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Abstract
The k-deck of a graph is the multiset of its subgraphs induced by k vertices. A graph

or graph property is l-reconstructible if it is determined by the deck of subgraphs

obtained by deleting l vertices. We show that the degree list of an n-vertex graph is

3-reconstructible when n� 7, and the threshold on n is sharp. Using this result, we

show that when n� 7 the ðn� 3Þ-deck also determines whether an n-vertex graph is

connected; this is also sharp. These results extend the results of Chernyak and

Manvel, respectively, that the degree list and connectedness are 2-reconstructible

when n� 6, which are also sharp.
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1 Introduction

A card of a graph G is a subgraph of G obtained by deleting one vertex. Cards are

unlabeled, so only the isomorphism class of a card is given. The deck of G is the

multiset of all cards of G. A graph is reconstructible if it is uniquely determined by

its deck. The famous Reconstruction Conjecture was first posed in 1942.

Conjecture 1.1 (The Reconstruction Conjecture; Kelly [8, 9], Ulam [21]) Every

graph having more than two vertices is reconstructible.

The two graphs with two vertices have the same deck. Graphs in many families

are known to be reconstructible; these include disconnected graphs, trees, regular

graphs, and perfect graphs. Surveys on graph reconstruction include [3, 4, 10–12].

Various parameters have been introduced to measure the difficulty of

reconstructing a graph. Harary and Plantholt [7] defined the reconstruction number

of a graph to be the minimum number of cards from its deck that suffice to

determine it, meaning that no other graph has the same multiset of cards in its deck

(surveyed in [1, 16]). Kelly looked in another direction, considering cards obtained

by deleting more vertices. He conjectured a more detailed version of the

Reconstruction Conjecture.

Conjecture 1.2 (Kelly [9]) For l 2 N, there is an integer Ml such that any graph

with at least Ml vertices is reconstructible from its deck of cards obtained by

deleting l vertices.

The original Reconstruction Conjecture is the claim M1 ¼ 3.

A k-card of a graph is an induced subgraph having k vertices. The k-deck of G,

denoted DkðGÞ, is the multiset of all k-cards. When discussing reconstruction from

the k-deck, we will refer to k-cards simply as cards.

Definition 1.3 A graph G is k-deck reconstructible if DkðHÞ ¼ DkðGÞ implies

H ffi G. A graph G (or a graph invariant) is l-reconstructible if it is determined by

DjVðGÞj�lðGÞ (agreeing on all graphs having that deck). The reconstructibility of G,

written qðGÞ, is the maximum l such that G is l-reconstructible.

For an n-vertex graph, ‘‘k-deck reconstructible’’ and ‘‘l-reconstructible’’ have the

samemeaningwhen k þ l ¼ n. Kelly’s conjecture is that for any l 2 N, all sufficiently

large graphs are l-reconstructible. Let K 0
1;3 and K 00

1;3 be the graphs obtained from the

clawK1;3 by subdividing one or two edges, respectively. The 5-vertex graphsC4 þ K1

and K 0
1;3 are not 2-reconstructible, since they have the same 3-deck. Having checked

by computer that every graph with at least six and at most nine vertices is 2-

reconstructible, McMullen and Radziszowski [14] asked whether M2 ¼ 6. With

computations up to nine vertices, Rivshin and Radziszowski [18] conjecturedMl � 3l.

However, Nýdl [17] disproved this, showing thatM‘, if it exists, must grow faster than

linear.

Some results about reconstruction have been extended to the context of

reconstruction from the k-deck. For example, almost every graph is reconstructible

from any set of three cards in the deck of cards obtained by deleting one vertex (see
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[2, 6, 15]). Müller [15] proved more generally that for l ¼ ð1� oð1ÞÞjVðGÞj=2,
almost all graphs are l-reconstructible; Spinoza and West [19] showed that only
lþ 2

2

� �
cards are needed for this. In [19], they also determined qðGÞ exactly for every

graph G with maximum degree at most 2.

