

B ¼ 1þ
Xk�1

j¼1

avmðTjÞ

� 1þ a
Xk�1

j¼1

jTjj þ ðk � 1Þ 2ffiffiffi
5

p � 1

� �

� 1þ aðjT j � 2Þ þ 3
2ffiffiffi
5

p � 1

� �

¼ ajTj � 2aþ 6ffiffiffi
5

p � 2:

Since
MðTk�vkÞ
MðTkÞ

¼ 1, (15) gives us
MðT�eÞ
MðTÞ � 1

2
. Thus,

avmðTÞ� 1

2
ajT j þ b� að Þ þ 1

2
ajT j � 2aþ 6ffiffiffi

5
p � 2

� �

¼ ajT j þ 11

2
ffiffiffi
5

p � 13

5
� ajT j � 0:14033\ajTj þ b:

– If jTkj ¼ 3, then avmðTkÞ ¼ ajTkj þ 3

2
ffiffi
5

p � 5
6
and avmðTk � vkÞ� aðjTkj � 1Þþ

1ffiffi
5

p � 1
2
. In the same way as in the previous case, it follows that

A� ajTj þ bþ 3

2
ffiffiffi
5

p � 5

6
;

B� 1þ aðjT j � 2Þ þ 3
2ffiffiffi
5

p � 1

� �
þ 1ffiffiffi

5
p � 1

2
¼ ajT j � 2aþ 7ffiffiffi

5
p � 5

2
:

Since
MðTk�vkÞ
MðTkÞ

� 2
3
, in this case (15) gives us

MðT�eÞ
MðTÞ � 3

5
. We obtain

avmðTÞ� ajTj þ 3

5
bþ 3

2
ffiffiffi
5

p � 5

6

� �
þ 2

5
�2aþ 7ffiffiffi

5
p � 5

2

� �

¼ ajTj þ 31

5
ffiffiffi
5

p � 73

25
� ajTj � 0:14728\ajTj þ b:
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– If jTkj ¼ 4, then avmðTkÞ� ajTkj þ 2ffiffi
5

p � 1 and avmðTk � vkÞ� aðjTkj � 1Þ
þ 3

2
ffiffi
5

p � 5
6
. In the same way as before, it follows that

A� ajTj þ bþ 2ffiffiffi
5

p � 1;

B� 1þ aðjT j � 2Þ þ 3
2ffiffiffi
5

p � 1

� �
þ 3

2
ffiffiffi
5

p � 5

6
¼ ajT j � 2aþ 3

ffiffiffi
5

p

2
� 17

6
:

Moreover,
MðTk�vkÞ
MðTkÞ

� 3
4
in this case, so using (15) again, we get

MðT�eÞ
MðTÞ � 4

7
.

Hence

avmðTÞ� ajTj þ 4

7
bþ 2ffiffiffi

5
p � 1

� �
þ 3

7
�2aþ 3

ffiffiffi
5

p

2
� 17

6

 !

¼ ajT j þ 19
ffiffiffi
5

p

14
� 223

70
� ajT j � 0:15105\ajTj þ b:

– If jTkj � 5, then avmðTjÞ� ajTjj þ 3ffiffi
5

p � 19
13

for all j (by the induction hypothesis

and (11), we have avmðTjÞ� ajTjj þ c6 ¼ ajTjj þ 3ffiffi
5

p � 19
13

if Tj is a path, and

avmðTjÞ� ajTjj þ b� ajTjj þ 3ffiffi
5

p � 19
13

otherwise) and avmðTk � vkÞ� aðjTkj �
1Þþ 2ffiffi

5
p � 1. So it follows now that

A� ajTj þ bþ 3ffiffiffi
5

p � 19

13
;

B� 1þ aðjT j � 2Þ þ 3
3ffiffiffi
5

p � 19

13

� �
þ 2ffiffiffi

5
p � 1 ¼ ajT j � 2aþ 11ffiffiffi

5
p � 57

13
:

Since
MðTk�vkÞ
MðTkÞ

� 1, we have
MðT�eÞ
MðTÞ � 1

2
by (15). Thus,

avmðTÞ� ajTj þ 1

2
bþ 3ffiffiffi

5
p � 19

13
� 2aþ 11ffiffiffi

5
p � 57

13

� �

¼ ajT j þ 37

4
ffiffiffi
5

p � 1111

260
� ajT j � 0:13635\ajTj þ b:

This completes the proof in the case that k� 4, so we are left with the case k ¼ 3.

