
ORIGINAL PAPER

N-Flips in Triangulations with Two Odd Degree Vertices

Yoshihiro Asayama1 • Ryo Matsukawa2 • Naoki Matsumoto3 •

Atsuhiro Nakamoto2

Received: 30 September 2018 / Revised: 17 October 2019 / Published online: 9 January 2020
� Springer Japan KK, part of Springer Nature 2020

Abstract
In this paper, we prove that any two triangulations G and G0 on the sphere with

exactly two odd degree vertices can be transformed into each other by two local

transformations, called an N-flip and a P2-flip, preserving the parity of degree of

each vertex, if jVðGÞj ¼ jVðG0Þj. This is an analogy of the same result for trian-

gulations with each vertex even degree [7], but we prove such a fact does not hold

for triangulations with at least four odd degree vertices.

Keywords Even triangulations � Surface � Transformation

1 Introduction

A triangulation G on a closed surface F2 is a fixed embedding of a simple graph on

F2 such that each face of G is bounded by a 3-cycle, where a k-cycle means a cycle

of length k. A k-vertex is a vertex of degree k and an even (resp., odd) vertex is a

vertex of even (resp., odd) degree. For a vertex v of G, the link of v is the boundary

cycle of the 2-cell region formed by all faces incident to v. A k-region is a 2-cell

region bounded by a closed walk of length k. A face (or a region) R of a graph G is

even (resp., odd) if R is bounded by a closed walk of even (resp., odd) length.
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Let v1v2v3 and v1v3v4 be two triangular faces of a triangulation G sharing an edge

v1v3. A diagonal flip of v1v3 is to replace the diagonal v1v3 with v2v4 in the

quadrilateral v1v2v3v4, as shown in Fig. 1. When the transformation breaks the

simpleness of G, we do not apply it.

Wagner proved that any two triangulations on the sphere with the same number

of vertices can be transformed into each other by a sequence of diagonal flips [13].

Moreover, Negami has extended this result to all closed surfaces and proved that

any two triangulations on the same closed surface can be transformed into each

other by diagonal flips if they have the same and sufficiently large number of

vertices [9]. For related results, see the survey [10].

Observe that a diagonal flip changes the parity of degree of vertices. Hence we

consider the following transformation, called an N-flip, preserving the parity of

degree of each vertex in a triangulation. This was first defined by Nakamoto et al. in

[7].

Let G be a triangulation. Suppose that G has a hexagonal region bounded by a

cycle v1v2v3v4v5v6 with edges v1v5; v2v4; v2v5 and there is no other vertices and

edges in the region. The N-flip of the path v1v5v2v4 is to remove v1v5; v2v4; v2v5 and
add v1v3; v3v6; v4v6, as shown in Fig. 2. When the transformation breaks the

simpleness of G, we do not apply it. Two triangulations G and G0 are N-equivalent,
denoted by G� NG

0, if G and G0 can be transformed into each other by a sequence

of N-flips.

A triangulation G is even if each vertex of G has even degree. Since an even

triangulation G on the sphere has a unique 3-coloring [12], V(G) can uniquely be

decomposed into three partite sets VRðGÞ;VBðGÞ and VYðGÞ colored by red, blue

and yellow, respectively. We call ðjVRðGÞj; jVBðGÞj; jVYðGÞjÞ the tripartition size of

G. An N-flip always preserves the tripartition of a triangulation, as shown in Fig. 2.

Hence if G and G0 are N-equivalent, then they have the same tripartition size.

Nakamoto et al. [7] proved that the converse also holds.

Theorem 1 (Nakamoto et al. [7]) Two even triangulations on the sphere can be

transformed into each other by a sequence of N-flips if and only if they have the

same tripartition size.

If two even triangulations G and G0 have the same number of vertices but distinct

tripartition size, then G and G0 cannot be transformed into each other only by N-

flips. So consider another transformation changing the tripartition size. Let v be a

vertex of G with the link v1. . .vk ðk� 3Þ . Put two vertices x, y on the edge vv1 and

join them to v2 and vk. The P2-flip of x, y is to move x, y to the edge vv2 and join

them to v1 and v3, as shown in Fig. 3. Similarly to N-flips, if the transformation

breaks the simpleness of G, we do not apply it. A P2-flip preserves the parity of

Fig. 1 The diagonal flip
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degree of each vertex, but it changes the tripartition size, as we can see that in

Fig. 3. Then by using P2-flips in addition to N-flips, they proved the following

theorem:

Theorem 2 (Nakamoto et al. [7]) Any two even triangulations on the sphere with

the same number of vertices can be transformed into each other by a sequence of N-

and P2-flips.

The N- and P2-flips in even triangulations have also been considered for non-

spherical surfaces [5, 8]. Since every non-spherical surface admits non-3-colorable

even triangulations, we can find two even triangulations with the same number of

vertices which cannot be transformed by the two operations, that is, a 3-colorable

one and a non-3-colorable one. We note that the N- and P2-flips preserve the

3-colorability of graphs. Moreover, the paper [5] has introduced an algebraic

invariant, called the monodromy, such that if two even triangulations on a surface

can be transformed by the two operations, then their invariants coincide [4, 5]. For

other related researches, see [6] for example.

In this paper, we would like to consider whether two triangulations G and G0 on
the sphere can be transformed by N- and P2-flips if G and G0 have the same number

of vertices and the same number of odd degree vertices.

A k-odd triangulation is one with exactly k odd vertices. We note that k must be

even by the Handshaking Lemma. In this paper, we prove the following result for

2-odd triangulations:

Theorem 3 Any two 2-odd triangulations on the sphere with the same number of

vertices can be transformed into each other by a sequence of N- and P2-flips.

For even triangulations, the P2-flip is necessary to change the tripartition size.

(Also the N-flip is necessary to transform an even triangulation on the sphere

without adjacent 4-vertices into another.) However, since a 2-odd triangulation on

Fig. 2 The N-flip

Fig. 3 The P2-flip

123

Graphs and Combinatorics (2020) 36:469–490 471



the sphere is not 3-colorable, what can we say about the necessity of P2-flips in

2-odd triangulations?

We prove the following theorem for 2-odd triangulations without P2-flips,

introducing the color factor U(G) of a 2-odd triangulation G, where the color factor

of G is a unique vertex subset of G whose definition will be given in Sect. 2.

Theorem 4 Let G and G0 be 2-odd triangulations on the sphere with jVðGÞj ¼
jVðG0Þj and jUðGÞj ¼ jUðG0Þj. Then G and G0 can be transformed into each other

only by N-flips.

Theorems 3 and 4 are an analogy of Theorems 2 and 1 for 2-odd triangulations,

respectively. However, we surprisingly give the following negative result for k-odd

triangulations with any even integer k� 4.

Theorem 5 For any even integer k� 4 and any integer h� 1, there exists a pair of

k-odd triangulations G and G0 on the sphere with jVðGÞj ¼ jVðG0Þj � h which

cannot be transformed into each other by N- and P2-flips.

