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Abstract
In this paper, we focus on a so-called Fan-type condition assuring us the existence

of long paths in bipartite graphs. As a consequence of our main result, we com-

pletely determine the bipartite Ramsey numbers bðPs;Bt1;t2Þ, where Bt1;t2 is the

graph obtained from a t1-star and a t2-star by joining their centers.

Keywords Fan-type condition � Bipartite Ramsey number � Bistar � Bipartite
graph

Mathematics Subject Classification 05C55 � 05C38 � 05C07

1 Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph.

We let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For

x 2 VðGÞ, we let NGðxÞ and dGðxÞ denote the neighborhood and the degree of x,

respectively; thus NGðxÞ ¼ fy 2 VðGÞ : xy 2 EðGÞg and dGðxÞ ¼ jNGðxÞj. For
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X � VðGÞ, we let G[X] denote the subgraph of G induced by X. For two graphs

G and H, we write H � G if G contains H as a subgraph. Let Pn and Kn1;n2 denote

the path of order n and the complete bipartite graph with partite sets having

cardinalities n1 and n2, respectively. For terms and symbols not defined here, we

refer the reader to [3].

Our main target in this paper is the bipartite Ramsey number. Let Hr and Hb be

bipartite graphs. The following fact is obtained by similar argument in the original

Ramsey’s theorem: there exists a positive integer N such that for any edge-disjoint

spanning subgraphs Gr and Gb of KN;N with EðGrÞ [ EðGbÞ ¼ EðKN;NÞ, Hr � Gr or

Hb � Gb. The smallest value of N satisfying the above property is called the

bipartite Ramsey number with respect to Hr and Hb and denoted by bðHr;HbÞ. Note
that bðHr;HbÞ ¼ bðHb;HrÞ.

If Hb is a star, then the determination problem of bðHr;HbÞ is reduced to a

problem of finding Hr under a high minimum degree condition. Thus the bipartite

Ramsey numbers involving stars tend to be simply determined. For example, Harary

et al. [6] proved that bðK1;s;K1;tÞ ¼ sþ t � 1 and Hattingh and Henning [7]

completely determined the value bðPs;K1;tÞ for s� 2 and t� 2. Further results for

the bipartite Ramsey number related to stars were given in [2, 12].

In Graph Theory, many types of degree conditions were studied for some

important properties. We explain it with the Hamiltonicity of graphs as an example.

Dirac [4] proved that if a graph G of order n� 3 satisfies dGðxÞ� n
2
for all x 2 VðGÞ,

then G is Hamiltonian. This result influenced sufficient conditions for the existence

of a Hamiltonian cycle with many extensions, for example, degree-sum condition,

neighborhood-union condition, and so on (see a survey [9]). One of important

extensions is a so-called Fan-type condition. Fan [5] proved that if a 2-connected

graph G of order n satisfies

maxfdGðxÞ; dGðyÞg�
n

2
for all x; y 2 VðGÞ with distGðx; yÞ ¼ 2;

where distGðx; yÞ is the distance between x and y, then G is Hamiltonian, and the

result straightforward leads to Dirac’s result. In Graph Theory, similar situations

occur, i.e., a minimum degree condition is frequently replaced by a Fan-type con-

dition, that is a condition concerning maxfdGðxÞ; dGðyÞg for non-adjacent vertices

x and y (see, for example [10, 11, 13]).

We carry the concept to bipartite graphs. As we mentioned above, some bipartite

Ramsey numbers involving stars are determined using a high minimum degree

condition problem. We will later show that a Fan-type condition gives manageable

objects which can be replaced by stars. From such a motivation, we study a Fan-type

condition for long paths in bipartite graphs. The following is one of our main results.

Theorem 1 Let m and n be positive integers with n�m. Let G be a bipartite graph

having partite sets X1 and X2 with jX1j ¼ jX2j ¼ n. If

(D1) maxfdGðx1Þ; dGðx2Þg�m or

(D2) minfdGðx1Þ; dGðx2Þg� nþ1
2
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for all vertices x1 2 X1 and x2 2 X2 with x1x2 62 EðGÞ, then G contains a path

P with jVðPÞj � 2m.