We return to the representation

avmðTÞ ¼ MðT � eÞ
MðTÞ ðavmðT 0Þ þ avmðTkÞÞ

þ 1�MðT � eÞ
MðTÞ

� �
1þ

Xk�1

j¼1

avmðTjÞ þ avmðTk � vkÞ
 !

:

ð16Þ
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Plugging (14) into (13), we obtain

MðT � eÞ
MðTÞ ¼ 1þ 1

1þ
Pk�1

j¼1
MðTj�vjÞ
MðTjÞ

�MðTk � vkÞ
MðTkÞ

0
B@

1
CA

�1

: ð17Þ

Now we distinguish different cases depending on how many of the branches Tj have

one, two, three, four and five or more vertices respectively. This gives us a total of

35 cases corresponding to the solutions of

x1 þ x2 þ x3 þ x4 þ x5 ¼ 3:

Here, x1; x2; x3; x4 stand for the number of Tj’s with one, two, three, and four

vertices respectively, and x5 is the number of Tj’s with five or more vertices. In each

of the cases, we use the following explicit values and bounds. The bounds and

explicit values for jTjj � 4 are obtained by an exhaustive case check, while the

bounds for jTjj[ 4 follow from the induction hypothesis and Lemma 4.

avmðTjÞ

¼ ajTjj � a jTjj ¼ 1;

¼ ajTjj þ c2 jTjj ¼ 2;

¼ ajTjj þ c3 jTjj ¼ 3;

� ajTjj þ c4 jTjj ¼ 4;

� ajTjj þ c6 otherwise,

8
>>>>>><

>>>>>>:

avmðTj � vjÞ

¼ ajTjj � a jTjj ¼ 1;

¼ ajTjj � 2a jTjj ¼ 2;

� aðjTjj � 1Þ þ c2 jTjj ¼ 3;

� aðjTjj � 1Þ þ c3 jTjj ¼ 4;

� aðjTjj � 1Þ þ c4 otherwise.

8
>>>>>><

>>>>>>:

We can assume that the degree of vj is at most 3 for every j, since otherwise we can

go back to the case that k� 4. Using this assumption, we have

MðTj � vjÞ
MðTjÞ

¼ 1 jTjj ¼ 1;

¼ 1

2
jTjj ¼ 2;

2 1

3
;
2

3

� �
jTjj ¼ 3;

2 2

5
;
3

4

� �
jTjj ¼ 4;

2 4

11
;
3

4

� �
otherwise.

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:
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The first four statements are obtained by checking all possible cases. For the last

one, we use a similar recursion to (14) combined with Lemma 5 as follows: note

first that vj has at most two neighbors in Tj, since its degree in T is at most 3. If there

is only one neighbor, let w be this neighbor, and set S ¼ Tj � vj. We have

MðTj � vjÞ
MðTjÞ

¼ 1þMðS� wÞ
MðSÞ

� ��1

:

Applying Lemma 5 to S and w yields 1
3
� MðS�wÞ

MðSÞ � 1 (if the degree of w was greater

than 2, we could go back to the case k� 4 again), thus
MðTj�vjÞ
MðTjÞ

2 ½1
2
; 3
4
	. If there are

two neighbors w1 and w2, let S1 and S2 be the respective components of Tj � vj.