In Sect. 2, we define the notion ‘‘face subdivision’’ and ‘‘color factor’’ which

plays an essential role, and using them, we prove Theorem 5. In Sect. 3, we

establish a generating theorem for 2-odd triangulations on the sphere. In Sect. 4, we

show several lemmas and give a proof of Theorem 3. Finally, in Sect. 5, we prove

Theorem 4.

2 Face Subdivision and Color Factor

Let D be a simple graph 2-cell embedded on a surface F2. The face subdivision of

D, denoted by FSðDÞ, is the triangulation on F2 obtained from D by putting a single

vertex into each face of D and joining it to all vertices on the corresponding

boundary walk. The set of added vertices in FSðDÞ is the color factor of FSðDÞ. It
should be observed that each vertex of D has even degree in FSðDÞ, and hence no

two odd vertices are adjacent in FSðDÞ. A triangulation G on F2 is a face

subdivision if there exists a graph D on F2 such that G ¼ FSðDÞ. In this case, D is

the frame of G, and an edge e 2 EðGÞ is a frame edge (resp., a spoke) if e 2 EðDÞ
(resp., e 62 EðDÞ).

The following proposition holds for 2-odd triangulations on the sphere.

Proposition 6 Every 2-odd triangulation on the sphere is a face subdivision with a

unique frame.

The proof of Proposition 6 is postponed to the next section. Before it, we describe

several facts obtained by Proposition 6, assuming that the proposition is true.

Let G be a 2-odd triangulation. Then, by Proposition 6, the color factor U(G) can

be taken in G uniquely. Moreover, we see that an N-flip always preserves U(G) but a

P2-flip does not, as shown in Fig. 4. Hence we have the following.

Proposition 7 Let G be a triangulation on a surface F2, and let G0 and G00 be
triangulations obtained from G by a single N-flip and a single P2-flip, respectively.
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If G is a face subdivision, then so are both G0 and G00, and furthermore,

jUðGÞj ¼ jUðG0Þj.

Proof Let v1v5; v5v2 and v2v4 be diagonals of a 6-region in G which are flipped by

an N-flip, and let v1v3; v3v6 and v6v4 be the resulting diagonals (as in Fig. 2). Then,

by the definition of the face subdivision, one of the following always holds:

(i) Both v1 and v4 are color factors of G, or

(ii) either v2 or v5 is a color factor of G.

Otherwise, G has a face consisting only of vertices which are not in the color factor,

or G has adjacent two vertices in the color factor, a contradiction. Therefore, as

shown in the left of Fig. 4, the proposition holds since any N-flip preserves U(G).

Similarly, we can prove that G00 is a face subdivision (see the right of Fig. 4). h

By Proposition 7, we can prove Theorem 5.

Proof of Theorem 5 Let k� 4 be an even integer and let h� 1 be an integer. Let

Q be a 3-connected quadrangulation (i.e., one with each face bounded by a 4-cycle)

on the sphere with m vertices. Take k
2
distinct faces f1; . . .; fk

2
in Q such that f1 ¼ xyzw

shares the edge xy with f2, where we have k
2
�m� 2 since Q has m� 2 faces by

Euler’s formula. Put a single diagonal to fi for i 2 f1; . . .; k
2
g so that f1 receives the

diagonal xz. Then resulting graph Q0 has exactly k triangular faces and all others

quadrilateral. We note that Q0 is simple. (For, if two added diagonals join the same

pair of vertices, say p, q, then Q� fp; qg is disconnected, contrary to the

3-connectedness of Q.) Let G ¼ FSðQ0Þ, which is a k-odd triangulation with mþ
ðm� 2� k

2
Þ þ k ¼ 2mþ k

2
� 2 vertices. Taking m large, we may suppose that

jVðGÞj � h.

Let a; b 2 VðGÞ be two vertices of the color factor of G which are added to the

triangular faces xyz and xzw, respectively. Let G0 be the triangulation obtained from

G by a single diagonal flip of the edge xz. Then G0 is a k-odd triangulation, in which

x and z are odd, a and b are even and the degree of other vertices are unchanged.

Observe that x is adjacent to a 3-vertex in G0, say c, since two 3-vertices are added to
two triangular faces of f2. Hence x and c are two neighboring odd vertices in G0, and

Fig. 4 N-flips and P2-flips in a face subdivision G
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hence G0 is never a face subdivision, by the observation in the first paragraph of this

section. By Proposition 7, G and G0 are k-odd triangulations with jVðGÞj ¼
jVðG0Þj � h but cannot be transformed into each other by N- and P2-flips. h

3 A Generating Theorem for 2-Odd Triangulations

In the rest of this paper, a 2-odd triangulation means one on the sphere. Let G be a

2-odd triangulation and let v be a 4-vertex in G with link v1v2v3v4. The

4-contraction of v at fv1; v3g is to remove v, identify v1 and v3, and replace two

pairs of multiple edges fv1v2; v3v2g and fv1v4; v3v4g with two single edges v1v2 and

v1v4, respectively, as shown in Fig. 5. We call the new vertex arisen by the

identification v1 ¼ v3 the image of the 4-contraction and denoted by ½v�v1¼v3
. If this

operation breaks the simpleness or changes the number of odd vertices in G, then we

do not apply it. The inverse operation is called a 4-splitting. By the definition, a

4-contraction transforms G into a 2-odd triangulation with jVðGÞj� 2 vertices.

Let u1u2u3 be a face in G and let v1v2v3 be a 3-cycle in G such that 3-cycles

viujuk and vivjuk bound faces for fi; j; kg ¼ f1; 2; 3g, where these six vertices form

the octahedron in G. The octahedron removal is to remove u1; u2 and u3 (see

Fig. 6), and the inverse operation is an octahedron addition. Note that these

transformations always preserve the simpleness of graphs and the number of odd

vertices in G (Fig. 7).

By using the above operations, we establish a generating theorem for 2-odd

triangulations. A 2-odd triangulation G is minimal if neither a 4-contraction nor an

octahedron removal can be applied to G.

Lemma 8 Let x and y be odd vertices of a 2-odd triangulation. Then x and y are not

adjacent.

Proof It is shown in [3] that if a 2-odd triangulation on any surface has two

adjacent odd vertices, then it is not 4-colorable. Thus, by Four Color Theorem [1],

two odd vertices are not adjacent in G. h

The following lemma is useful in a proof of Theorem 10. In fact, the following is

already proved for even triangulations on any surface in [11]. We can mostly apply

their proof to the proof of the following lemma since each inner vertex in the region

has even degree. However, to make the paper be self-contained, we write the proof

of the following.

Lemma 9 Let G be a 2-odd triangulation on a surface which is minimal with

respect to 4-contractions and octahedron removals.

