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Abstract
Let ti;j be the coefficient of xiyj in the Tutte polynomial T(G; x, y) of a connected

bridgeless and loopless graph G with order v and size e. It is trivial that t0;e�vþ1 ¼ 1

and tv�1;0 ¼ 1. In this paper, we obtain expressions for another six extreme coef-

ficients ti;j’s with ði; jÞ ¼ ð0; e� vÞ,ð0; e� v� 1Þ,ðv� 2; 0Þ,ðv� 3; 0Þ,ð1; e� vÞ and
ðv� 2; 1Þ in terms of small substructures of G. We also discuss their duality

properties and their specializations to extreme coefficients of the Jones polynomial.
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Mathematics Subject Classification 05C31 � 57M27

1 Introduction

Let G ¼ ðV;EÞ be a graph with vertex set V and edge set E. The order, the size and
the number of connected components of G are denoted by v ¼ vðGÞ, e ¼ eðGÞ and
c ¼ cðGÞ, respectively. For A � E, we denote by G / A the graph obtained from

G by contracting all edges in A, G� A the graph obtained from G by deleting edges

in A and GjA the restriction of G to A, namely GjA ¼ G� ðEnAÞ.
The Tutte polynomial T(G; x, y) of a graph G ¼ ðV;EÞ, introduced in [10], is a

two-variable polynomial which can be recursively defined as:
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TðG; x; yÞ ¼

1 if E ¼ ;;
xTðG=f ; x; yÞ if f is a bridge;

yTðG� f ; x; yÞ if f is a loop;

TðG=f ; x; yÞ þ TðG� f ; x; yÞ if f is neither a loop nor a bridge:

8
>>><

>>>:

It is independent of the order of edges selected for deletion and contraction in the

reduction process to the empty graph. One way of seeing this is through the rank-

nullity expansion of the Tutte polynomial. Let A � E. We identify A with the

spanning subgraph (V, A) of G, i.e. GjA, temporarily for the sake of simplicity. Let

r(A) denote the rank v� cðAÞ and n(A) denote the nullity jAj � vþ cðAÞ. Then

TðG; x; yÞ ¼
X

A�E

ðx� 1ÞrðEÞ�rðAÞðy� 1ÞnðAÞ:

Moreover, the Tutte polynomial has a spanning forest expansion [10], i.e.

TðG; x; yÞ ¼
X

i;j

tijx
iyj;

where tij is the number of spanning forests of G with internal activity i and external

activity j.
Without loss of generality we always assume that G ¼ ðV;EÞ is a connected

bridgeless and loopless graph. It is trivial that t00 ¼ 0 if e[ 0, t0;e�vþ1 ¼ 1 and

tv�1;0 ¼ 1. It is basic in graph theory to establish relations between the coefficients

of graph polynomials and subgraph structures in the graph. See, for example, [1] for

similar results on the characteristic polynomial and the chromatic polynomial. The

purpose of this paper is to establish a relation between several extreme coefficients

of the Tutte polynomial and subgraph structures of the graph. To state our results,

we need some additional definitions and notation.

Let G be a connected bridgeless and loopless graph. A parallel class of G is a

maximal subset of E sharing the same endvertices. Let C � E. Then C is said to be a

series class if cðG� CÞ ¼ jCj and G� C is bridgeless. A series class is shown in

Fig. 1. A parallel (resp. series) class is called trivial if it contains only one edge. In

G1

G2

G3

G4

Gk

e1

e2

ekFig. 1 A series class
C ¼ fe1; e2; . . .; ekg: each Gi is
connected and bridgeless for
i ¼ 1; 2; . . .; k
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case that G is disconnected, its parallel (resp. series) classes will be defined to be the

union of parallel (resp. series) classes of connected components of G. It is obvious
that parallel classes partition the edge set E. Series classes also partition the edge set

E, i.e. each edge of G is contained in a unique series class of G. See [3] for details.
Let p ¼ pðGÞ (resp. s ¼ sðGÞ) and p0 ¼ p0ðGÞ (resp. s0 ¼ s0ðGÞ) be the number of

parallel (resp. series) classes and non-trivial parallel (resp. series) classes of G,
respectively.