Since each induced subgraph with k � 1 vertices arises exactly n� k þ 1 times

by deleting one vertex from a member of DkðGÞ, we have the following.

Observation 1.4 For any graph G, the k-deck DkðGÞ determines the ðk � 1Þ-deck
Dk�1ðGÞ.

By Observation 1.4, information that is k-deck reconstructible is also j-deck

reconstructible when j[ k. This motivates the definition of reconstructibility; if G is

l-reconstructible, then G is also ðl� 1Þ-reconstructible, so we seek the largest such l.
Manvel [13] proved for n� 6 that the ðn� 2Þ-deck of an n-vertex graph determines

whether the graph satisfies the following properties: connected, acyclic, unicyclic,

regular, and bipartite. For the first three of these properties, sharpness of the threshold

on n is shown by the graphsC4 þ P1 andK
0
1;3 mentioned above. Spinoza andWest [19]

extended Manvel’s result by showing that connectedness is 3-reconstructible when

n� 25. Using a somewhat different approach, we extend their result.

Theorem 1.5 For n� 7, connectedness is 3-reconstructible for n-vertex graphs,

and the threshold on n is sharp.

The threshold is sharp because C5 þ P1 and K 00
1;3 have the same 3-deck. For

general l, the known upper and lower bounds on the threshold for n to guarantee that

connectedness of n-vertex graphs is l-reconstructible are quite far apart. Spinoza and

West [19] proved that connectedness is l-reconstructible when n[ 2lðlþ1Þ2 . As a

lower bound, we know only that n[ 2l is needed, since Clþ1 þ Pl�1 and P2l have

the same l-deck [19]. Indeed, Pn is the only n-vertex graph whose reconstructibility

is known to be less than n/2.

One of the first easy results in ordinary reconstruction is that the degree list of a

graph with at least three vertices is 1-reconstructible. Manvel [13] showed that the

degree list is reconstructible from the k-deck when the maximum degree is at most

k � 2. With no restriction on the maximum degree, Taylor showed that the degree

list is reconstructible from the k-deck when the number of vertices is not too much

larger than k, regardless of the value of the maximum degree.

Theorem 1.6 (Taylor [20]) If l� 3 and n� gðlÞ, then the degree list of any n-vertex

graph is determined by its ðn� lÞ-deck, where

gðlÞ ¼ ðlþ log lþ 1Þ eþ e log lþ eþ 1

ðl� 1Þ log l� 1

� �
þ 1

and e denotes the base of the natural logarithm. Thus the degree list is l-recon-

structible when n[ elþ Oðlog lÞ.

For small l, one can obtain exact thresholds. Chernyak [5] proved that the degree

list is 2-reconstructible when n� 6; again the example of C4 þ P1 and K 0
1;3 shows

that this is sharp. We extend this to 3-reconstructibility.
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Theorem 1.7 For n� 7, any two graphs of order n that have the same ðn� 3Þ-deck
have the same degree list, and this threshold on n is sharp.

Again the example of C5 þ P1 and K
00
1;3 proves sharpness. We use Theorem 1.7 as

a tool in the proof of Theorem 1.5. With Chernyak’s result being somewhat

inaccessible, we also obtain it and Manvel’s result on 2-reconstructibility of

connectedness as corollaries of our results.

2 3-Reconstructibility of Degree Lists

We begin with a basic counting tool used also by Manvel [13] and by Taylor [20]. In

a graph G, we refer to a vertex of degree j as a j-vertex.