Since 1
3
� MðSi�wiÞ

MðSiÞ
� 1, we obtain

MðTj � vjÞ
MðTjÞ

¼ 1þMðS1 � w1Þ
MðS1Þ

þMðS2 � w2Þ
MðS2Þ

� ��1

� 1

1þ 1
3
þ 1

3

¼ 3

5

in this case, which readily proves the upper bound of 3
4
in all cases. To improve the

lower bound even further, we can note that one of the two trees S1 and S2 has more

than one vertex; without loss of generality, let this be S1. Applying the same

argument to S1 as to Tj, we find
MðS1�w1Þ
MðS1Þ

� 3
4
. Thus

MðTj � vjÞ
MðTjÞ

¼ 1þMðS1 � w1Þ
MðS1Þ

þMðS2 � w2Þ
MðS2Þ

� ��1

� 1

1þ 3
4
þ 1

¼ 4

11
;

and we have also established the lower bound.

Next we return to the representation (16). Note that jT 0j � 3, so the induction

hypothesis combined with (11) yields

avmðT 0Þ � avmðPjT 0 jÞ ¼ ajT 0j þ cjT 0 j � ajT 0j þ c4:

The same reasoning shows that avmðTkÞ� ajTkj þ c2, thus avmðT 0Þþ
avmðTkÞ� ðajT 0j þ c4Þ þ ðajTkj þ c2Þ\ajTj þ b. As before, if 1þ

Pk�1
j¼1

avmðTjÞ þ avmðTj � vjÞ� ajTj þ b, then we are done. So we may assume that

avmðT 0Þ þ avmðTkÞ\ajT j þ b� 1þ
Xk�1

j¼1

avmðTjÞ þ avmðTj � vjÞ:

Hence the expression (16) is linear and decreasing in
MðT�eÞ
MðTÞ , and thus its maximum

is attained for the smallest possible value of
MðT�eÞ
MðTÞ .
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By the induction hypothesis, avmðT 0Þ � avmðPjT 0 jÞ ¼ ajT 0j þ cjT 0 j. This inequal-

ity is plugged into (16) along with the bounds for avmðTjÞ and avmðTj � vjÞ. The
identity (17) is used to obtain a lower bound on the quotient

MðT�eÞ
MðTÞ . All this gives us

an upper bound for avmðTÞ in each of the aforementioned 35 cases, which can all be

checked easily with a computer. The worst case happens when x1 ¼ x3 ¼ x4 ¼
x5 ¼ 0 and x2 ¼ 3, where we have the equality avmðTÞ ¼ ajT j þ b. As another

example to illustrate the general procedure, let us consider the case that gives us the

second worst estimate: it is obtained for x1 ¼ x3 ¼ x5 ¼ 0, x2 ¼ 2 and x4 ¼ 1. Let

T2 and T3 both have two vertices, so that the first branch T1 consists of four vertices.

Note that T3 is isomorphic to P2 and avmðT1Þ� avmðP4Þ from the first part of the

proof. We then have

avmðT3Þ ¼ ajT3j þ c2; avmðT 0Þ � ajT 0j þ c7;

thus

avmðT 0Þ þ avmðT3Þ� ajT j þ c2 þ c7 ¼ ajTj þ 9

2
ffiffiffi
5

p � 46

21
:

Moreover,

avmðT3 � v3Þ ¼ 0; avmðT1Þ� 4aþ c4; avmðT2Þ ¼
1

2
;

and thus

1þ
X2

j¼1

avmðTjÞ þ avmðT3 � v3Þ� 1þ 4aþ c4 þ
1

2
¼ ajT j þ 9

2
ffiffiffi
5

p � 2:

Finally, we have

MðT � eÞ
MðTÞ ¼ 1þMðT3 � v3Þ

MðT3Þ
� 1

1þMðT1�v1Þ
MðT1Þ

þMðT2�v2Þ
MðT2Þ

0
@

1
A

�1

� 1þ 1

2
� 1

1þ 1
2
þ 2

5

 !�1

¼ 19

24
:

Putting everything together, we obtain

123

Graphs and Combinatorics (2020) 36:539–560 555



avmðTÞ ¼ MðT � eÞ
MðTÞ avmðT 0Þ þ avmðT3Þð Þ

þ 1�MðT � eÞ
MðTÞ

� �
1þ

X2

j¼1

avmðTjÞ þ avmðT3 � v3Þ
 !