Let D ¼ DðGÞ be the number of triangles of ~G, the graph obtained from G by

replacing each parallel class by a single edge. If C � E satisfies: (1)

C ¼ C1 [ C2 [ C3, where Ci � E is a series class and jCij ¼ ki for i ¼ 1; 2; 3, (2)
G has the structure as shown in Fig. 2, where G� C ¼ G1 [ G2 [ � � � [ Gk1þk2þk3�1

and each Gi is connected and bridgeless for i ¼ 1; 2; . . .; k1 þ k2 þ k3 � 1, then we

say C is a H class of G. The total number of H classes of G is denoted by

H ¼ HðGÞ.

Theorem 1 Let G ¼ ðV ;EÞ be a loopless and bridgeless connected graph. Then

(1) t0;e�v ¼ s� ðe� vþ 1Þ,
(2) t0;e�v�1 ¼ e�vþ1

2

� �
� ðe� vÞsþ s

2

� �
�H,

(3) tv�2;0 ¼ p� ðv� 1Þ,
(4) tv�3;0 ¼ v�1

2

� �
� ðv� 2Þpþ p

2

� �
� D.

Theorem 2 Let G ¼ ðV ;EÞ be a loopless and bridgeless connected graph. Then

(1) t1;e�v ¼ s0,
(2) tv�2;1 ¼ p0.

G1

G2
Gk1

Gk +11

e1
ek1

ek +11

Gk +k -11 2

ek +k 21 21

ek +k +11 2

Gk +k1 2 Gk +k +k -21 2 3

ek +k +k1 2 3

Gk +k +k -11 2 3

Fig. 2 A H class C ¼ fe1; e2; . . .; ek1þk2þk3g: each Gi is connected and bridgeless for
i ¼ 1; 2; . . .; k1 þ k2 þ k3 � 1
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In fact, four extreme coefficients in Theorem 1 can be obtained from extreme

coefficients of the chromatic polynomial and flow polynomials, which will be seen

from the proof of Theorem 1 in Sect. 3, but we have not found them in the literature.

Theorem 2 is completely new as far as we know. In Sect. 5, we discuss the duality

in Theorems 1 and 2. In the final section several consequences on extreme

coefficients of chromatic, flow and Jones polynomials are derived.

2 Möbius Function, The Chromatic and Flow Polynomials

To prove Theorem 1, we need two results that express the chromatic and flow

polynomials of graphs as characteristic polynomials of two lattices related to

graphs, which was proven by Rota in the 1960s [9].

Let P be a poset. The unique minimum element and unique maximum element in

P, if they exist, are denoted by b0 ¼ b0P; b1 ¼ b1P, respectively. A segment [x, y], for
x; y 2 P, is the set of all elements z between x and y, i.e. fzjx� z� yg. Note that the
segment [x, y] endowed with the induced order structure is a poset in its own right

and b0½x;y� ¼ x; b1½x;y� ¼ y. An element y covers an element x when the segment

[x, y] contains two elements. A poset is locally finite if every segment is finite.

Let P be a locally finite poset. Then the Möbius function of P is an integer-valued

function defined on the Cartesian set P� P such that

lðx; yÞ ¼ 1 if x ¼ y;

lðx; yÞ ¼ 0 if x£y;
X

x� z� y

lðx; zÞ ¼ 0 if x\y:

If P has the minimum element, then

lðb0; xÞ ¼ �
X

y\x

lðb0; yÞ if x[ b0:

A finite poset P is ranked (or graded) if for every x 2 P every maximal chain with

x as top element has the same length, denoted rk(x). Here the length of a chain with

k elements is k � 1. If P is ranked, the function rk called the rank function, is zero
for minimal elements of P and rkðyÞ ¼ rkðxÞ þ 1 if x; y 2 P and y covers x.