Lemma 2.1 Let /ðjÞ denote the total number of j-vertices over all cards in the k-

deck Dk of an n-vertex graph G. Letting ai denote the number of i-vertices in G (and

l ¼ n� k),

/ðjÞ ¼
Xjþl

i¼j

ai
i

j

� �
n� 1� i

k � 1� j

� �
: ð1Þ

Proof In each card, each vertex counted by /ðjÞ has degree at least j in G. When

that degree is i, the vertex in the reconstructed graph contributes exactly i

j

� �
n� 1� i

k � 1� j

� �

to the computation of /ðjÞ. This contribution is 0 when k � 1� j[ n� 1� i; the

vertex then does not have enough nonneighbors in the full graph to occur with

degree exactly j in a card. Thus we require i� n� k þ j ¼ lþ j. h

Corollary 2.2 (Manvel [13]) From the k-deck of a graph and the numbers of

vertices with degree i for all i at least k, the degree list of the graph is determined.

Proof Since the k-deck determines the ðk � 1Þ-deck, using induction it suffices to

show that knowing both DkðGÞ and ai for i� k determines ak�1. Simply solve for

ak�1 in the expression (1) for /ðk � 1Þ obtained by setting j ¼ k � 1. h

With these tools, we prove Theorem 1.7, which we repeat for convenience.

Theorem (1.7) For n� 7, any two graphs of order n that have the same ðn� 3Þ-
deck have the same degree list, and this threshold on n is sharp.

Proof For sharpness, the 3-decks of both C5 þ K1 and K 00
1;3 consist of five copies of

P3, ten copies of P2 þ P1, and five copies of 3P1.

Given n� 7, let D be the ðn� 3Þ-deck of an n-vertex graph. We show that all

reconstructions from D have the same degree list.
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Let G and H be reconstructions from D. Since D determines the 2-deck, we know

the common number of edges in G and H; let it be m. We may assume m� 1
2

n

2

� �
,

since otherwise we can analyze the complements of G and H.

We will use repeatedly the fact that any t vertices whose degrees sum to at least s

are together incident to at least s� t

2

� �
edges.

Let ai and bi be the numbers of i-vertices in G and H, respectively, and let

ci ¼ ai � bi. The computation in (1) is valid using either G or H, producing the

same value /ðjÞ from D. Hence the difference of the two instances of (1) yields

0 ¼
Xjþ3

i¼j

ci
i

j

� �
n� 1� i

n� 4� j

� �
; ð2Þ

since here k ¼ n� 3. We will be interested in particular in the cases j ¼ n� 4

(dominating vertices on cards) and j ¼ n� 5, which we write explicitly as

cn�4 þ ðn� 3Þcn�3 þ
n� 2

2

� �
cn�2 þ

n� 1

3

� �
cn�1 ¼ 0 ð3Þ

and

4cn�5 þ 3ðn� 4Þcn�4 þ 2
n� 3

2

� �
cn�3 þ

n� 2

3

� �
cn�2 ¼ 0: ð4Þ

The observation of Manvel (Corollary 2.2) implies that if G and H have different

degree lists, then ci 6¼ 0 for some i with i� n� 3. Let h be the largest such index.

By symmetry, we may assume ch\0. We consider cases depending on the value of

h.

Case 1: h ¼ n� 3. In this case cn�1 ¼ cn�2 ¼ 0 and cn�3\0. By (3),

cn�4 þ ðn� 3Þcn�3 ¼ 0. Since 2ðn� 3Þ[ n when n� 7, we have cn�3 ¼ �1 and

cn�4 ¼ n� 3. Now (4) implies cn�5 ¼ �ðn� 3Þðn� 4Þ=2. Thus H has at least 1þ
ðn� 3Þðn� 4Þ=2 vertices, but n� 1þ ðn� 3Þðn� 4Þ=2 requires n� 7. Hence n ¼
7 and H has degree list exactly (4, 2, 2, 2, 2, 2, 2), and G has no vertices of degree

2 or at least 4. Furthermore cn�4 ¼ n� 3, so G has exactly four vertices with degree

3 and cannot reach the same degree-sum as H.

