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Abstract

In this paper, we focus on a so-called Fan-type condition assuring us the existence
of long paths in bipartite graphs. As a consequence of our main result, we com-
pletely determine the bipartite Ramsey numbers b(Ps, By, ;,), where By, is the
graph obtained from a f;-star and a #,-star by joining their centers.
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1 Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph.
We let V(G) and E(G) denote the vertex set and the edge set of G, respectively. For
x € V(G), we let Ng(x) and dg(x) denote the neighborhood and the degree of x,
respectively; thus Ng(x) = {y € V(G) : xy € E(G)} and dg(x) = |[Ng(x)|. For
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X C V(G), we let G[X] denote the subgraph of G induced by X. For two graphs
G and H, we write H C G if G contains H as a subgraph. Let P, and K, ,, denote
the path of order n and the complete bipartite graph with partite sets having
cardinalities n; and ny, respectively. For terms and symbols not defined here, we
refer the reader to [3].

Our main target in this paper is the bipartite Ramsey number. Let H" and H” be
bipartite graphs. The following fact is obtained by similar argument in the original
Ramsey’s theorem: there exists a positive integer N such that for any edge-disjoint
spanning subgraphs G” and G? of Ky y with E(G") UE(G") = E(Ky), H C G’ or
H’ C G’. The smallest value of N satisfying the above property is called the
bipartite Ramsey number with respect to H" and H” and denoted by b(H", H”). Note
that b(H", H”) = b(H”, H").

If H” is a star, then the determination problem of b(H", H”) is reduced to a
problem of finding H” under a high minimum degree condition. Thus the bipartite
Ramsey numbers involving stars tend to be simply determined. For example, Harary
et al. [6] proved that b(K;,,K;,;) =s+t—1 and Hattingh and Henning [7]
completely determined the value b(Py, K, ,) for s >2 and ¢ > 2. Further results for
the bipartite Ramsey number related to stars were given in [2, 12].

In Graph Theory, many types of degree conditions were studied for some
important properties. We explain it with the Hamiltonicity of graphs as an example.
Dirac [4] proved that if a graph G of order n > 3 satisfies dg(x) > § for all x € V(G),
then G is Hamiltonian. This result influenced sufficient conditions for the existence
of a Hamiltonian cycle with many extensions, for example, degree-sum condition,
neighborhood-union condition, and so on (see a survey [9]). One of important
extensions is a so-called Fan-type condition. Fan [5] proved that if a 2-connected
graph G of order n satisfies

max{dg(x), dg(y)} > g for all x,y € V(G) with distg(x,y) = 2,

where distg(x,y) is the distance between x and y, then G is Hamiltonian, and the
result straightforward leads to Dirac’s result. In Graph Theory, similar situations
occur, i.e., a minimum degree condition is frequently replaced by a Fan-type con-
dition, that is a condition concerning max{dg(x),dg(y)} for non-adjacent vertices
x and y (see, for example [10, 11, 13]).

We carry the concept to bipartite graphs. As we mentioned above, some bipartite
Ramsey numbers involving stars are determined using a high minimum degree
condition problem. We will later show that a Fan-type condition gives manageable
objects which can be replaced by stars. From such a motivation, we study a Fan-type
condition for long paths in bipartite graphs. The following is one of our main results.

Theorem 1 Let m and n be positive integers with n > m. Let G be a bipartite graph
having partite sets X; and X, with |X;| = |Xa| = n. If

(D1) max{dg(x1),dg(x2)} >m or
(D2) min{dG(x1)7dG(x2)} > %
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Sor all vertices x1 € X; and x, € X, with x1x, & E(G), then G contains a path
P with |V(P)| > 2m.

The condition (D1) in Theorem lis best possible because G =K, —
E(Kn—1m-1 U Ky_mi1n—ms1) satisfies max{dg(x1),dg(x2)} >m — 1 for all vertices
x1 € X; and x; € X, with x1x; € E(G), and any paths of G have at most 2m — 1
vertices.