Let P be a ranked poset with maximum and minimum elements and t be a

variable. Then the characteristic polynomial of P is defined by

qðP; tÞ ¼
X

x2P
lðb0; xÞtrkðb1Þ�rkðxÞ:

Let G be a graph. We denote by PðG; kÞ and FðG; kÞ the chromatic and flow

polynomials of G, respectively.
Let G ¼ ðV ;EÞ be a loopless graph. A flat of G is a spanning subgraph H � G

such that each connected component of H is a vertex-induced subgraph of G. Then
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the set L(G) consisting of all flats of G forms a graded lattice ordered by the

refinement relation on the set of partitions of V, that is, K 2 LðGÞ�H 2 LðGÞ
means that fVðK1Þ; . . .;VðKsÞg is finer than fVðH1Þ; . . .;VðHtÞg, where K1; . . .;Ks

are connected components of K and H1; . . .;Ht are connected components of

H. Note that the minimum element in L(G) is the empty graph Ev with v ¼ vðGÞ
vertices. Moreover, rkðHÞ ¼ rðHÞ for H 2 LðGÞ and PðG; kÞ ¼ kcðGÞqðLðGÞ; kÞ.

Theorem 3 ([9]) Let G be a loopless graph. Then

PðG; kÞ ¼
X

H2LðGÞ
lðEv;HÞkcðHÞ:

Note that when G contains parallel edges, Theorem 3 is still valid if we take ~G in

place of G in L(G).
Let G ¼ ðV;EÞ be a bridgeless graph. The set L0ðGÞ consisting of all spanning

subgraphs of G without bridges also forms a graded lattice with the partial order

defined by H1 �H2 if EðH1Þ � EðH2Þ. Note that the minimum element in L0ðGÞ is
graph G itself. Moreover, rkðHÞ ¼ nðGÞ � nðHÞ for H 2 L0ðGÞ.

Theorem 4 Let G be a bridgeless graph. Then

FðG; kÞ ¼
X

H2L0ðGÞ
lðG;HÞknðHÞ:

Proof Let H 2 L0ðGÞ and AG be an abelian group of order k. Suppose N¼ðHÞ is the
function counting AG-flows of G

!
such that 0 is assigned to an edge e if and only if

e 2 EnEðHÞ, and N	 ðHÞ ¼
P

H0 	H N¼ðH0Þ is the function counting AG-flows of

G
!

such that 0 is assigned to each edge e of EnEðHÞ. Note that N¼ðGÞ ¼ FðG; kÞ.
By the Möbius Inversion Theorem,

N¼ðGÞ ¼
X

H2L0ðGÞ
lðG;HÞN	 ðHÞ:

It is not difficult to see that N	 ðHÞ ¼ knðHÞ, which completes the proof. h

3 Proof of Theorem 1

It is well known that the Tutte polynomial contains as special cases the chromatic

polynomial P(G; x) and the flow polynomial F(G; y). More precisely,

PðG; xÞ ¼ ð�1ÞrðGÞxcðGÞTðG; 1� x; 0Þ; ð1Þ
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FðG; yÞ ¼ ð�1ÞnðGÞTðG; 0; 1� yÞ: ð2Þ

In [6], Kook et al. obtained the following convolution formula for the Tutte

polynomial.

TðG; x; yÞ ¼
X

A�E

TðG=A; x; 0ÞTðGjA; 0; yÞ: ð3Þ

We write X1 ¼ 1� x and Y1 ¼ 1� y. Recall that G is a connected loopless and

bridgeless graph. By inserting Eqs. (1) and (2) into Eq. (3), we obtain

TðG; x; yÞ ¼
X

A�E

ð�1ÞrðG=AÞþnðGjAÞX
�cðG=AÞ
1 PðG=A;X1ÞFðGjA; Y1Þ: ð4Þ

Note that PðG; xÞ ¼ 0 if G contains loops and FðG; yÞ ¼ 0 if G contains bridges.