The condition (D1) in Theorem 1is best possible because G ¼ Kn;n �
EðKm�1;m�1 [ Kn�mþ1;n�mþ1Þ satisfies maxfdGðx1Þ; dGðx2Þg�m� 1 for all vertices

x1 2 X1 and x2 2 X2 with x1x2 62 EðGÞ, and any paths of G have at most 2m� 1

vertices.

Let n1 and n2 be non-negative integers, and let S1 and S2 be two vertex-disjoint

stars having n1 þ 1 vertices and n2 þ 1 vertices, respectively. The ðn1; n2Þ -bistar,
denoted by Bn1;n2 , is the graph obtained from S1 and S2 by joining their centers. Note

that the ðn1; 0Þ-bistar is the star having n1 þ 2 vertices and the (0, 0)-bistar is the

connected graph of order two. Recently, Hattingh and Joubert [8] proved that

bðBs;s;Bt;tÞ ¼ sþ t þ 1, and Alm et al. [1] extended the result as bðBs1;s2 ;Bt1;t2Þ ¼
s1 þ t1 þ 1 for s1 � s2 and t1 � t2. In particular, we obtain

bðK1;s;K1;tÞ ¼ bðBs�1;s�1;Bt�1;t�1Þ. Hence the bipartite Ramsey number involving

bistars seems to be related to one involving stars.

Recall that bðPs;K1;tþ1Þð¼ bðPs;Bt;0ÞÞ was determined by Hattingh and Henning

[7]. In this paper, using Theorem 1, we extend their result and determine the value

bðPs;Bt1;t2Þ as following.

Theorem 2 Let s, t1 and t2 be integers with s� 2 and t1 � t2 � 0. Then the following

hold.

(i) If t1 ¼ t2, then bðPs;Bt1;t2Þ ¼ bs�1
2
c þ t1 þ 1.

(ii) Assume that t1 [ t2.

(ii-a) If t1 �bs�1
2
c, then

bðPs;Bt1;t2Þ ¼

bs� 1

2
c þ t1 þ 1

�
s is even, or s is odd and

t1 � 0 mod
s� 1

2

� ��

bs� 1

2
c þ t1 ð otherwise Þ:

8>>>>>>><
>>>>>>>:

(ii-b) If t1\bs�1
2
c, then

bðPs;Bt1;t2Þ ¼
2t1 þ 1 2t1 � t2 �bs� 1

2
c

� �

bs� 1

2
c þ t2 þ 1 ð otherwise Þ:

8>><
>>:
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2 Proof of Theorem 1

We start with two lemmas. The following lemma is well-known (see, for example

[7]).

Lemma 1 Let m be a positive integer, and let G be a bipartite graph. If dGðxÞ�m

for all x 2 VðGÞ, then G contains a path P such that jVðPÞj � 2m.

Lemma 2 Let m be a positive integer. Let G be a connected bipartite graph having

partite sets X1 and X2 with jX1j � jX2j, and let x1 2 X1. If dGðxÞ�m for all x 2 X1,

then G contains a path P such that x1 is an end-vertex of P and jVðPÞj � 2m.

Proof We proceed by induction on m. It is clear that the lemma holds for m ¼ 1.

Thus we may assume that m� 2.

Let H0 ¼ G� fx1; y : y 2 NGðx1Þ; dGðyÞ ¼ 1g. Since jVðH0Þj � jX1 � fx1gj�
jX2j � 1� dGðx1Þ � 1�m� 1� 1, H0 is non-empty. Since jVðH0Þ \ X1j ¼
jX1j � 1� jX2j � 1� jVðH0Þ \ X2j � 1, there exists a component H1 of H0 such

that jVðH1Þ \ X1j � jVðH1Þ \ X2j � 1. Since G is connected, it follows from the

definition of H0 that there exists a vertex x2 2 NGðx1Þ \ VðH1Þ and jVðH1Þj � 2.