� MðT � eÞ
MðTÞ ajTj þ 9

2
ffiffiffi
5

p � 46

21

� �

þ 1�MðT � eÞ
MðTÞ

� �
ajT j þ 9

2
ffiffiffi
5

p � 2

� �

� 19

24
ajTj þ 9

2
ffiffiffi
5

p � 46

21

� �
þ 5

24
ajT j þ 9

2
ffiffiffi
5

p � 2

� �

¼ ajTj þ 9

2
ffiffiffi
5

p � 271

126
� ajTj � 0:13833\ajTj þ b:

The other cases are treated in the same fashion and give upper bounds with smaller

constant terms. Thus the induction is complete. In order to complete the proof of the

theorem, we only need a lower bound on avmðPnÞ. However, (11) shows that

avmðPnÞ ¼ anþ cn � anþ c5

for n[ 3, and c5 ¼
ffiffi
5

p

2
� 5

4
� �0:131966[ b. Thus avmðPnÞ[ anþ b� avmðTÞ

for every tree T with n vertices other than Pn. This completes the proof. h

5 Relations to Other Invariants

In this section, we will prove inequalities between the average matching size and

other matching-related quantities associated with a graph. Let G be an n-vertex

graph. The matching polynomial and the matching generating polynomial are

defined as follows:

UðG; xÞ ¼
X

k� 0

mðG; kÞð�1Þkxn�2k;

MðG; xÞ ¼
X

k� 0

mðG; kÞxk:

Note that the average size of matchings in G can be expressed as

avmðGÞ ¼
P

k� 0 kmðG; kÞ
P

k� 0 mðG; kÞ ¼ M0ðG; 1Þ
MðG; 1Þ ;

where M0ðG; xÞ is the first derivative of MðG; xÞ with respect to x.

It is easy to see that UðG; xÞ ¼ xnMðG;� 1
x2
Þ. Using this relation, we can write the

derivative of U in terms of M and its derivative as follows:

U0ðG; xÞ ¼ nxn�1M G;� 1

x2

� �
þ 2xn�3M0 G;� 1

x2

� �
:
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This gives us

U0ðG; xÞ
UðG; xÞ ¼ n

x
þ 2

x3
M0 G;� 1

x2

� �

M G;� 1
x2

� � : ð18Þ

Let l1; l2; . . .; ln be the zeros of the matching polynomial UðG; xÞ; it is well-known
that these zeros are real, see for example Section 8.5 in [9]. Now we can express U
and U0 in terms of the zeros as follows:

UðG; xÞ ¼
Yn

j¼1

ðx� ljÞ;

U0ðG; xÞ ¼
Xn

k¼1

Qn
j¼1ðx� ljÞ
x� lk

:

Therefore,

U0ðG; xÞ
UðG; xÞ ¼

Xn

k¼1

1

x� lk
: ð19Þ

Now, we can establish a relation between the average size of matchings of G and the

zeros of its matching polynomial.

Lemma 6 Let G be an n-vertex graph and l1; . . .; ln be the zeros of the matching

polynomial of G. Then

avmðGÞ ¼ 1

2

Xn

j¼1

l2j
l2j þ 1

:

Proof Using (18) and (19), and plugging in x ¼ i, we obtain

Xn

j¼1

1

i� lj
¼ n

i
þ 2

i3
M0 G; 1ð Þ
M G; 1ð Þ ;

and this simplifies to

Xn

j¼1

lj
lj � i

¼ 2 avmðGÞ: ð20Þ

Let us rearrange the left hand side of (20). We have

Xn

j¼1

lj
lj � i

¼
Xn

j¼1

ljðlj þ iÞ
ðlj � iÞðlj þ iÞ ¼

Xn

j¼1

l2j þ ilj
l2j þ 1

:

Since the imaginary part must be 0, we get the desired result. h
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Having established this relation, we can now prove two inequalities. The first relates

the average matching size with the total number of matchings. Note that the latter is