Hence, we only consider all sets A such that G / A is loopless and GjA is bridgeless

in the summation of Eq. (4).

Case 1. A ¼ E. In this case, G=A ¼ K1, an isolated vertex and GjA ¼ G. By
Theorem 4, the corresponding contribution of A to the summation of Eq. (4) is

ð�1ÞnðGÞ Y
nðGÞ
1 þ

X

rkðHÞ¼1
H2L0 ðGÞ

lðG;HÞYnðGÞ�1
1 þ

X

rkðHÞ¼2
H2L0ðGÞ

lðG;HÞYnðGÞ�2
1 þ � � �

2

6
6
4

3

7
7
5:

Case 2. A 6¼ E. In this case, if G / A does not contain loops, then vðG=AÞ	 2 and

hence each term of the corresponding contribution of A to the summation of Eq. (4)

will contain x.
Thus, we have

TðG; x; yÞ ¼ ynðGÞ þ ð�1Þ½nðGÞ þ
X

rkðHÞ¼1
H2L0 ðGÞ

lðG;HÞ�ynðGÞ�1

þ nðGÞ
2

� �

þ ðnðGÞ � 1Þ
X

rkðHÞ¼1
H2L0 ðGÞ

lðG;HÞ

2

6
6
4

þ
X

rkðHÞ¼2
H2L0 ðGÞ

lðG;HÞ

3

7
7
5y

nðGÞ�2

þ � � � :

Let H ¼ G� A 2 L0ðGÞ. Then rkðHÞ ¼ 1 () nðHÞ ¼ nðGÞ � 1 ()
jAj ¼ cðG� AÞ. Hence,
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X

rkðHÞ¼1
H2L0 ðGÞ

lðG;HÞ ¼
X

G�A isbridgeless
A�E;jAj¼cðG�AÞ

ð�1Þ ¼
X

A isaseriesclass

ð�1Þ ¼ �sðGÞ:

If C � E satisfies: (1) C ¼ C1 [ C2, where Ci � E is a series class and jCij ¼ ki for
i ¼ 1; 2, (2) G has the structure as shown in Fig. 3, where G� C ¼ G1 [ G2 [
� � � [ Gk1þk2�1 and each Gi is connected and bridgeless for i ¼ 1; 2; . . .; k1 þ k2 � 1,

then we say C is an 1 class of G. The total number of 1 classes of G is denoted by

1ðGÞ.
Let H0 ¼ G� A0 2 L0ðGÞ. Then rkðH0Þ ¼ 2 () jA0j ¼ cðG� A0Þ þ 1 () A0 is

either aH class or an1 class. If A0 is a H class, then lðG;H0Þ ¼ 2 and if A0 is an1

class, then lðG;H0Þ ¼ 1. Note that 1ðGÞ ¼ sðGÞ
2

� �

� 3HðGÞ. Thus

X

H2L0ðGÞ

rkðHÞ¼2

lðG;HÞ ¼ 1�
sðGÞ
2

� �

� 3HðGÞ
� �

þ 2�HðGÞ ¼
sðGÞ
2

� �

�HðGÞ:

Theorem 1 (1) and (2) are thus established. Now we prove 1 (3) and (4) similarly.

Case 1. A ¼ ;. In this case, G=A ¼ G and GjA ¼ Ev, the empty graph with

v vertices. By Theorem 3, the contribution of A to the summation of Eq. (4) is

G1

G2

Gk1

e1

ek +11

Gk +k -11 2

ek +k1 2

Gk +11

Gk +21

G3

e2

ek +21

ek1

Fig. 3 An 1 class C ¼ fe1; e2; . . .; ek1þk2g: each Gi is connected and bridgeless for
i ¼ 1; 2; . . .; k1 þ k2 � 1
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ð�1ÞrðGÞ X
rðGÞ
1 þ