Since jVðH1 � x2Þ \ X1j ¼ jVðH1Þ \ X1j � jVðH1Þ \ X2j � 1 ¼ ðjVðH1 � x2Þ \
X2j þ 1Þ � 1, there exists a component H2 of H1 � x2 such that

jVðH2Þ \ X1j � jVðH2Þ \ X2j. Since dGðx2Þ� 2, there exists a vertex

x3 2 NGðx2Þ \ VðH2Þ. Note that x3 2 X1 and dH2
ðxÞ ¼ dGðxÞ � jNGðxÞ �

VðH2Þj �m� jNGðxÞ \ fx2gj�m� 1 for all x 2 VðH2Þ \ X1. By the induction

hypothesis, H2 contains a path Q such that x3 is an end-vertex of Q and

jVðQÞj � 2ðm� 1Þ. Then the path P ¼ x1x2x3Q is a desired path. h

Proof of Theorem 1 Let m, n, G, X1 and X2 be as in Theorem 1. By way of

contradiction, suppose that every path of G has at most 2m� 1 vertices. Let P ¼
y1y2 � � � yl be a longest path of G. Then l� 2m� 1. Note that VðGÞ � VðPÞ 6¼ ;
because jVðGÞj ¼ 2n� 2m. Without loss of generality, we may assume that y1 2 X1.

Since P is a longest path, all neighbors of y1 are contained in VðPÞ \ X2. So, if

dGðy1Þ�m, then

jVðPÞj ¼ jVðPÞ \ X1j þ jVðPÞ \ X2j � 2jVðPÞ \ X2j � 2dGðy1Þ� 2m, a contradic-

tion. Thus, we have dGðy1Þ�m� 1.

Suppose that there exists a vertex u 2 X2 � VðPÞ such that (D2)

minfdGðy1Þ; dGðuÞg� nþ1
2

holds. Let I1 ¼ f1� i� l
2
: y1y2i 2 EðGÞg and

I2 ¼ f1� i� l
2
: uy2i�1 2 EðGÞg. Note that jI1j ¼ dGðy1Þ� nþ1

2
and since yl is not

a neighbor of u, jI2j ¼ dGðuÞ � dG�VðPÞðuÞ� nþ1
2

� jX1 � VðPÞj. Thus,

n� jX1 � VðPÞj ¼jX1 \ VðPÞj� l

2
� jI1 [ I2j

¼jI1j þ jI2j � jI1 \ I2j � n

þ 1� jX1 � VðPÞj � jI1 \ I2j:

This implies I1 \ I2 6¼ ;, say i 2 I1 \ I2. Then ylyl�1 � � � y2iy1y2 � � � y2i�1u is a path

longer than P, a contradiction.
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Therefore, for u 2 X2 � VðPÞ, (D1) maxfdGðy1Þ; dGðuÞg�m holds. Since

dGðy1Þ�m� 1, we have dGðuÞ�m for u 2 X2 � VðPÞ. Since jX1j ¼ jX2j and

jVðPÞ \ X1j � jVðPÞ \ X2j, there exists a component H0 of G� VðPÞ such that

jVðH0Þ \ X2j � jVðH0Þ \ X1j. Let h ¼ max
�
jNGðuÞ \ VðPÞj : u 2 VðH0Þ \ X2

�
.

Take a vertex u	 2 VðH0Þ \ X2 so that jNGðu	Þ \ VðPÞj ¼ h. Since jVðPÞ \
X1j � lþ1

2
� 2m

2
and u	y1 62 EðGÞ, we have 0� h�m� 1. For u 2 VðH0Þ \ X2, since

dGðuÞ�m,

dH0
ðuÞ ¼ dGðuÞ � jNGðuÞ \ VðPÞj �m� hð� 1Þ:

Then by Lemma 2, there exists a path P0 of H0 such that u	 is an end-vertex of P0

and jVðP0Þj � 2ðm� hÞ. If h ¼ 0, then jVðP0Þj � 2m, which is a contradiction. Thus

h� 1.