Let n; and n, be non-negative integers, and let §; and S, be two vertex-disjoint
stars having n; + 1 vertices and n, + 1 vertices, respectively. The (ny,n,) -bistar,
denoted by B,,, ,,, is the graph obtained from S; and S, by joining their centers. Note
that the (n;,0)-bistar is the star having n; + 2 vertices and the (0, 0)-bistar is the
connected graph of order two. Recently, Hattingh and Joubert [8] proved that
b(Bss,Biy) =s+1t+ 1, and Alm et al. [1] extended the result as b(B, s,,B,1,) =
s1+6+1 for s1>9 and 1>t In  particular, we obtain
b(Kis,K14) = b(Bs—15-1,Bi—1,-1). Hence the bipartite Ramsey number involving
bistars seems to be related to one involving stars.

Recall that b(Py, K| 1+1)(= b(Ps, Brp)) was determined by Hattingh and Henning
[7]. In this paper, using Theorem 1, we extend their result and determine the value
b(P, By, ;,) as following.

Theorem 2 Let s, t and t, be integers with s > 2 and t| > t, > 0. Then the following
hold.

() Ift; =1, then b(Py, B, ,,) = |55 + 11 + 1.
(i)  Assume that t; > t,.

(i-a) If > L*;;J, then

-1
LS 7 J+H+1 <s is even, or sis odd and
s—1
b(PsaBtlA,lz) = tl = ( mod T))
s—1 .
| 3 | +n ( otherwise ).

(ii-b) If 1 <[5}], then

—1
2t + 1 (21‘1 — 1> LSZJ)

s—1

3

b(P37 le,tz) =

|+n+1 ( otherwise ).
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2 Proof of Theorem 1

We start with two lemmas. The following lemma is well-known (see, for example

[7D.

Lemma 1 Let m be a positive integer, and let G be a bipartite graph. If dg(x) >m
for all x € V(G), then G contains a path P such that |V(P)| > 2m.

Lemma 2 Let m be a positive integer. Let G be a connected bipartite graph having
partite sets X; and X, with |X1| > |Xz|, and let x; € X;. If dg(x) > m for all x € X;,
then G contains a path P such that x| is an end-vertex of P and |V(P)| > 2m.

Proof We proceed by induction on m. It is clear that the lemma holds for m = 1.
Thus we may assume that m > 2.

Let Hy =G — {x1,y:y € Ng(x1),dc(y) = 1}. Since |V(Hy)|>|X; — {x1}| >
|X2| = 1>dg(x;) —1>m—1>1, Hy is non-empty. Since |V(Hy)NX,|=
|X1] = 1>|Xa| — 1 >|V(Hp) N Xz| — 1, there exists a component H; of Hy such
that |V(H,) NX,| > |V(H;) N X,| — 1. Since G is connected, it follows from the
definition of Hj that there exists a vertex x, € Ng(x;) N V(H;) and |V(H,)| > 2.

Since |V(Hi —x)NXi|=|VH)NX | >|VH)NXa| —1=(|[V(H —x)N
Xp|+1)—1, there exists a component H, of H;—x, such that
|V(H) N X;|>|V(H,) N Xa|.  Since dg(xp)>2, there exists a  vertex
X3 € Nc;()Cz) N V(Hg) Note that x3 € X; and dH2 (x) = d(;(x) — |NG()C) -
V(Hy)| >m — |[Ng(x) N {x}|>m —1 for all x € V(H;)NX;. By the induction
hypothesis, H, contains a path Q such that x3 is an end-vertex of O and
|[V(Q)| >2(m — 1). Then the path P = x;x,x3Q is a desired path. d

Proof of Theorem 1 Let m, n, G, X; and X, be as in Theorem 1. By way of
contradiction, suppose that every path of G has at most 2m — 1 vertices. Let P =
y1y2---y; be a longest path of G. Then [ <2m — 1. Note that V(G) — V(P) # 0
because |V(G)| = 2n > 2m. Without loss of generality, we may assume that y; € X;.

Since P is a longest path, all neighbors of y; are contained in V(P) N X,. So, if
dg(y1) > m, then
[V(P)| = |V(P)NX |+ |V(P) N X3| >2|V(P) N X3| >2dg(y1) >2m, a contradic-
tion. Thus, we have dg(y;) <m — 1.

Suppose that there exists a vertex u € X, —V(P) such that (D2)
min{dg(y1),dg(u)} > holds. Let I ={1<i<Zi:y;yy€E(G)} and
L={1<i< % :uysi—1 € E(G)}. Note that |I,]| = dg(y1) > % and since y; is not
a neighbor of u, |I| = dg(u) — dg_vp)(u) > 5 — |X; — V(P)|. Thus,

l
n— X, —V(P)|=X,NnV(P)|> 3 >\ UL

=L+ |L| = |hNhL|=n
+1 =X = V(P)| = L NL|.