X

rkðHÞ¼1
H2LðGÞ

lðEv;HÞXrðGÞ�1
1 þ

X

rkðHÞ¼2
H2LðGÞ

lðEv;HÞXrðGÞ�2
1 þ � � �

2

6
6
4

3

7
7
5:

Case 2. A 6¼ ;. In this case, if GjA does not contain bridges, then nðGjAÞ	 1 and

hence each term of the corresponding contribution of A to the summation of Eq. (4)

will contain y.
Hence,

TðG; x; yÞ ¼ xrðGÞ þ ð�1Þ½rðGÞ þ
X

rkðHÞ¼1
H2LðGÞ

lðEv;HÞ�xrðGÞ�1

þ rðGÞ
2

� �

þ ðrðGÞ � 1Þ
X

rkðHÞ¼1
H2LðGÞ

lðEv;HÞ

2

6
6
4

þ
X

rkðHÞ¼2
H2LðGÞ

lðEv;HÞ

3

7
7
5x

rðGÞ�2

þ � � � :

Clearly,

X

rkðHÞ¼1
H2LðGÞ

lðEv;HÞ ¼ �pðGÞ:

Let ~G be the graph obtained from G by replacing each parallel class by a single

edge. Note that rkðHÞ ¼ 2 () cðHÞ ¼ v� 2 () H ¼ P3 [ Ev�3 (but
~G½VðP3Þ� 6¼ C3), P2 [ P2 [ Ev�4 or C3 [ Ev�3, where P2 (resp. P3) is a path with 2

(resp. 3) vertices and C3 (i.e. triangle) is a cycle with 3 vertices. The former two

have the Möbius function value 1 and the third one has the Möbius function value 2.

Then

X

rkðHÞ¼2
H2LðGÞ

lðEv;HÞ ¼ 1� pðGÞ
2

� �

� 3DðGÞ
� �

þ 2� DðGÞ ¼ pðGÞ
2

� �

� DðGÞ:

This completes the proof of Theorem 1. h

4 Proof of Theorem 2

We shall prove by induction on the number of edges of G. The base case is the

double edge, whose Tutte polynomials is xþ y, Theorem 2 (1) and (2) are both

satisfied. Now we assume that Theorem 2 holds for connected loopless and
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bridgeless graphs H with eðHÞ\k. Let G be a connected loopless and bridgeless

graph with eðGÞ ¼ k. Take an edge f of G, then G / f and G� f are both connected,

G / f is bridgeless but may have loops and G� f is loopless but may have bridges.

(1) Note that t1;e�vðGÞ ¼ t1;e�vðG=f Þ þ t1;e�vðG� f Þ. Let mðf Þ be the number of

edges of the series class that f belongs to.
Case 1. mðf Þ ¼ 1. In this case, G� f has no bridges. Thus G� f is a loopless and

bridgeless connected graph and hence t1;e�vðG� f Þ ¼ t1;ðe�1Þ�vþ1ðG� f Þ ¼ 0.

Thus, t1;e�vðGÞ ¼ t1;e�vðG=f Þ.
Subcase 1.1. G / f is loopless. In this subcase, s0ðG=f Þ ¼ s0ðGÞ. By induction

hypothesis, t1;e�vðG=f Þ ¼ s0ðG=f Þ. Hence t1;e�vðGÞ ¼ s0ðGÞ.
Subcase 1.2. G / f has loops. Suppose that fe1; e2; . . .; ekg are all loops of G /

f. Then G=f � e1 � e2 � � � � � ek is connected, loopless and bridgeless, and

TðG=f ; x; yÞ ¼ ykTðG=f � e1 � e2 � � � � � ek; x; yÞ:

Thus, t1;e�vðG=f Þ ¼ s0ðG=f � e1 � e2 � � � � � ekÞ ¼ s0ðGÞ. Hence t1;e�vðGÞ ¼ s0ðGÞ.
Case 2. mðf Þ ¼ 2. In this case, G� f has exactly one single bridge f 0 and ff ; f 0g

consists of a series class of G. TðG� f ; x; yÞ ¼ xTðG� f=f 0; x; yÞ and hence

t1;e�vðG� f Þ ¼ 1.