Case 2: h ¼ n� 2. Now cn�1 ¼ 0 and cn�2\0. Let cn�2 ¼ �r. By (3),

cn�4 þ ðn� 3Þcn�3 ¼ r n� 2

2

� �
, so cn�4

n�3
þ cn�3 ¼ ðn� 2Þ r

2
. With r� 2 and n� 7 and

cn�4 þ cn�3 � n, this can only be satisfied when r ¼ 2, cn�3 ¼ n� 2, and cn�4 ¼ 0.

Since m� 1
2

n

2

� �
, the degree-sum is at most n

2

� �
; hence ðn� 2Þðn� 3Þ� 1

2
nðn� 1Þ,

which requires n\8. Since we have obtained ðc5; c4; c3Þ ¼ ð�2; 5; 0Þ, (4) yields

4c2 ¼ 5

3

� �
� 2� 2 4

2

� �
� 5 ¼ �40; this requires c2 ¼ �10, a contradiction when

n ¼ 7. Hence we conclude r ¼ 1.

With r ¼ 1, we have cn�4 þ ðn� 3Þcn�3 ¼ n� 2

2

� �
. Hence
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cn�3 ¼
n� 2

2
� cn�4

n� 3
: ð5Þ

Substituting into (4) yields

4cn�5 ¼
n� 2

3

� �
� 2

n� 3

2

� �
cn�3 � 3ðn� 4Þcn�4

¼ �ðn� 2Þðn� 3Þðn� 4Þ
3

� 2ðn� 4Þcn�4

ð6Þ

Since cn�3 must be an integer, by (5) there are not many possibilities for cn�4. Let

t ¼ cn�4

n�3
. Since cn�4j j � n, we have t 2 f1; 0;�1g when n is even, and t 2

f1=2;�1=2g when n is odd. Also (6) simplifies to �cn�5 ¼ ðn�3Þðn�4Þ
12

½n� 2þ 6t�.
With cn�5 � � n and n� 7, the possibilities that remain for (n, t) are ð7;�1=2Þ,

ð8;�1Þ, and ð10;�1Þ. Note that cn�3 ¼ n�2
2

� t. In the even cases, cn�3 ¼ n=2.

When n ¼ 10, five 7-vertices are together incident to at least 25 edges, which is

more than 1
2

10

2

� �
.

When n ¼ 8, four 5-vertices in G are together incident to at least 14 edges, which

is the maximum allowed, so there can be no other edges or other 5-vertices, the four

5-vertices induce K4, and eight edges join these vertices to the rest. Since

cn�4 ¼ �5, in H the vertices of degree at least 4 already contribute 26 to the degree-

sum, so H has no 3-vertex. With cn�5 ¼ 0, also G has no 3-vertex. Hence the degree

list of G is (5, 5, 5, 5, 2, 2, 2, 2). With ðc5; c4; c3Þ ¼ ð4;�5; 0Þ, applying (2) with

j ¼ 2 now yields c2 ¼ 5, a contradiction.

When n ¼ 7, we have t ¼ �1=2, and ðc2; c3; c4; c5; c6Þ ¼ ð�2;�2; 3;�1; 0Þ.
Hence

P6
i¼2 ici ¼ �3, and having equal degree-sum requires c1 ¼ 3. Now H has six

vertices with degrees (5, 3, 3, 2, 2, 0) and G has six vertices with degrees

(4, 4, 4, 1, 1, 1), and they each have one more vertex of the same odd degree. Since

the degree list of G must be realizable, the only choice is (4, 4, 4, 3, 1, 1, 1) for G

and (5, 3, 3, 3, 2, 2, 0) for H. Now G is realized only by adding three pendant edges

to K4, so K4 is a card in D, which can be obtained from H only on the four vertices

of high degree. Thus H consists of copies of K4 and K3 sharing one vertex, plus an

isolated vertex. Being the union of three complete graphs, H has no independent set

of size 4, but G does have such a set, so their 4-decks cannot be equal.

Case 3: h ¼ n� 1. If cn�2 � nþ1
3
, then m� nþ1

3
ðn� 2Þ � 1

2
nþ1
3

n�2
3

¼
5
18
ðnþ 1Þðn� 2Þ. Since this exceeds 1

2
n

2

� �
when n� 7, we conclude cn�2 � n=3.