This implies I} N1, # (), say i € I} N 1. Then yy;_{ -+ Yy2;y1y2 - - - Y2i_1u is a path
longer than P, a contradiction.
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Therefore, for u € X, — V(P), (D1) max{ds(y1),dc(u)} >m holds. Since
dc(y1) <m—1, we have dg(u)>m for u € X, — V(P). Since |X;|=|X,| and
|[V(P)NX;| >|V(P)NX,|, there exists a component Hy of G — V(P) such that
|V(Ho) N Xa| >|V(Ho) NX1]. Let h=max{|Ng(u) N V(P)|:u€ V(H)NX,}.
Take a vertex u* € V(Hy)NX, so that |Ng(u*)NV(P)|=h. Since |V(P)N
X| < B <2and u*y, € E(G), we have 0<h<m — 1. For u € V(Hp) N X,, since
dg(u) >m,

diy () = d () — [N (u) O V(P > m — h(>1).

Then by Lemma 2, there exists a path P’ of Hy such that u* is an end-vertex of P’
and |V(P")| >2(m — h). If h = 0, then |V(P')| > 2m, which is a contradiction. Thus
h>1.

Note that NG(M*) N V(P) - V(P) N (X] — {yl})(: {ij—] ]22}) Let j be the
maximum integer satisfying u*y,i_; € E(G). Since |[Ng(u*) N V(P)| = h, we have
j>h+1. Let P" be the path as P’"=y Py, u*P. Then
V(P >(2j—=1)+2(m—h)>2(h+1)—1)+2(m—h) >2m, which is a
contradiction. This completes the proof of Theorem 1. O

3 Proof of Theorem 2

In this section, we prove Theorem 2. We first give several supporting lemmas.

Lemma 3 Let N be a positive integer, and let t| and t, be non-negative integers
with N >t > t,. Let X1 and X, be the partite sets of Ky . Let G" and G® be edge-
disjoint spanning subgraphs of Ky y with E(G") UE(G?) = E(Kyn)- If B, ., ¢ G,
then

(N1) max{dgr (xl), dgr <X2)} >N —1t, or

(N2) min{dGr ()C]), dgr (XQ)} >N —1

Sor all vertices x| € Xy and x, € X, such that x;x, ¢ E(G").

Proof Let x; €X; and x, € X, be vertices such that xjx, ¢ E(G"). Since
By, ¢ G, dg(x)) <ti or dg(x)<t3_; for each je{l,2}. Since
dgr(x;) + dg» (x;) = N, this implies that

dgr(x1) >N — tjordg-(x,) >N — 13_; for eachj € {1,2}. (1)

If dgr(x1) >N — t; or dg-(x2) > N — 1, then (N1) holds. Thus we may assume that
dgr(x1) <N — 1, and dg-(x2) <N — t,. Then by (1), we have dg-(x;) >N — t; and
dgr(x2) > N — t;, which implies (N2). O

Lemma 4 Let s be an integer with s > 2, and let t; and t, be non-negative integers
with ty > t,. Then b(Py, By, ,,) < 54 + 11 + 1.

Proof LetN = L%J + 1t + 1. Let X; and X, be the partite sets of Ky y. Let G" and
G’ be edge-disjoint spanning subgraphs of Ky with E(G") U E(G’) = E(Ky)-
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Suppose that By, ;, ¢ G". Tt suffices to show that Py C G”. Since t; > 1, it follows
from Lemma 3 that max{dg(x1),dc(x2)} >N —t; = |51 + 1 for all vertices
x; € X; and x; € X, with x1x, € E(G"). Since N > L%j + 1, applying Theorem 1
with n = N and m = [*5}] + 1, we obtain a path P in G” with

V(P)IzzqszlJ +1> 22<¥+1> —s,

as desired. O

Lemma 5 Let s be an odd integer with s >3, and let t; and t, be non-negative
integers such that t; > t, and t; #Z 0( mod %) Then b(Py, By, 1,) < % +11.