Fig. 5 The 4-contraction
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(i) Let D be a 3-region of G which contains no odd vertex in its interior. Then D
bounds a face of G.

(ii) Let C be a 4-region of G bounded by a 4-cycle abcd, which contains no odd

vertex in its interior. Then the interior of C has either a single diagonal, a

single 4-vertex, or QðmÞ for some m� 1, as shown in Fig. 8, where QðmÞ

consists of m paths bu1v1d; bu2v2d; . . .; bumvmd and m� 1 vertices

p1; . . .; pm�1 of degree 6, in which �ðuiÞ ¼ �ðviÞ ¼ 4 for each

i 2 f1; . . .;mg, pj is adjacent to b; d; uj; vj; ujþ1; vjþ1 for each

j 2 f1; . . .;m� 1g, and av1; au1; cvm; cum 2 EðGÞ.

Proof (i) Let uvw be the boundary 3-cycle of D which does not bound a face of

G and suppose that D contains no odd vertex in its interior. Take D to be innermost

and regard it as a plane triangulation H with boundary cycle uvw. Note that any

vertex of H except u, v, w has even degree. By Euler’s formula, we find that H has

at least four vertices of degree at most 5. Therefore, there exists a vertex x of degree

4 in D with its link x1x2x3x4. Since x is not contractible at fxi; xiþ2g for any i ¼ 1; 2,
there are 3- or 4-cycles C1 and C2 passing through x1xx3 and x2xx4, respectively. If

one of C1 and C2, say C1, passes outside of D, then both of x1 and x3 lie on uvw. In

this case, x1xx3 would be a smaller contractible 3-cycle which does not bound a

face, a contradiction. Thus, both C1 and C2 are included in D, and hence they cross

at x and another vertex y in D. Since every 3-cycle, except uvw, bounds a face by the
assumption on D, we can find a removable octahedron (induced by

v1

v2

v3
u3

u2

u1

v1

v2 v3

Fig. 6 The octahedron removal

Fig. 7 The graph C3 þ �K2

Fig. 8 The interior of C bounded by the 4-cycle abcd, a single diagonal, a single 4-vertex and QðmÞ with
m ¼ 3
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fx; x1; x2; x3; x4; yg) in G, which contradicts that G is minimal.

(ii) We prove the lemma by induction on the number F� 2 of faces in C. If
F ¼ 2, then we are done since C has a diagonal edge. So we may suppose that F� 3

and C has no diagonal edge. Hence, by using Euler’s formula, C contains a 4-vertex

x in its interior (cf. [11, Lemma 5]).

Let Lx ¼ x1x2x3x4 be the link of x. If Lx coincides with the boundary cycle abcd

of C, then C is isomorphic to the center of Fig. 8. Moreover, if x1 ¼ a; x2 ¼ b and

x3 ¼ c, then the smaller 4-region R ¼ av4cd is isomorphic to one of 4-regions

shown in Fig. 8 by induction. (By Lemma 9(i), Lx should be put in C so that no edge

of Lx is a diagonal of C.) Noting that C contains no odd vertex, C is Qð1Þ if R has a

diagonal, and R contains a contractible 4-vertex in its interior if otherwise. Thus, by

symmetry, Lx and the 4-cycle abcd share at most two vertices.

First suppose that Lx and the 4-cycle abcd share at most one vertex, say x1 ¼ a.

Since x is not contractible, let C1 and C2 be 3- or 4-cycles passing through x1xx3 and

x2xx4, respectively. By the assumption, all vertices of C1 and C2 lie in the interior of

C and both cycles are of length 4 by Lemma 9(i), that is, there exists a vertex u in C
such that C1 ¼ xx1ux3 and C2 ¼ xx2ux4 by the planarity. Note that each edge of C2

lies in the interior of C since fx2; x4g \ fa; b; c; dg ¼ ;. If C1 also lies in C, then
without loss of generality, x1ð¼ aÞx4u bounds a 3-region containing x; x2 and x3 in

its interior, contrary to Lemma 9(i). Thus, avoiding a non-facial 3-cycle in C, we
may suppose that u ¼ c and that ux1 lies outside of C. Hence, by symmetry, C is

separated to three 4-regions bounded by R1 ¼ x1bcx2, R2 ¼ x1x2cx4 and

R3 ¼ x1x4cd, respectively. Observe that R2 includes two adjacent 4-vertices x and

x3 and that by induction, each of R1 and R3 is isomorphic to one of 4-regions shown

in Fig. 8. By Lemma 9(i) and the non-existence of odd inner vertices in C, both R1

and R3 are isomorphic to Qðm1Þ and Qðm2Þ for some m1;m2 � 1. Hence, C is

isomorphic to QðmÞ for m ¼ m1 þ m2 þ 1. (By the parity of �
Gðx2Þ and �

Gðx4Þ, we
can uniquely embed Qðm1Þ and Qðm2Þ into R1 and R3, respectively.)

Therefore, we finally suppose that Lx and the 4-cycle abcd share exactly two

vertices. By Lemma 9(i), C does not contain a non-facial 3-region. Thus, by

symmetry, we have two cases; (1) x1 ¼ a and x3 ¼ c and (2) x1 ¼ a and x2 ¼ b.

For the former case, we can apply a 4-contraction of x at fx2; x4g, a contradiction.
So we suppose that the case (2) occurs. Similarly to the argument in the above cases,

there are 3- or 4-cycles C1 and C2 passing through x1xx3 and x2xx4, respectively. In

particular, by Lemma 9(i), each of those cycles has length 4 since

fx3; x4g \ fa; b; c; dg ¼ ;, and then we let C1 ¼ xx1ux3 and C2 ¼ xx2vx4. If at

least one of u and v is contained in the interior of C, then we have a 3-region in C
containing x; x3 and x4 in its interior, contrary to Lemma 9(i). Thus, each of u and

v coincides with c or d by the simplicity and Lemma 9(i).

By symmetry, we first consider u ¼ v ¼ c. In this case, a 4-region ax4cd in C is

isomorphic to one of 4-regions shown in Fig. 8. Similarly to the above arguments,

we have that C is isomorphic to QðmÞ for some m� 2. Next, we let u ¼ c and v ¼ d.

In this case, a 4-region x3cdx4 in C cannot be isomorphic to any 4-region shown in

Fig. 8, for otherwise, x3 or x4 must be an odd vertex, contrary to the assumption.

Therefore, the lemma holds. h
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Theorem 10 Every 2-odd triangulation on the sphere can be obtained from C3 þ
�K2 by a sequence of 4-splittings and octahedron additions, where C3 þ �K2 is the

2-odd triangulation shown in Fig. 7.

Proof Let G be a minimal 2-odd triangulation, and so we shall prove G ¼ C3 þ �K2.

Observe that a triangulation on the sphere has at least four vertices, and that one

with exactly four vertices must be a tetrahedron. If jVðGÞj ¼ 5, then G is isomorphic

to C3 þ �K2, since it is a unique triangulation with five vertices. Hence we suppose

that jVðGÞj � 6.