Let r ¼ �cn�1. If r� 2, then (3) and cn�2 � n=3 together yield

cn�4 þ ðn� 3Þcn�3 � 2 n� 1

3

� �
� n

3
n� 2

2

� �
¼ ðn�2Þ2ðn�3Þ

6
. The contribution to degree-

sum in G from vertices of degrees n� 4 and n� 3 is now at least
ðn�2Þ2ðn�3Þ

6
, which

exceeds n

2

� �
when n� 8. Hence n ¼ 7, but then having two 6-vertices in H requires

at least 11 edges (more than 1
2

7

2

� �
), a contradiction. Thus we may assume r ¼ 1.

With r ¼ 1, (3) yields cn�4 þ ðn� 3Þcn�3 þ n� 2

2

� �
cn�2 ¼ n� 1

3

� �
. If cn�2 � 0,

then cn�4 þ ðn� 3Þcn�3 � n� 1

3

� �
. Dividing by n� 3 and using cn�4 þ cn�3 � n
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yields n� ðn�1Þðn�2Þ
6

, which requires n\9. If n ¼ 8, then c6 � 0 simplifies (3) to

c4 þ 5c5 � 35, but ai � ci and m� 1
2

n

2

� �
yield 28� 4a4 þ 5a5 � c4 þ 5c5. If n ¼ 7,

then (3) simplifies to c3 þ 4c4 � 20, but m� 10 yields 3a3 þ 4a4 � 20. Since ai � ci,

we conclude c3 � 0 and c4 � 5. With at most 10 edges, G ¼ K5 þ 2K1. Now D has

five cards that are K4. With only four edges not incident to its dominating vertex, H

cannot have five such cards. We conclude cn�2 � 1.

With an�2 � cn�2 � 1, we now break into subcases by the value of cn�2. We have

already proved cn�2 � n=3. Let x ¼ n�1
3

� cn�2, so x� � 1=3 and (3) yields

cn�4 þ ðn� 3Þcn�3 ¼ x
n� 2

2

� �
: ð7Þ

Substituting (7) into (4) yields

cn�5 ¼
1

72
ðn� 3Þðn� 4Þ½36cn�3 � ðn� 2Þð24xþ n� 1Þ�: ð8Þ

Subcase 3.1: x� 1. If cn�3 � n�2
2
, then with an�2 � 1 the vertices of degrees n� 2

and n� 3 in G are incident to at least n�2
2
ðn� 3Þ þ ðn� 2Þ � n=2

2

� �
edges. Hence

m� ðn�2Þð3n�4Þ
8

; this exceeds 1
2

n

2

� �
when n� 7. If cn�3 � n�3

2
, then cn�4 �

n� 2

2

� �
� ðn� 3Þ n�3

2
¼ n�3

2
, by (7). Also cn�3 � 1, since otherwise (7) yields

cn�4 � n� 2

2

� �
� n. If an�3 ¼ 1, then cn�4 � n� 2

2

� �
� ðn� 3Þ ¼ ðn�3Þðn�4Þ

2
, again too

many vertices when n� 7 (since an�2 � 1).

Hence an�3 � 2. Now m� nþ3
2
ðn� 4Þ þ 4� ðnþ 3Þ=2

2

� �
. This quantity exceeds 1

2
n

2

� �

when n� 9. For n ¼ 8, we have a4 � 3, a5 � 2, a6 � 1, yielding degree-sum already

28, so G has degree list (6, 5, 5, 4, 4, 4, 0, 0), but degree 6 forbids two isolated

vertices. For n ¼ 7, we have an�4 � 2, so even degree-sum at most 20 requires

degree list (5, 4, 4, 3, 3, 1, 0). To avoid higher degree-sum, ai ¼ ci for

i 2 f5; 4; 3; 1g. Hence bi ¼ 0 for these values. Now H having one 6-vertex requires

b2 ¼ 7 to reach degree-sum 20, contradicting n ¼ 7.