MðGÞ ¼ MðG; 1Þ, which can be expressed in terms of the zeros l1; . . .; ln as well:

MðGÞ ¼ MðG; 1Þ ¼ jMðG; 1Þj ¼ ji�nUðG; iÞj ¼
Yn

j¼1

ði� ljÞ
					

					 ¼
Yn

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2j

q
:

It is not difficult to verify that the inequality

x

1þ x
� b logð1þ xÞ þ 1� bþ b log b

holds for all positive real numbers b and x. Plugging in l2j for x and summing over

all j yields the following result:

Proposition 3 For every positive real number b and every n-vertex graph G, we

have

avmðGÞ� b logMðGÞ þ 1� bþ b log bð Þ n
2
:

In particular,

avmðGÞ� logMðGÞ:

We can still choose b arbitrarily. Differentiating with respect to b, we find that

the optimal value for b (that minimizes the upper bound) is b ¼ MðGÞ�2=n
. Plugging

this back into the inequality, we obtain the following theorem:

Theorem 6 For every n-vertex graph, we have

avmðGÞ� n

2
1�MðGÞ�2=n

 �

:

An alternative way to prove this theorem is to apply the inequality between the

arithmetic and the geometric mean.

We conclude this section with a similar inequality involving the matching

energy. This invariant is defined as follows [4]:

MEðGÞ ¼
Xn

j¼1

jljj:

Following an analogous approach, we can prove a relation between the average size

of matchings in G and the matching energy of G.

Theorem 7 For every graph G,

MEðGÞ� 4 avmðGÞ:
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Proof For all nonnegative real x, we have x2

1þx2
� x

2
. Therefore, by Lemma 6,

avmðGÞ ¼ 1

2

Xn

j¼1

l2j
1þ l2j

� 1

2

Xn

j¼1

jljj
2

¼ 1

4
MEðGÞ:

h

Remark 4 Note that in the case of trees, the matching polynomial coincides with

the characteristic polynomial. So we have a correspondence between the average

size of matchings of a tree and the classical energy of a tree, which is the sum of the

absolute values of the eigenvalues, see [8].

6 The Weighted Average Size of Matchings in a Graph

In the context of the monomer-dimer model from statistical physics, one often

considers a probability distribution on the set of matchings where the probability of

a k-matching is proportional to ak for some constant a, see for example [2]. This

provides the motivation to study the weighted average size of matchings. We

consider a random matching according to the aforementioned probability distribu-

tion, where a is a fixed positive number. We define the weighted total number of

matchings in G, the weighted total size of G and the weighted average size of

matchings in G as follows:

MaðGÞ ¼
X

k� 0

mðG; kÞak;

SaðGÞ ¼
X

k� 0

kmðG; kÞak;

avmaðGÞ ¼ SaðGÞ
MaðGÞ :

Following a similar reasoning as in the special case where a ¼ 1, it is still possible

to prove the following inequalities.

Theorem 8 For every fixed positive real number a and every n-vertex graph G, we

have

avmaðEnÞ� avmaðGÞ� avmaðKnÞ:

Moreover, for every real number a 2 ð0; 1	 and every n-vertex tree T, we have

avmaðSnÞ� avmaðTÞ� avmaðPnÞ:

We refer to [11] for more details on the proof. Note that the final inequality

(avmaðTÞ� avmaðPnÞ) is not generally true for all values of a. One can also express

the weighted average matching size in terms of the zeros of the matching

polynomial:
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Lemma 7 Let G be an n-vertex graph and l1; . . .; ln be the zeros of the matching

polynomial of G. Then

avmaðGÞ ¼ 1

2

Xn

j¼1

al2j
al2j þ 1

:

Finally, it is also possible again to prove inequalities that relate avmaðGÞ to other

invariants. Specifically, we have the following straightforward generalization of

Theorem 7:

Theorem 9 For every graph G and every positive real number a,

MEðGÞ� 4ffiffiffi
a

p avmaðGÞ:
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