It is known that every triangulation on the sphere (with at least four vertices)

contains at least four vertices of degree at most 5. Hence, G contains a 4-vertex

since G is a 2-odd triangulation. Then let v be a 4-vertex in G with link v1v2v3v4.

Consider the 4-contraction of v at fv1; v3g in G. If the resulting graph ~G is still a

2-odd triangulation, then this contradicts the minimality of G. Hence ~G has a loop or

multiple edges incident to ½v�v1¼v3
, or the number of odd vertices in ~G is not two. In

the former case, v1 and v3 are joined by a path P of length one or two in G through

neither v; v2 nor v4. In the latter case, both v1 and v3 have odd degree in G, and ~G is

an even triangulation. Similarly, for the 4-contraction of v at fv2; v4g, we see that

G has a path P0 of length at most two joining v2 and v4 in G� fv; v2; v4g, or both v2
and v4 have odd degree in G. If both P and P0 exist in G, then they must cross at

their middle vertices, by the planarity, and hence both P and P0 have length exactly

two.

Consequently, by symmetry, we have one of the following structures around

v (see Fig. 9):

(a) v2 and v4 are odd vertices, and P ¼ v1v3 2 EðGÞ.
(b) v2 and v4 are odd vertices, and P ¼ v1xv3 with x 62 fv; v2; v4g.
(c) P ¼ v1yv3 and P0 ¼ v2yv4 with y 62 fv; v1; v2; v3; v4g.

Case (a) Since both v2 and v4 are odd vertices, two triangular regions v1v2v3 and

v1v4v3 are faces by Lemma 9(i). So we have G ’ C3 þ �K2, contrary to jVðGÞj � 6.

v v vv1 v1 v1

v4 v4 v4

v3 v3 v3

v2 v2 v2

x

y
(a) (b) (c)

Fig. 9 The structure around v: a white circle (resp., a black square) denotes an even (resp., odd) vertex,
and a black circle denotes a vertex of even or odd degree
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Case (b) Let us consider the structure of the interior IC of the 4-region bounded

by C ¼ xv1v2v3. We can apply Lemma 9(ii) to IC since all inner vertices are even. If

v1v3 2 EðGÞ, then G has the structure (a), but we note xv2 62 EðGÞ. (For otherwise,
i.e., xv2 2 EðGÞ, then the interior of at least one of the two regions xv1v2 and xv2v3
contains a vertex, since v2 is odd. This contradicts Lemma 9(i).) If IC contains a

single 4-vertex, then v2 must be even, by Lemma 9(i), a contradiction. Finally, we

consider the case when IC is isomorphic to QðkÞ for some k� 1. If two adjacent

4-vertices in QðkÞ, say s and s0, are neighbors of v1, then v2 has even degree, a

contradiction. On the other hand, if they are neighbors of v2, then the 4-vertex s is

contractible at fs0; v1g (or fs0; v3g), a contradiction. Hence this case does not

happen.

Case (c) Let D ¼ yv2v3 be the 3-cycle and let ID be the interior of the region

bounded by D. Let GD be the subgraph of G induced by the vertices of D and those

contained in ID. By symmetry, we may suppose that GD contains an odd vertex of

G. If GD contains two odd vertices of G, then the outer region of D contains only

even vertices in G, which contradicts Lemma 9(i). Hence, by the Handshaking

Lemma and Lemma 8, ID contains exactly one odd vertex of G, and other odd

vertices of GD are contained in D but all of them have even degree in G.

If ID has a single vertex, then the interior of two triangular regions yv1v2 and

yv3v4 must contain vertices, since �
Gðv2Þ and �

Gðv3Þ are even. However, this

contradicts Lemma 9(i) since G is a 2-odd triangulation. Thus we may suppose that

ID contains at least two vertices. Here we prove that ID contains a 4-vertex. If we let

pi be the number of i-vertices in GD, then we have 3p3 þ 2p4 þ p5 � 12, by Euler’s

formula, which implies that GD has at least four vertices of degree less than 6.

Observe that at least two of y; v2 and v3 have degree at least 4 in GD, and that GD

contains exactly one odd vertex s in ID. Hence, if no vertex in ID has degree 4, then

GD has at most four vertices of degree less than 6. However, the above inequality for

GD claims that if GD has exactly four vertices of degree less than 6, then all of them

must have degree 3, contrary to the current situation.

Let u be a 4-vertex u in ID which can be found as above, and let u1u2u3u4 be the

link of u in G. Since at least one neighbor of u is contained in ID and since all three

vertices of D have even degree in G, the structure around umust be (c). Hence G has

two paths P1 and P2 of length 2 which join u1 and u3, and u2 and u4 respectively,

and cross at their middle vertex z. By symmetry, we may suppose that u2 and u3 are

contained in the triangular region u1u4z. If all of the three triangular regions

u1u2z; u2u3z and u3u4z have no inner vertex, then we can apply an octahedron

removal to remove u; u2 and u3. For, if one of them, say u1u2z, contains inner

vertices, then the interior of u1u2z must have an odd vertex, and then contains a

4-vertex again by the same argument as above. This argument does not continue

since G is finite.

We have shown that unless G ¼ C3 þ �K2, G admits a 4-contraction or an

octahedron removal. Hence the proof completes. h

Now we prove Proposition 6.
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Proof of Proposition 6 Let G be a 2-odd triangulation. By Theorem 10, there exists

a sequence of 2-odd triangulations C3 þ �K2 ¼ G0;G1;G2; :::;Gk ¼ G such that Giþ1

is obtained from Gi by a single octahedron addition or a single 4-splitting. We prove

the proposition by induction on k. When k ¼ 0, G ¼ Gk ¼ G0 ¼ C3 þ �K2 is the face

subdivision of C3.

If Gl is obtained from Gl�1 by either a single octahedron addition or a single

4-splitting, then Gl�1 is a face subdivision with a unique color factor, by induction

hypothesis. In the former case, Gl is also a face subdivision with a unique color

factor, as shown in Fig. 10. In the latter case, we have three possibilities for the

structure around a vertex to which a 4-splitting is applied, as shown in Fig. 11. In

any case, Gl is a face subdivision with a unique color factor, and hence the

proposition holds. h

4 Lemmas and a Proof of Theorem 3

Let L ¼ C3 þ �K2, and let eL be the 2-odd triangulation obtained from C3 þ �K2 by a

single octahedron addition (see Fig. 12).

In order to prove Theorems 3 and 4, we give two tools for induction on the

number of vertices, one is to use an octahedron, and the other is to use two adjacent

4-vertices added on an edge. We first describe how an octahedron in 2-odd

triangulations can be moved, and how an octahedron removal is related to

4-contractions. (We can find a similar result for even triangulations [5].)

Lemma 11 Let G be a 2-odd triangulation.