Subcase 3.2: x 2 f2
3
; 1
3
g. If cn�3 � 2, then cn�5\� n when n� 9 by (8), a con-

tradiction. If x ¼ 2
3
, then cn�2 ¼ n�3

3
2 N, so n� 9. If x ¼ 1

3
, then cn�2 ¼ n�2

3
2 N, so

n� 8. Setting n ¼ 8 and x ¼ 1
3
and cn�3 � 1 in (8) yields cn�5 � � 15, so cn�3 ¼ 2.

Now (7) yields cn�4 þ 5 � 2 ¼ 5, so c4 ¼ �5. With c3 þ 3c4 þ 5c5 þ 5c6 ¼ 0

by (4), we have c3 ¼ �5. Now H has at least 10 vertices, a contradiction.

Hence cn�3 � 3. Since also cn�2 � n�3
3
, the number of edges in G incident to

vertices of degree at least n� 3 is at least nþ6
3
ðn� 2Þ � 3� ðnþ 6Þ=3

2

� �
, which sim-

plifies to 5
18
ðnþ 6Þðn� 3Þ � 3 and is more than 1

2
n

2

� �
when n� 8.

Subcase 3.3: x ¼ 0. Note that cn�2 ¼ n�1
3

2 Z. By (7), cn�4 ¼ �ðn� 3Þcn�3, so

�1� cn�3 � 1. By (8), cn�5 ¼ ðn�3Þðn�4Þ
72

½36cn�3 � ðn� 1Þðn� 2Þ�. With cn�3 � 1,
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this yields cn�5\� n when n� 10, a contradiction. Since cn�2 � 1 mod 3, only

n ¼ 7 remains.

With n ¼ 7, the expressions above reduce to c5 ¼ 2, c3 ¼ �4c4, and

c2 ¼ 6c4 � 5, with �1� c4 � 1. If c4 ¼ �1, then c2 ¼ �11\� 7. If c4 ¼ 1, then G

has three vertices of degrees 4 and 5 such that the number of edges incident to them

is at least 3 � 4þ 2� 3

2

� �
, which equals 11 and exceeds 1

2
7

2

� �
.

The remaining case is c4 ¼ c3 ¼ 0 and c2 ¼ �5, also c5 ¼ 2 and c6 ¼ �1. Since

we know the 2-deck, G and H have the same degree-sum; that is,
P6

i¼0 ici ¼ 0. We

have
P6

i¼0 ici ¼ c1 � 10þ 10� 6; hence c1 ¼ 6. Now a5 � 2 and a1 � 6, which

contradicts n ¼ 7.

Subcase 3.4: x ¼ � 1
3
. Here cn�2 ¼ n

3
, so n� 9. The number of edges incident to

vertices of degree at least n� 2 in G is at least n
3
ðn� 2Þ � 1

2
n
3
n�3
3
, which exceeds

1
2

n

2

� �
when n[ 9 and equals it when n ¼ 9. For n ¼ 9 with x ¼ � 1

3
, (7) reduces to

c5 þ 6c6 ¼ �7 and (8) reduces to c4 ¼ 15c6, which requires c6 ¼ 0. Hence

b5 � � c5 ¼ 7, which with b8 ¼ 1 gives H degree-sum at least 43, contradicting

m ¼ 18. h

Using Theorem 1.7, we present an alternative proof of the result by Chernyak on

the threshold for 2-reconstructibility of the degree list.

Corollary 2.3 (Chernyak [5]) The degree list of an n-vertex graph is 2-

reconstructible whenever n� 6, and this is sharp.

Proof Since the ðn� 2Þ-deck determines the ðn� 3Þ-deck, it is immediate from

Theorem 1.7 that the degree list is 2-reconstructible when n� 7. By the example of

C4 þ K1 and K 0
1;3, n� 5 is not sufficient. It remains only to consider n ¼ 6.