Note that NGðu	Þ \ VðPÞ � VðPÞ \ ðX1 � fy1gÞð¼ fy2j�1 : j� 2gÞ. Let j be the

maximum integer satisfying u	y2j�1 2 EðGÞ. Since jNGðu	Þ \ VðPÞj ¼ h, we have

j� hþ 1. Let P00 be the path as P00 ¼ y1Py2j�1u
	P0. Then

jVðP00Þj � ð2j� 1Þ þ 2ðm� hÞ� ð2ðhþ 1Þ � 1Þ þ 2ðm� hÞ[ 2m, which is a

contradiction. This completes the proof of Theorem 1. h

3 Proof of Theorem 2

In this section, we prove Theorem 2. We first give several supporting lemmas.

Lemma 3 Let N be a positive integer, and let t1 and t2 be non-negative integers

with N� t1 � t2. Let X1 and X2 be the partite sets of KN;N . Let G
r and Gb be edge-

disjoint spanning subgraphs of KN;N with EðGrÞ [ EðGbÞ ¼ EðKN;NÞ. If Bt1;t2 6� Gb,

then

(N1) maxfdGrðx1Þ; dGrðx2Þg�N � t2 or

(N2) minfdGrðx1Þ; dGr ðx2Þg�N � t1

for all vertices x1 2 X1 and x2 2 X2 such that x1x2 62 EðGrÞ.

Proof Let x1 2 X1 and x2 2 X2 be vertices such that x1x2 62 EðGrÞ. Since

Bt1;t2 6� Gb, dGbðx1Þ� tj or dGbðx2Þ� t3�j for each j 2 f1; 2g. Since

dGrðxiÞ þ dGbðxiÞ ¼ N, this implies that

dGrðx1Þ�N � tjordGrðx2Þ�N � t3�j for eachj 2 f1; 2g: ð1Þ

If dGrðx1Þ�N � t2 or dGrðx2Þ�N � t2, then (N1) holds. Thus we may assume that

dGrðx1Þ\N � t2 and dGrðx2Þ\N � t2. Then by (1), we have dGrðx1Þ�N � t1 and

dGrðx2Þ�N � t1, which implies (N2). h

Lemma 4 Let s be an integer with s� 2, and let t1 and t2 be non-negative integers

with t1 � t2. Then bðPs;Bt1;t2Þ� bs�1
2
c þ t1 þ 1.

Proof Let N ¼ bs�1
2
c þ t1 þ 1. Let X1 and X2 be the partite sets of KN;N . Let G

r and

Gb be edge-disjoint spanning subgraphs of KN;N with EðGrÞ [ EðGbÞ ¼ EðKN;NÞ.
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Suppose that Bt1;t2 6� Gb. It suffices to show that Ps � Gr. Since t1 � t2, it follows

from Lemma 3 that maxfdGrðx1Þ; dGrðx2Þg�N � t1 ¼ bs�1
2
c þ 1 for all vertices

x1 2 X1 and x2 2 X2 with x1x2 62 EðGrÞ. Since N�bs�1
2
c þ 1, applying Theorem 1

with n ¼ N and m ¼ bs�1
2
c þ 1, we obtain a path P in Gr with

jVðPÞj � 2
s� 1

2

� �
þ 1

� �
� 2

s� 2

2
þ 1

� �
¼ s;

as desired. h

Lemma 5 Let s be an odd integer with s� 3, and let t1 and t2 be non-negative

integers such that t1 [ t2 and t1 6� 0ð mod s�1
2
Þ. Then bðPs;Bt1;t2Þ� s�1

2
þ t1.