Fig. 10 An octahedron addition and a color factor

Fig. 11 4-Splittings and color factors
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1. Let f and f 0 be two faces of G, and let Gf (resp., Gf 0) denote the one obtained

from G by applying an octahedron addition to f (resp., f 0). Then Gf and Gf 0 are

N-equivalent.

2. Let G0 denote a 2-odd triangulation obtained from G by two octahedron

additions. Then G0 can be reduced into G by N-flips and 4-contractions.

Proof

1. Let v be a vertex of G whose degree is k� 4. Let f0; f1; . . .; fk�1 be the faces

incident to v lying around v in this cyclic order. We can see that the octahedron

added in f1 can moved to f0 as shown in Fig. 13. (Note that the figure shows the

case when �ðvÞ ¼ 6, but the same can be done unless �ðvÞ ¼ 3, by repeatedly

applying similar N-flips.) It is easy to see that repeating the above procedures,

the octahedron added in f can be moved to any face f 0.
2. By the result (1), we can move two added octahedra freely in G, and hence the

two octahedra can be put in two adjacent faces in G. Such two octahedra can be

eliminated as shown in Fig. 14 by a single N-flip and three 4-contractions. h

By Lemma 11, we have the following proposition which follows from

Theorem 10 immediately.

Proposition 12 Every 2-odd triangulation with an odd number of vertices can be

reduced to L by a sequence of 4-contractions and N-flips, and one with an even

number of vertices can be reduced to eL by the two operations.

Fig. 12 The 2-odd triangulations L and eL

Fig. 13 Moving an octahedron

123

480 Graphs and Combinatorics (2020) 36:469–490



Proof Let G be a 2-odd triangulation. By Theorem 10, there exists a finite sequence

of 2-odd triangulations G ¼ G0;G1; . . .;Gk ¼ L such that Gi is obtained from Gi�1

by either a 4-contraction or an octahedron removal, for i ¼ 1; . . .; k. Observe that the
4-contraction preserves the parity of the number of vertices but the octahedron

removal does not. Hence if |V(G)| is odd (resp., even), the sequence contains an even

(resp., odd) number of octahedron removals. Observe that an octahedron in a 2-odd

triangulation can be moved to any face by N-flips, and that two octahedra can be

eliminated by N-flips and 4-contractions, by Lemma 11. Hence, if |V(G)| is odd, then

G can be reduced to L by a sequence of 4-contractions. Otherwise (i.e., if |V(G)| is

even), G can be to ~L. h

Secondly we deal with two adjacent 4-vertices u, v. Let G be a 2-odd

triangulation and let e ¼ ab be an edge of G shared by two triangular faces abc and

abd. Subdivide e by two vertices u and v to form a path auvb, and add edges

uc, ud, vc and vd, as shown in Fig. 15. This operation is a 2-subdivision, and fu; vg
is a 2-subdividing pair.

Lemma 13 Let G be a 2-odd triangulation and let v be a 4-vertex with link

v1v2v3v4, where v1 is even. Let u be the common neighbor of v1 and v2 other than v.

Suppose that the triangulation H obtained from G by a 4-contraction of v at fv1; v3g
is a 2-odd triangulation. Then G can be transformed into the one obtained from H

by a 2-subdivision of the edge u½v�v1¼v3
, by a sequence of N-flips, keeping the degree

of v2.

Proof Let vv4a1a2 ::: akv2 be the link of v1 in G, where k� 4 is an even integer and

let ak ¼ u. If �
Gðv1Þ ¼ 4, then fv1; vg can be regarded as a 2-subdividing pair lying

on the edge uv3 in G. Hence G is a 2-odd triangulation obtained from H by a

Fig. 14 Eliminating two octahedra by a single N-flip and three 4-contractions

Fig. 15 The 2-subdivision of ab
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2-subdivision of the edge u½v�v1¼v3
.

So we suppose that �
Gðv1Þ� 6. Apply the N-flip to the path vv4v1a1 in G to

decrease the degree of v1, and let G0 be the resulting graph (see Fig. 16). By the

assumption, a1; :::; ak are not adjacent to v3 in G. Moreover, v4; a1; a2; . . .; ak; v2 are
all distinct. Hence G0 is simple and we see that �ðv2Þ is unchanged, and that v still

has degree 4. After this, repeating the N-flip to vaiv1aiþ1 for all even

i 2 f2; 4; :::; k � 3g, we can transform G into a 2-odd triangulation obtained from

H by a 2-subdivision of the edge u½v�v1¼v3
, keeping �ðv2Þ. h

Two 2-odd triangulations G and G0 are NP2-equivalent, denoted G� NP2
G0, if

G and G0 can be transformed into each other by N- and P2-flips. For a 2-odd

triangulation H, let H þ CðmÞ denote a 2-odd triangulation obtained from H by

repeating a 2-subdivision of an edge m times, where we note that H þ CðmÞ has

jVðHÞj þ 2m vertices. Since we can move a 2-subdividing pair on edges freely by

P2-flips, we see that the expression H þ CðmÞ is well-defined.
Now we prove Theorem 3.

Proof of Theorem 3 By Proposition 12, if |V(G)| is even, then G can be reduced to ~L
by N-flips and 4-contractions, and hence, applying Lemma 13 repeatedly, we have

G� NP2
~Lþ CðmÞ (where m ¼ 1

2
ðjVðGÞj � 8Þ), since a 2-subdividing pair can be

moved freely by P2-flips. Similarly, if |V(G)| is odd, then G� NP2
Lþ CðmÞ, where

m ¼ 1
2
ðjVðGÞj � 5Þ. Therefore, if jVðGÞj ¼ jVðG0Þj, then G and G0 are NP2-

equivalent, via the standard form ~Lþ CðmÞ or Lþ CðmÞ, depending on the parity of

the number of vertices. h

5 Proof of Theorem 4

In this section, we establish a way to transform 2-odd triangulations without P2-

flips. In the proof of Theorem 3, it is a key fact that a 2-subdividing pair can be

moved freely by P2-flips, but forbidding P2-flips in Theorem 4, we carefully observe

how a 2-subdividing pair can be moved only by N-flips.

Lemma 14 Let H be a 2-odd triangulation, and let e1; :::; ek be all edges incident to
a vertex v 2 VðHÞ appearing in this cyclic order with respect to the rotation of v.

Fig. 16 The N-flip of the path vv4v1a1
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Let G (resp., G0) be the 2-odd triangulation obtained from H by a 2-subdivision of

ei (resp., eiþ2). If k ¼ �ðvÞ� 4, then G and G0 are N-equivalent.