Proof LetN = % + 1;. Let X and X, be the partite sets of Ky y. Let G" and G? be
edge-disjoint spanning subgraphs of Ky y with E(G") UE(G") = E(Ky)- By way
of contradiction, suppose that Py ¢ G" and B;, ;, ¢ G". Since 1, > 1, it follows from
Lemma 3 that max{dg (x1),dg (x2)} >N —t; = ! for all vertices x; € X; and
Xp € Xp with x1x; € E(Gr)

Claim 1 If a component H of G" contains a path of order s—1, then
[V(H)|=s—1.

Proof Suppose that H contains a path P = yy, - - - y,_1. Without loss of generality,
we may assume that y; € X;. Note that y;_; € X;. Since H contains no path of order
S, NH(yl) - V(P) ﬂXz and NH(ysfl) - V(P) le. If YiYs—1 € E(H), then
dg() SIVIP)N (X = {ymi Dl =50 du(-) S[VP) N (X0 = i}l =3,
which contradicts the fact that max{dy (y1),dn(ys—1)} > % Thus y,y,_; € E(H).
In particular, y;y; - - - y,_1y; is a cycle of H. Since G” contains no path of order s, it
follows that Ny (y;) C V(P) for all i(1 <i<s—1). In particular, H[V(P)]=H. O

Since N = % +16> % applying Theorem 1 with n =N and m = % we
obtain a path P in G" with [V(P)|>2-51 = s — 1. It follows from Claim 1 that
G’[V(P)] is a component of G". In particular, dgyp)(x) <5P=N—1,<N —1,
for all x € V(P). This together with Lemma 3 implies that dg-(u) >N — t; for all
ueV(G)—V(P).

Since N — 51 =1, >1, V(G") — V(P) # (). Let H be a component of G” other
than G"[V(P)]. Since dg (1) >N — 1, =51 for every u € V(H), it follows from
Lemma 1 that H contains a path of order s — 1. Then by Claim 1, |V(H)| = s — 1
(i.e., |V(H) N X{| = 551). Since H is arbitrary, N(= |X;]) is a multiple of *51, which
contradicts the assumption that #; Z 0( mod %) U

Lemma 6 Let s be an integer with s > 2, and let t; and t, be non-negative integers
with |5t > t) > 1. Then
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-1
2t + 1 (2t1 — 1> LSTJ)

s—1

3

b(PMBllJz) <

| +n+1 ( otherwise ).

In other words, Lemma 6 concludes that b(Pg, B ;)< |5 +0n+ 1+

max{2t1 — 1l — I_%J,O}

Proof of Lemma 6 Let N = [5'] 4+ 1, + 1 + max{2r; — 1, — |5],0}. Let X; and
X5 be the partite sets of Ky y. Let G" and G” be edge-disjoint spanning subgraphs of
Ky with E(G") UE(G?) = E(Kyx). Suppose that B, ,, ¢ G® as a subgraph. It
suffices to show that P, C G". Note that N — 1, > (|51 + o + 1) — o = |51 + 1
and N — t; > % because

AN-t)—(N+1)=N—-2 — 1

s—1 s—1
Z\‘ 5 J—|—t2+max{2t1—t2—{2 J,O}—Ztl
s—1
0 (2[1 — 1> LTJ>

s—1
L 2
This together with Lemma 3 implies that, for all vertices x; € X; and x, € X, with
x1x, € E(G"),
o max{dg(x1),de(x2)} >N — 1, > [*5!] + 1 or
o min{dg (x1),der(x2)} >N — 1, > ML

| —@2Hh —1)>0 ( otherwise ).

Since N = [5| + 1, + 1 + max{2s, — 1, — [*5],0} > [*5] + 1, applying Theo-
rem 1 withn =N and m = L%j + 1, we obtain a path P in G" with

V(P)IEZQSZIJ +1> zz(S;zH) —s,

as desired. |

Proof of Theorem 2 Let s, t; and t, be as in Theorem 2. We first prove the theorem
for the case where s=2, ie., b(P,B,,) =1 +1. By Lemma 4, we have
b(P3,B,,;,) <t + 1. Now we prove that b(P, B, ,,) >t + 1. Let X; and X, be the
partite sets of K, , . Let G" be the graph obtained from K, , by deleting all edges,
and let G’ =K, . Then it is clear that P, ¢ G" and By, ¢ G?, and so
b(P»,By ) >t + 1. Thus we may assume that s>3. Let ¢ € NU{0} and
r(0<r<[5!] — 1) be the integers satisfying t; = |*5!|q + r.