Proof Let N ¼ s�1
2
þ t1. Let X1 and X2 be the partite sets of KN;N . Let G

r and Gb be

edge-disjoint spanning subgraphs of KN;N with EðGrÞ [ EðGbÞ ¼ EðKN;NÞ. By way

of contradiction, suppose that Ps 6� Gr and Bt1;t2 6� Gb. Since t1 [ t2, it follows from

Lemma 3 that maxfdGrðx1Þ; dGrðx2Þg�N � t1 ¼ s�1
2

for all vertices x1 2 X1 and

x2 2 X2 with x1x2 62 EðGrÞ.

Claim 1 If a component H of Gr contains a path of order s� 1, then

jVðHÞj ¼ s� 1.

Proof Suppose that H contains a path P ¼ y1y2 � � � ys�1. Without loss of generality,

we may assume that y1 2 X1. Note that ys�1 2 X2. Since H contains no path of order

s, NHðy1Þ � VðPÞ \ X2 and NHðys�1Þ � VðPÞ \ X1. If y1ys�1 62 EðHÞ, then

dHðy1Þ� jVðPÞ \ ðX2 � fys�1gÞj ¼ s�3
2
, dHðys�1Þ� jVðPÞ \ ðX1 � fy1gÞj ¼ s�3

2
,

which contradicts the fact that maxfdHðy1Þ; dHðys�1Þg� s�1
2
. Thus y1ys�1 2 EðHÞ.

In particular, y1y2 � � � ys�1y1 is a cycle of H. Since G
r contains no path of order s, it

follows that NHðyiÞ � VðPÞ for all ið1� i� s� 1Þ. In particular, H½VðPÞ
 ¼ H. h

Since N ¼ s�1
2
þ t1 � s�1

2
, applying Theorem 1 with n ¼ N and m ¼ s�1

2
, we

obtain a path P in Gr with jVðPÞj � 2 � s�1
2

¼ s� 1. It follows from Claim 1 that

Gr½VðPÞ
 is a component of Gr. In particular, dGr ½VðPÞ
ðxÞ� s�1
2

¼ N � t1\N � t2
for all x 2 VðPÞ. This together with Lemma 3 implies that dGrðuÞ�N � t1 for all

u 2 VðGrÞ � VðPÞ.
Since N � s�1

2
¼ t1 � 1, VðGrÞ � VðPÞ 6¼ ;. Let H be a component of Gr other

than Gr½VðPÞ
. Since dGrðuÞ�N � t1 ¼ s�1
2

for every u 2 VðHÞ, it follows from

Lemma 1 that H contains a path of order s� 1. Then by Claim 1, jVðHÞj ¼ s� 1

(i.e., jVðHÞ \ X1j ¼ s�1
2
). Since H is arbitrary, Nð¼ jX1jÞ is a multiple of s�1

2
, which

contradicts the assumption that t1 6� 0ð mod s�1
2
Þ. h

Lemma 6 Let s be an integer with s� 2, and let t1 and t2 be non-negative integers

with bs�1
2
c[ t1 [ t2. Then
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bðPs;Bt1;t2Þ�
2t1 þ 1 2t1 � t2 �bs� 1

2
c

� �

bs� 1

2
c þ t2 þ 1 ð otherwise Þ:

8>><
>>:

In other words, Lemma 6 concludes that bðPs;Bt1;t2Þ� bs�1
2
c þ t2 þ 1þ

maxf2t1 � t2 � bs�1
2
c; 0g.

Proof of Lemma 6 Let N ¼ bs�1
2
c þ t2 þ 1þmaxf2t1 � t2 � bs�1

2
c; 0g. Let X1 and

X2 be the partite sets of KN;N . Let G
r and Gb be edge-disjoint spanning subgraphs of