Proof Let v1v2:::vk be the link of a vertex v 2 VðGÞ and we suppose ei ¼ vvi for

each i 2 f1; :::; kg and k ¼ �ðvÞ� 4. Suppose that G is obtained from H by a

2-subdivision of vvi with two vertices x and y to form a path vxyvi. If
�
HðvÞ ¼ 4, then

x and v can be regarded as a 2-subdividing pair on yviþ2 in G. Therefore, we have

G ¼ G0. So we may suppose that �
HðvÞ� 5. First apply the N-flip of the path

xviþ1vviþ2, and next apply the N-flip of the path xvi�1yvi (see Fig. 17). Since

v1; :::; vk are all distinct in G and k� 5, each N-flip preserves the simpleness. Hence

G can be transformed into G0 by N-flips. h

In Lemma 14, we say that ei and eiþ2 are alternate edges incident to v. Lemma 14

tells us that a 2-subdividing pair on an edge e can be moved to an alternate edge of

e incident to the same vertex. However, we note that the condition ‘‘�ðvÞ� 4’’ is

necessary in Lemma 14. Hence, in order to move a 2-subdividing pair freely, we

introduce the notion of ‘‘flexibility’’ of a 2-odd triangulation, as follows.

Two edges e and e0 in a triangulation are equivalent if there exists a sequence of

edges e1; . . .; em of G with e ¼ e1 and e0 ¼ em such that for i ¼ 1; . . .;m� 1, ei and

eiþ1 are alternate edges incident to the same vertex of degree at least 4 in G. We call

such a sequence of edges an alternate sequence between e and e0.
Let G be a 2-odd triangulation. Let G1 (resp., G2) be the 2-odd triangulation

obtained from G by a 2-subdivision of e1 (resp., e2). By Lemma 14, G1 and G2 are

N-equivalent if e1 and e2 are equivalent in G. It is easy to see the following hold;

• a frame edge and a spoke in G are not equivalent, and

• any two frame edges of G are equivalent (since every frame edge joins two

vertices of even degree at least 4, and since frame edges incident to the same

vertex appear alternately in the rotation around the vertex).

We say that a 2-odd triangulation G is flexible if any two spokes of G are equivalent.

We give a characterization of flexible 2-odd triangulations, as in the following.

Theorem 15 Let G be a 2-odd triangulation, and let x and x0 be the two odd

vertices. Then G is flexible if and only if at least one of the following two conditions

holds:

(i) At least one of x and x0 is of degree at least five.

Fig. 17 Moving a 2-subdividing pair
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(ii) If both x and x0 have degree three, then x and x0 have at most one common

neighbor.

Proof If x is an odd vertex of degree at least five, then all spokes incident to x are

equivalent in G, since two alternate spokes are equivalent, by Lemma 14. It is easy

to see that any spoke is equivalent to some spoke incident to x, since we can find an

alternate sequence between them. Consequently, any two spokes of G are

equivalent, via the spokes incident to x. So it suffices to prove the following:

A 2-odd triangulation G with two 3-vertices x and x0 is flexible if and only if

x and x0 have at most one common neighbor.

Let H be the frame of G, which can uniquely be taken by Proposition 6. Then H has

two triangular faces X ¼ abc and X0 ¼ a0b0c0, which have x and x0 in the interior in

G, respectively. Let R be the subgraph of H induced by all edges on the boundary

cycle of an even face of H. That is, R ¼ H � D, where D ¼ EðXÞ \ EðX0Þ which

might be empty.

(‘‘Only if’’ part.) Suppose that X and X0 share at least two vertices, say a ¼ a0 and
b ¼ b0. If c ¼ c0, then G ¼ C3 þ �K2, in which fax; ax0g, fbx; bx0g and fcx; cx0g are

three equivalence classes of spokes, and we are done. Hence we may suppose that

c 6¼ c0. Then R ¼ H � ab, which is a bipartite plane graph with a facial cycle acbc0

since each face of R is even. We color the vertices of R black and white, according

to the bipartition of R, so that a and c are black and white, respectively. Observe that

a spoke e is equivalent to xa in G if and only if e is incident to a black vertex. Hence

xa and xc are not equivalent since xc is incident to a white vertex.

(‘‘If’’ part.) Suppose that two 3-cycles X and X0 share at most one vertex in

H. Then R ¼ H since D ¼ EðXÞ \ EðX0Þ ¼ ;. Since H is connected, X and X0 are
connected in H by a path P. Taking P to be shortest, we let P ¼ p1. . .pm with p1 ¼ a

and pm ¼ a0, in which each pi with i 2 f2; . . .;m� 1g is supposed to be contained in
neither X nor X0, where we might have a ¼ a0, i.e., m ¼ 1. Cutting R along P and

making a copy ~P ¼ ~p1. . .~pm of P, we obtain the plane graph, say R0, whose boundary
cycle is p1bc ~p1. . . ~pmc

0b0pm. . .p1. Then R
0 is bipartite since each face of R0 is even. In

the bipartition of R0, p1 and c have the same color, say black, and ~p1 and b are white.
Observe that if e and e0 are two spokes in G incident to vertices of R0 with the

same color, say black, then we can find an alternate sequence of edges in R0 between
e and e0 without crossing P, in which every edge in the sequence is incident to a

black vertex of R0. On the other hand, if e and e0 are incident to vertices in R0 with
distinct colors, then we can take two alternate sequences in G through faces in R0

from e to some edge incident to pi, and from e0 to an edge incident to ~pi for some i,

since they form a single alternate sequence of edges in G between e and e0 which
crosses P exactly once in G. In the sequence, we should note that pi and ~pi are the

same vertex in R, but they are distinct vertices in R0 with distinct colors. So any two

spokes are equivalent in G. h

Consider three 2-odd triangulations L9; Ls and Lf shown in Fig. 18. We note that

Ls and Lf are obtained from L ¼ C3 þ �K2 by 2-subdividing a spoke and a frame

edge, respectively, and that L9 is a flexible 2-odd triangulation obtained from Ls by
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2-subdividing a spoke. For a triangulation G and an octahedron O which is an

induced subgraph of G, G� O denotes a triangulation obtained from G by an

octahedron removal which removes the three 4-vertices of O.

Lemma 16 Every flexible 2-odd triangulation G with k� 9 vertices can be reduced

to a flexible 2-odd triangulation with k � 2 vertices by N-flips and a single

4-contraction, preserving the flexibility, unless G is isomorphic to L9.

Proof Let T be a flexible 2-odd triangulation. Let T 0 (resp., T 00) be any 2-odd

triangulation obtained from T by a single 4-splitting (resp., octahedron addition).

We first observe that T 0 and T 00 are flexible, by the characterization of flexible 2-odd

triangulations (Theorem 15). Moreover, moving the octahedron in T 00 to another

face of T by N-flips (Lemma 11(1)), we see that all 2-odd triangulations in the

process are flexible.

We first establish the following claim.

CLAIM. By several N-flips, G can be transformed into a flexible 2-odd

triangulation which admits a 4-contraction, preserving the flexibility.