@ Springer



174 Graphs and Combinatorics (2020) 36:167-176

(i) Suppose that t; =1,. Let N = L‘;—IJ +1t +1. By Lemma 4, we have
b(Ps, By, 1,) <N.Now we prove that b(Py, By, ;,) > N. Let X and X, be the
partite sets of Ky_jy—i. We partition X; into g + 2 sets X?,Xl.1 .. .,X?H
with [X?] = |X}| = --- = [X{] = [*5}] and [X{™'| = r. Note that X!*' = 0
if and only if 7 = 0( mod [*5!]). Let G" be the spanning subgraph of
Ky_1n-1 such that

E(G") = U {x1x2:x1 € X{,xz S Xg},
0<j<g+l1
and let G® = Ky_1n_1 — E(G"). Then the order of longest paths of G" is
at most 2|551|(<s—1). Furthermore, since min{dg:(x;),dg (x2)} <
(N—1) = [55] =ti(=1) for every edge xix; € E(G”), we see that
B, ¢ GP. Therefore b(P;, B, ,,) > N.
(ii-a)  Suppose that 1, > 1, and 1, > L%J Note that g > 1. Let

s—1 s—1
Ls—j 4+t +1 sis even, or sis odd and t{ =0 mod d
Nod 2 2

s—1

=

| +n ( otherwise ).

By Lemmas 4 and 5, we have b(Ps, B, ;) <N. Now we prove that
b(Ps, By, 1,) > N. Let X, and X, be the partite sets of Ky_; y—1. If s is even,
or s is odd and #; =0( mod 5!), we partition X; into g+ 2 sets
X0 X! XTT with X0 = (X! == X7 = |55 and |X!T'| =1

1.
71 with

otherwise, we partition X; into g + 2 sets X?,X}, X

o |X!|=2"forie {1,2} and j(0 <j<q) with (i,/) & {(1,0),(2,1)},
o |X{| =|X}| =% and

o XM =1x3" =

Note that X{*' = 0 if and only if #, = 0( mod [55!]). Let G” be the
spanning subgraph of Ky_; y—; obtained by

e joining all vertices in X! to all vertices in X9 UXgH,
e joining all vertices in X} to all vertices in X} UX?"" and
e for each j(2 <j<g), joining all vertices in X] to all vertices in X3,

and let G® = Ky_jy-1 — E(G"). If s is even, then the order of longest

paths of G” is at most 2|*51] +1=2-5241=s—1; if s is odd and
fi =0( mod *51), then the order of longest paths of G" is
2[5 =25 =5 — 15 if s is odd and #; # 0( mod *51), then the order
of longest paths of G” is at most
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s—1 s—3
max{2~T,2~T+l}s—1.

Furthermore, since we easily check that dg (x) <# for all x € V(G?),
By, ., ¢ G'. Therefore b(Ps, B, ,,) > N.

(ii-b)  Suppose that 1>t and Hn< L%J Let

N = [55 + 1, 4+ 1 + max{2, — 1, — [*5],0}. By Lemma 6, we have
b(Ps, By, 1) <N.Now we prove that b(Py, B, ,,) > N. Let X; and X, be the
partite sets of Ky_y y—1. If 2t — 1, > L%J (i.e., N — 1 = 2¢;), we partition
X; into two sets X! and X? with |X!| = |X?| =1; otherwise (i.e.,
N = [$5}] + 1), we partition X; into two sets X; and X7 with [X!| = [*5]
and \Xﬂ =1,. Let G” be the spanning subgraph of Ky_; x_; such that

E(G") = U {xix2:x € X{,xz € Xé'}’
Jje{1.2}
and let G® = Ky_1n—1 — E(G"). Since t, <t; < L%J, the order of longest
paths of G" is at most 2|*5!|(<2-55!=s—1). Furthermore, if
2t — 1, > 551, then dg(x) = (N—1) —t; =1, for all x € V(G); if
2t —p<|351], then min{dg(x1),dg(x2)} =1 for every edge
x1x2 € E(GP). In either case, By, ,, ¢ G°. Therefore b(Ps, By, ,,) > N.

This completes the proof of Theorem 2. O
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