KN;N with EðGrÞ [ EðGbÞ ¼ EðKN;NÞ. Suppose that Bt1;t2 6� Gb as a subgraph. It

suffices to show that Ps � Gr. Note that N � t2 �ðbs�1
2
c þ t2 þ 1Þ � t2 ¼ bs�1

2
c þ 1

and N � t1 � Nþ1
2

because

2ðN � t1Þ � ðN þ 1Þ ¼ N � 2t1 � 1

¼ s� 1

2

� �
þ t2 þmax 2t1 � t2 �

s� 1

2

� �
; 0

� 	
� 2t1

¼
0 2t1 � t2 �bs� 1

2
c

� �

bs� 1

2
c � ð2t1 � t2Þ[ 0 ð otherwise Þ:

8>><
>>:

This together with Lemma 3 implies that, for all vertices x1 2 X1 and x2 2 X2 with

x1x2 62 EðGrÞ,

• maxfdGr ðx1Þ; dGrðx2Þg�N � t2 �bs�1
2
c þ 1 or

• minfdGrðx1Þ; dGrðx2Þg�N � t1 � Nþ1
2
.

Since N ¼ bs�1
2
c þ t2 þ 1þmaxf2t1 � t2 � bs�1

2
c; 0g� bs�1

2
c þ 1, applying Theo-

rem 1 with n ¼ N and m ¼ bs�1
2
c þ 1, we obtain a path P in Gr with

jVðPÞj � 2
s� 1

2

� �
þ 1

� �
� 2

s� 2

2
þ 1

� �
¼ s;

as desired. h

Proof of Theorem 2 Let s, t1 and t2 be as in Theorem 2. We first prove the theorem

for the case where s ¼ 2, i.e., bðP2;Bt1;t2Þ ¼ t1 þ 1. By Lemma 4, we have

bðP2;Bt1;t2Þ� t1 þ 1. Now we prove that bðP2;Bt1;t2Þ� t1 þ 1. Let X1 and X2 be the

partite sets of Kt1;t1 . Let G
r be the graph obtained from Kt1;t1 by deleting all edges,

and let Gb ¼ Kt1;t1 . Then it is clear that P2 6� Gr and Bt1;t2 6� Gb, and so

bðP2;Bt1;t2Þ� t1 þ 1. Thus we may assume that s� 3. Let q 2 N [ f0g and

rð0� r�bs�1
2
c � 1Þ be the integers satisfying t1 ¼ s�1

2


 �
qþ r.
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(i) Suppose that t1 ¼ t2. Let N ¼ bs�1
2
c þ t1 þ 1. By Lemma 4, we have

bðPs;Bt1;t2Þ�N. Now we prove that bðPs;Bt1;t2Þ�N. Let X1 and X2 be the

partite sets of KN�1;N�1. We partition Xi into qþ 2 sets X0
i ;X

1
i ; . . .;X

qþ1
i

with jX0
i j ¼ jX1

i j ¼ � � � ¼ jXq
i j ¼ bs�1

2
c and jXqþ1

i j ¼ r. Note that X
qþ1
i ¼ ;

if and only if t1 � 0ð mod bs�1
2
cÞ. Let Gr be the spanning subgraph of

KN�1;N�1 such that

EðGrÞ ¼
[

0� j� qþ1

fx1x2 : x1 2 X
j
1; x2 2 X

j
2g;

and let Gb ¼ KN�1;N�1 � EðGrÞ. Then the order of longest paths of Gr is

at most 2bs�1
2
cð� s� 1Þ. Furthermore, since minfdGbðx1Þ; dGbðx2Þg�

ðN � 1Þ � bs�1
2
c ¼ t1ð¼ t2Þ for every edge x1x2 2 EðGbÞ, we see that

Bt1;t2 6� Gb. Therefore bðPs;Bt1;t2Þ�N.