Proof of the Claim. By Theorem 10, G has a 4-contractible 4-vertex (i.e., one to

which a 4-contraction can be applied) or a removable octahedron O. If we have the

former, then the claim holds with no N-flip. Hence suppose the latter, and let

G0 ¼ G� O. Since jVðGÞj � 9, G0 still has a 4-contractible 4-vertex v or a

removable octahedron O0, by Theorem 10 again.

If G0 is flexible, then O can be moved freely in G0 by N-flips, preserving the

flexibility as mentioned in the first paragraph. So if G0 has v, then v is a required

4-contractible 4-vertex in G with O moved somewhere. On the other hand, if G0 has
O0, then let G00 ¼ G0 � O0. If G00 is flexible, then moving O and O0 suitably in G0, we
can eliminate them using N-flips and 4-contractions by Lemma 11(2), preserving the

flexibility. The case when G00 is not flexible will be considered in the next case,

since O and O0 may be dealt with equally in G00.
If G0 is not flexible, then by Theorem 15, G0 has two 3-vertices x and x0 with

neighbor a, b, c and a0; b0; c0, respectively, with a ¼ a0 and b ¼ b0, where we note

c 6¼ c0 since jVðG0Þj � 6. Observe that O is contained in one of the six 3-regions

incident to x or x0 in G. If G0 has a 4-contractible 4-vertex v which is also

4-contractible in G, then we are done. Hence we may suppose that v ¼ c and O is

put in the face xbc in G0. (For, since �
G0 ðaÞ� 5 and �

G0 ðbÞ� 5, v coincides with

Fig. 18 The 2-odd triangulations L9, Ls and Lf
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neither a nor b.) In this case, we can move O in G to the face x0ab by two N-flips,

keeping at least one of �ðxÞ� 5 and �ðx0Þ � 5, and after that, we can apply a

4-contraction of v ¼ c, preserving the flexibility. If G0 has the octahedron O0, then
O0 is incident to neither x nor x0, since G0 is not flexible. In this case, we can move

O0 in G to a face neighboring to the 3-region including O, and apply the procedures

in Lemma 11(2). Then we can apply a single 4-contraction after an N-flip, keeping

at least one of �ðxÞ� 5 and �ðx0Þ � 5. h

By the claim, we may suppose that G has a 4-contractible 4-vertex v with link

v1v2v3v4, and let G0 be the resulting graph by the 4-contraction at fv1; v3g. If G0 is
flexible, then the 4-contraction is a required one, and hence we suppose that G0 is
not flexible. By Theorem 15, G0 has two 3-vertices x and x0 with neighbors

a, b, c and a0; b0; c0, respectively, with a ¼ a0 and b ¼ b0, where we note c 6¼ c0 since
jVðG0Þj � 7.

We first suppose that �
GðxÞ� 5 or �

Gðx0Þ � 5, and that they decrease to 3 by the

4-contraction of v in G0. Then we may suppose that v2 ¼ x in G0 by symmetry. That

is, v2 has degree 5 in G with link v1vv3bc, and by the 4-contraction of v at fv1; v3g,
the link of v2 is deformed into bc½v�v1¼v3

in G0. (Since the case when the link of v2 is

v1vv3ab can be similarly proved, we prove only the case when it is v1vv3bc.) By

Lemma 13, G can be transformed into G0 with a 2-subdivision of the edge c½v�v1¼v3

by N-flips, keeping �ðv2Þ ¼ 5, and hence preserving the flexibility, by Theorem 15.

Moreover, the 2-subdividing pair on the link of x or x0 can be moved to the edge ab

by two N-flips, keeping at least one of �ðxÞ� 5 and �ðx0Þ � 5. By Theorem 10, G0

can still be reduced by a sequence of 4-contractions and octahedron removals, since

jVðG0Þj � 7. These reductions in G0 must be done in the 4-region xax0b containing

c and c0, since no face incident to ab is eliminated in G0. (Note that a or b may be

identified to another vertex in the sequence of the above reductions. Even if this

occurs, then we keep the 4-region xax0b with this labeling.) Hence all graphs arisen

in the process must be flexible, since both x and x0 always have degree five. (If the

sequence contains two octahedron removals, then we apply Lemma 11(2). If the

sequence contains a single octahedron removal but no 4-contraction, then G0 ¼ ~L,
contrary to G0 being non-flexible.)

If G has two 3-vertices x and x0 sharing at most one common neighbor, but they

have at least two common neighbors in G0 by the 4-contraction of v. We may let

pb0qb be the link of v in G, and suppose that the 4-contraction of v at fb; b0g
transforms G into G0, where p is contained in the interior of the 4-region bounded by
abvb0 in G. (See the left-hand of Fig. 19.) Since the 4-contraction of v at fb; b0g is

Fig. 19 Structures around v
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applicable in G, we have a ¼ a0 ¼ p. If the 4-contraction of v at fp; qg is applicable

in G, then the two 3-vertices x and x0 share only one neighbor a ¼ a0 in the resulting

graph, which is a required flexible 2-odd triangulation with fewer vertices, by

Theorem 15. Hence we prove that if the 4-contraction of v at fp; qg is not

applicable, then G is isomorphic to L9, as follows.

We first suppose that q coincides with c0 or c, say the former by symmetry. Then

apply Lemma 9(ii) to the 4-region ac0bc. (If we have an octahedron removal for

reducing the 4-region, then we move the octahedron to a face xbc. Then the

4-contraction of v at fb; b0g is applicable preserving the flexibility, since x has

degree five in the current graph. So we may suppose that any 4-region can be

reduced only by 4-contractions. This trick will be used in this proof several times.)

Since the 4-region acbc is bounded by only frame edges, the 4-region must have

exactly one vertex, as in the right-hand of Fig. 19. Then the graph is isomorphic to

L9. (If the region ac0bc is isomorphic to QðmÞ for some m� 1, then at least one of

a and c has odd degree, a contradiction.)

Hence G has the 6-region D bounded by a cycle C ¼ qb0c0pcb. Since all edges of
C are frame edges, the frame edges divide the interior of C into regions bounded by

an even cycle. If D has a chord of C which must be a frame edge, then only an

admissible chord is pq, as in the center of Fig. 19, since other chords are not

obstructions of the 4-contraction of v at fp; qg. In this case, apply Lemma 9(ii) to

two 4-regions pqb0c0 and pcbq. Similarly to the above case, each of two 4-regions

must have exactly one vertex, and hence, we can apply the 4-contraction of the

4-vertex in pqb0c0 at fc0; qg keeping c 6¼ c0, contrary to the resulting graph being

non-flexible.

Finally we consider the case when D has no chord. If D contains exactly one

inner vertex u, then u has degree 6 and is adjacent to all vertices of C. So, applying

the 4-contraction of c0 at fx0; ug, we have a flexible 2-odd triangulation with fewer

vertices, a contradiction. Thus, we may suppose that D contains at least two vertices.