Let G and H be two 6-vertex graphs having the same 4-deck D but different

degree lists. Let m ¼ EðGÞj j ¼ EðHÞj j (we know the 2-deck). Since the k-deck

determines the k-deck of the complement and 6

2

� �
¼ 15, we may assume m� 7.

Define ai; bi; ci; h as in Theorem 1.7. That is, with k ¼ 4, different degree lists in G

and H require a largest h with h� k such that ah 6¼ bh, and by symmetry we have

ch ¼ ah � bh\0. We use the equation for /ð3Þ, which counts dominating vertices

in the cards of the 4-deck:

c3 þ 4c4 þ 10c5 ¼ 0: ð9Þ

Case 1: h ¼ 5. We have �c5 ¼ 1, because two 5-vertices in H already force

m� 9. Thus 4c4 þ c3 ¼ 10, by (9). If c4 � 3, then m� 3 � 4� 3

2

� �
¼ 9. If c4 ¼ 2,

then also c3 ¼ 2 and m� 2 � 4þ 2 � 3� 4

2

� �
¼ 8. However, m� 7. If c4\2, then

G has too many vertices.

Case 2: h ¼ 4. Here c3 ¼ �4c4. With n ¼ 6, we have c4 ¼ �1 and c3 ¼ 4. With

degree-sum at most 14, the degree list of G is (3, 3, 3, 3, x, y) with

ðx; yÞ 2 fð2; 0Þ; ð1; 1Þ; ð0; 0Þg. Thus also b4 ¼ 1 and b3 ¼ 0, so H has only one
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vertex with degree exceeding 2. If ðx; yÞ ¼ ð0; 0Þ, then G ¼ K4 þ 2K1 and K4 is a

card, but K4 is not contained in H.

Hence m ¼ 7, and the degree list of H must be (4, 2, 2, 2, 2, 2). The only such

graph consists of a 4-cycle and a 3-cycle with one common vertex. Every card of H

has at most four edges. Whether (x, y) is (1, 1) or (2, 0), deleting from G the two

vertices of smallest degree eliminates at most two edges and leaves a card with five

edges, a contradiction. h

3 3-Reconstructibility of Connectedness

Using Theorem 1.7, we prove Theorem 1.5. Again the example of C5 þ P1 and K 00
1;3

shows that the threshold on n� 7 is sharp; they have the same 3-deck, but only one

is connected.

Theorem (1.5) For n� 7, connectedness is 3-reconstructible for n-vertex graphs,

and the threshold on n is sharp.

Proof Suppose that n-vertex graphs G and H have the same ðn� 3Þ-deck D, but

that G is connected and H is disconnected. Let m be the common number of edges in

G and H. Let C be the largest component in H. Since G is connected, it has a

spanning tree T. Since n� 7, T has at least two connected cards. Thus D has at least

two connected cards, so C has at least n� 2 vertices.

ByTheorem 1.7,G andH have the same degree list. SinceG is connected,H cannot

have an isolated vertex, so H ¼ C þ K2. If C has a 1-vertex, then deleting it and the

vertices of the small component in H leaves a card in D with m� 2 edges. However,

sinceG is connected, it is not possible to delete three vertices inG and only remove two

edges. Hence C has no 1-vertex, which means that G and H each have exactly two

1-vertices. Let u and v be the 1-vertices in G, and let Y be the set of 1-vertices in H.

Let x be the number of 2-vertices in bothG and inH. If x ¼ 0, then C has minimum

degree at least 3. Deleting Y and one vertex of C from H now yields n� 2 cards with

minimum degree at least 2. Such cards can arise from G only by deleting the two 1-

vertices and one other vertex. Hence G� fu; vg and C have the same ðn� 3Þ-deck.
They must therefore have the same number of edges. However, C has m� 1 edges,

while G� fu; vg has m� 2 edges. Thus x[ 0.