(ii-a) Suppose that t1 [ t2 and t1 �bs�1
2
c. Note that q� 1. Let

N ¼
bs� 1

2
c þ t1 þ 1 s is even, or s is odd and t1 � 0 mod

s� 1

2

� �� �

bs� 1

2
c þ t1 ð otherwise Þ:

8>><
>>:

By Lemmas 4 and 5, we have bðPs;Bt1;t2Þ�N. Now we prove that

bðPs;Bt1;t2Þ�N. Let X1 and X2 be the partite sets of KN�1;N�1. If s is even,

or s is odd and t1 � 0ð mod s�1
2
Þ, we partition Xi into qþ 2 sets

X0
i ;X

1
i ; . . .;X

qþ1
i with jX0

i j ¼ jX1
i j ¼ � � � ¼ jXq

i j ¼ bs�1
2
c and jXqþ1

i j ¼ r;

otherwise, we partition Xi into qþ 2 sets X0
i ;X

1
i ; . . .;X

qþ1
i with

• jX j
i j ¼ s�1

2
for i 2 f1; 2g and jð0� j� qÞ with ði; jÞ 62 fð1; 0Þ; ð2; 1Þg,

• jX0
1 j ¼ jX1

2 j ¼ s�3
2

and

• jXqþ1
1 j ¼ jXqþ1

2 j ¼ r.

Note that X
qþ1
i ¼ ; if and only if t1 � 0ð mod bs�1

2
cÞ. Let Gr be the

spanning subgraph of KN�1;N�1 obtained by

• joining all vertices in X0
1 to all vertices in X0

2 [ X
qþ1
2 ,

• joining all vertices in X1
2 to all vertices in X1

1 [ X
qþ1
1 and

• for each jð2� j� qÞ, joining all vertices in X
j
1 to all vertices in X

j
2,

and let Gb ¼ KN�1;N�1 � EðGrÞ. If s is even, then the order of longest

paths of Gr is at most 2bs�1
2
c þ 1 ¼ 2 � s�2

2
þ 1 ¼ s� 1; if s is odd and

t1 � 0ð mod s�1
2
Þ, then the order of longest paths of Gr is

2bs�1
2
c ¼ 2 � s�1

2
¼ s� 1; if s is odd and t1 6� 0ð mod s�1

2
Þ, then the order

of longest paths of Gr is at most
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max 2 � s� 1

2
; 2 � s� 3

2
þ 1

� 	
¼ s� 1:

Furthermore, since we easily check that dGbðxÞ� t1 for all x 2 VðGbÞ,
Bt1;t2 6� Gb. Therefore bðPs;Bt1;t2Þ�N.

(ii-b) Suppose that t1 [ t2 and t1\bs�1
2
c. Let

N ¼ bs�1
2
c þ t2 þ 1þmaxf2t1 � t2 � bs�1

2
c; 0g. By Lemma 6, we have

bðPs;Bt1;t2Þ�N. Now we prove that bðPs;Bt1;t2Þ�N. Let X1 and X2 be the

partite sets of KN�1;N�1. If 2t1 � t2 �bs�1
2
c (i.e., N � 1 ¼ 2t1), we partition

Xi into two sets X1
i and X2

i with jX1
i j ¼ jX2

i j ¼ t1; otherwise (i.e.,

N ¼ bs�1
2
c þ t2), we partition Xi into two sets X1

i and X2
i with jX1

i j ¼ bs�1
2
c

and jX2
i j ¼ t2. Let G

r be the spanning subgraph of KN�1;N�1 such that

EðGrÞ ¼
[

j2f1;2g
fx1x2 : x1 2 X

j
1; x2 2 X

j
2g;

and let Gb ¼ KN�1;N�1 � EðGrÞ. Since t2\t1\bs�1
2
c, the order of longest

paths of Gr is at most 2bs�1
2
cð� 2 � s�1

2
¼ s� 1Þ. Furthermore, if

2t1 � t2 �bs�1
2
c, then dGbðxÞ ¼ ðN � 1Þ � t1 ¼ t1 for all x 2 VðGbÞ; if

2t1 � t2\bs�1
2
c, then minfdGbðx1Þ; dGbðx2Þg ¼ t2 for every edge

x1x2 2 EðGbÞ. In either case, Bt1;t2 6� Gb. Therefore bðPs;Bt1;t2Þ�N.

This completes the proof of Theorem 2. h
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