By the result in [2, Theorem 3.1], we know that the number of vertices of degree at

least 6 in a 6-region is at most 1 if all vertices in the region are of degree at least 6,

and hence D contains an inner 4-vertex u with link Lu ¼ u1u2u3u4. By the

minimality of G with respect to the flexibility, the 4-contraction of u at fu1; u3g and

that at fu2; u4g are not applicable, and so there are two 3- or 4-cycles passing

through u1uu3 and u2uu4. By a similar argument in the proof of Theorem 10 and the

assumption for octahedra in D, at least one of u1; u3, and at least one of u2; u4, say u1
and u2 by symmetry, are contained in C. Since D has no chord, then u1u2 coincides

with an edge of C. Moreover, by the same reason, we may suppose that u3 is an

inner vertex of D. Observe that if u4 is also inner vertex in D, then u4 has degree at

least 6. (For otherwise, a 4-contraction of u at fu2; u4g is possible.) Since D can

have a diagonal, a 4-contraction of u at fu1; u3g is always possible in D, a

contradiction. h

Let G be a 2-odd triangulation and let H be the frame of G. Consider an N-flip of

a 3-path P ¼ abcd connecting two vertices a and d of the color factor of G. Then the

edge bc must be contained in H. If we let a1. . .amcb and bcd1. . .dl be the links of

a and d in G in the same cyclic order, then the N-flip of P in G corresponds to a
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generalized diagonal flip of the edge bc in H to replace it with a1d1 in the 2-cell

region of H bounded by ba1. . .amcd1. . .dl, as shown in the left-hand of Fig. 20.

(Observe that any generalized diagonal flip preserves the size of faces of H, and

hence, the number of odd faces of H is always preserved in the process of

generalized diagonal flips.) This interpretation will be useful in the following

lemma.

Lemma 17 Let G be a non-flexible 2-odd triangulation with jVðGÞj � 9. Then G

can be transformed into a flexible 2-odd triangulation by a sequence of N-flips.

Proof Let H be the frame of G. Since jVðGÞj � 9, we have H 6¼ C3. By

Theorem 15, G has two 3-vertices x and x0 sharing two common neighbors. Hence

H has two triangular faces abc and abc0 sharing the edge ab. Let D be the 4-region

bounded by C ¼ acbc0 not containing the two triangular faces. Since jVðGÞj � 9, the

interior of D has at least one edge of H.

First suppose that �
HðcÞ� 3 or �

Hðc0Þ � 3, say the former. Let c00 6¼ a be the

neighbor of c in H which is consecutive to b with respect to the rotation of c. (Note

that c0 6¼ c00 since otherwise at least three 3-regions in H, which means that at least

three odd vertices, a contradiction.) Then we can apply a generalized diagonal flip

of bc to ac00 in H, as shown in the right-hand of Fig. 20. The resulting plane graph,

denoted by H0, has exactly two triangular faces abc0 and acc00. By Theorem 15, the

face subdivision of H0 is flexible.
Secondly we suppose that �

HðcÞ ¼ �
Hðc0Þ ¼ 2. Since D has an inner edge, we

have �
HðaÞ� 4 and �

HðbÞ� 4. Now apply a generalized diagonal flip of ab to cc0.
The resulting graph can be dealt as the one in the previous case. h

Let K be a flexible 2-odd triangulation, and let K þ ðs; tÞ denote a 2-odd

triangulation obtained from K by 2-subdivisions of spokes s times and frame edges

t times, respectively, where s; t� 0 and K ¼ K þ ð0; 0Þ. Since K is flexible, every

2-subdividing pair added on a spoke can be moved to any spoke, and so can be any

2-subdividing pair on a frame edge. Therefore, the notation K þ ðs; tÞ is well-

defined, that is, any two graphs expressed by K þ ðs; tÞ are N-equivalent for any

s; t� 0. In Lemma 13, if G is transformed into G0 by a single 4-contraction so that

jUðGÞj ¼ jUðG0Þj þ 1, then G� NK þ ð1; 0Þ. On the other hand, if

jUðGÞj ¼ jUðG0Þj, then G� NK þ ð0; 1Þ. Therefore, if G can be reduced to K by

a sequence of N-flips and 4-contractions, preserving the flexibility, we have

G� NK þ ðs; tÞ by applying Lemma 13 repeatedly, where s ¼ jUðGÞj � jUðKÞj and

Fig. 20 Generalized diagonal flips in the frame H
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2ðsþ tÞ ¼ jVðGÞj � jVðKÞj. This fact plays an important role for our inductive

argument in the following proof.

Proof of Theorem 4 Let G and G0 be 2-odd triangulations with jVðGÞj ¼ jVðG0Þj
and jUðGÞj ¼ jUðG0Þj. By Theorem 10, if jVðGÞj ¼ 5, then G ¼ L. If jVðGÞj ¼ 7,

then G is either Ls or Lf , which can be distinguished by |U(G)|. If jVðGÞj ¼ 8, then

G is isomorphic to ~L. Hence suppose jVðGÞj ¼ jVðG0Þj � 9. If G or G0 is not flexible,
then we can apply Lemma 17 to transform it to a flexible one. So we may suppose

that both G and G0 are flexible.

If |V(G)| is even, then both G and G0 can be reduced to eL by N-flips and

4-contractions, preserving the flexibility, by Lemma 16. Since jVðGÞj ¼ jVðG0Þj
and jUðGÞj ¼ jUðG0Þj, we have G� N

eL þ ðs; tÞ� NG
0, where s ¼ jUðGÞj � 3 and

t ¼ 1
2
ðjVðGÞj � 8Þ � s.

Suppose that |V(G)| is odd. Applying 4-contractions and N-flips to G, we obtain a

minimal flexible 2-odd triangulation H, preserving the flexibility. By Lemma 16,

H is either Lf or L9. Observe that there exist exactly two 2-odd triangulations Lf and

Ls with seven vertices, but Ls is not flexible. If both G and G0 can be reduced to

either of Lf and L9 by 4-contractions and N-flips, then G and G0 are N-equivalent,

via the form Lf þ ðs; tÞ or L9 þ ðs; tÞ, since Lf and L9 are flexible. So suppose that

G is reduced to Lf , but G
0 is to L9. In this case, we have G� NLf þ ðs; tÞ and

G0 � NL9 þ ðs0; t0Þ, by Lemma 13. Note that s ¼ s0 þ 2� 2 and t0 ¼ t þ 1� 1, since

jVðLf Þj ¼ 7, jUðLf Þj ¼ 2, jVðL9Þj ¼ 9 and jUðL9Þj ¼ 4. Seeing that Lf þ
ð2; 0Þ� NL9 þ ð0; 1Þ by Fig. 21, we have

G� NLf þ ðs; tÞ� NðLf þ ð2; 0ÞÞ þ ðs� 2; tÞ� NðL9 þ ð0; 1ÞÞ þ ðs0; t0 � 1Þ
� NL9 þ ðs0; t0Þ � NG

0:

This completes the proof of Theorem 4. h
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