To eliminate only three edges fromHwhen deleting three vertices, one must delete

Y and a 2-vertex of C. Thus x is also the number of cards in D with m� 3 edges. We

show the remaining possibilities for G in Fig. 1.

If u and v have the same neighbor,w, thenG can have a cardwithm� 3 edges only if

w has degree 3 and the deleted set is fu; v;wg. Hence in this case x ¼ 1.

If u and v have different neighbors, then each of u and v is the end of a maximal

path containing no vertices of degree larger than 2 in G; call these paths P(u) and

P(v). We can only obtain a card withm� 3 edges by deleting i vertices from P(u) and

j vertices from P(v), where iþ j ¼ 3. There are at most four choices for i, so x� 4. In

order to have exactly x cards with m� 3 edges, there must be a total of x vertices of

degree 2 on PðuÞ [ PðvÞ and hence no 2-vertices elsewhere in G (see Fig. 1).

Now consider the cards of G obtained by removing three vertices. When x� 2, the
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paths P(u) and P(v) together have at least four vertices of degree at most 2, so

removing any three vertices ofG leaves a vertex of degree at most 1. Hence removing

Y and a vertex of C from H must also leave a vertex of degree at most 1. This means

that every vertex of C has a neighbor of degree 2. In the two possibilities when x ¼ 1,

the one card of G with m� 3 edges may have no vertex of degree at most 1, but all

other cards must have such a vertex. In this case every vertex of C except possibly

one has a neighbor of degree 2.

For x 2 f3; 4g, label u and v so that jVðPðuÞÞj � jVðPðvÞÞj. Consider a card D ofG

with m� 3 edges that is obtained by deleting u, v and the neighbor of u, so D has two

vertices of degree 1 and x� 3 vertices of degree 2. Since all 2-vertices in G are in

PðuÞ [ PðvÞ, the other vertices in D have degree at least 3. Note that D must be a

vertex-deleted subgraph of C, since cards with m� 3 edges are obtained from H only

by deleting Y and a vertex of C. Since Cmust have x vertices of degree 2 and none of

degree 1, it must be formed from D by adding one vertex z of degree 2 whose

neighbors are the two 1-vertices inD. Adding z to form C shows that the 2-vertices in

C lie along a single path. This means that only two vertices outside this path can have

neighbors of degree 2. Since every vertex of C must have a neighbor of degree 2, we

conclude that C has at most two vertices outside the path, but then those vertices

cannot have degree greater than 2, a contradiction.

When x ¼ 2, recall that every vertex in C has a neighbor of degree 2 (including the

vertices of degree 2). Each vertex of degree 2 is a neighbor of only two vertices.

Hence 2 ¼ x�ðn� 2Þ=2, so n� 6. Similarly, when x ¼ 1, all but one vertex of C has

a neighbor of degree 2, so 1 ¼ x�ðn� 3Þ=2, yielding n� 5.

We have obtained contradictions in all cases, so such G and H do not exist. h

Using Theorem 1.5, Manvel’s result on 2-reconstructibilty of connectedness

follows quite easily.

Corollary 3.1 (Manvel [13]) For n� 6, connectedness of an n-vertex graph is

2-reconstructible.

Proof Again C4 þ K1 and K 0
1;3 give sharpness, and Theorem 1.5 handles n� 7.

Consider connected and disconnected 6-vertex graphs G and H with the same

4-deck.

By Corollary 2.3, G and H have the same degree list, so neither has isolated

•
•
•

x = 1

•
• •

x = 1

• • •
• • •

x = 4

•
•

•
•

x = 2

• •
• • •

x = 3

•
• ••

x = 2

Fig. 1 Possibilities for G in Theorem 1.5
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vertices. Since G has a connected 4-card, H has a 4-vertex component C, and

H ¼ C þ K2. Thus H has only one connected 4-card.

Now G must also have only one connected 4-card. Therefore every spanning tree

of G is a path, so G is a path, but then G has three connected 4-cards. h
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