Subcase 2.1. G / f is loopless. In this subcase, s0ðG=f Þ ¼ s0ðGÞ � 1. By induction

hypothesis, t1;e�vðG=f Þ ¼ s0ðG=f Þ. Hence t1;e�vðGÞ ¼ t1;e�vðG� f Þ þ t1;e�v

ðG=f Þ ¼ 1þ ðs0ðGÞ � 1Þ ¼ s0ðGÞ.
Subcase 2.2. G / f has loops. In this subcase, the loop is exactly the edge f 0 which

is both parallel and series to f. Then

TðG=f ; x; yÞ ¼ yTðG=f � f 0; x; yÞ:

Thus t1;e�vðG=f Þ ¼ s0ðG=f � f 0Þ ¼ s0ðGÞ � 1. Hence t1;e�vðGÞ ¼ t1;e�vðG� f Þþ
t1;e�vðG=f Þ ¼ 1þ ðs0ðGÞ � 1Þ ¼ s0ðGÞ.

Case 3. mðf Þ	 3. In this case, G� f has has more than 2 bridges and hence

t1;e�vðG� f Þ ¼ 0. Thus t1;e�vðGÞ ¼ t1;e�vðG=f Þ. Note that G / f is loopless. By

induction hypothesis, t1;e�vðG=f Þ ¼ s0ðG=f Þ. Note that s0ðG=f Þ ¼ s0ðGÞ and hence

t1;e�vðGÞ ¼ s0ðGÞ. This completes the proof of Theorem 2 (1).

(2) Note that tv�2;1ðGÞ ¼ tv�2;1ðG=f Þ þ tv�2;1ðG� f Þ. Let lðf Þ be the number of

edges of the parallel class that f belongs to.
Case 1. lðf Þ ¼ 1. In this case, G / f has no loops. Thus G / f is a loopless and

bridgeless connected graph and hence tv�2;1ðG=f Þ ¼ 0. Thus

tv�2;1ðGÞ ¼ tv�2;1ðG� f Þ.
Subcase 1.1. G� f is bridgeless. In this subcase, p0ðG� f Þ ¼ p0ðGÞ. By

induction hypothesis, tv�2;1ðG� f Þ ¼ p0ðG� f Þ. Hence tv�2;1ðGÞ ¼ p0ðGÞ.
Subcase 1.2. G� f has bridges. Suppose that fe1; e2; . . .; ekg are all bridges of

G� f . Then G� f=e1=e2= � � � =ek is connected, loopless and bridgeless, and

TðG� e; x; yÞ ¼ xkTðG� f=e1=e2= � � � =ek; x; yÞ:

Thus tv�2;1ðG� f Þ ¼ p0ðG� f=e1=e2= � � � =ekÞ ¼ p0ðGÞ. Hence tv�2;1ðGÞ ¼ p0ðGÞ.
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Case 2. lðf Þ ¼ 2. In this case, G / e has exactly a single loop f 0 which is parallel

to f in G. TðG=f ; x; yÞ ¼ yTðG=f � f 0; x; yÞ and hence tv�2;1ðG=f Þ ¼ 1.

Subcase 2.1. G� f is bridgeless. In this subcase, p0ðG� f Þ ¼ p0ðGÞ � 1. By

induction hypothesis, tv�2;1ðG� f Þ ¼ p0ðG� f Þ. Hence

tv�2;1ðGÞ ¼ tv�2;1ðG=f Þ þ tv�2;1ðG� f Þ ¼ 1þ ðp0ðGÞ � 1Þ ¼ p0ðGÞ.
Subcase 2.2. G� f has bridges. In this subcase, the bridge is exactly the edge f 0

parallel to f. Then

TðG� f ; x; yÞ ¼ xTðG� f=f 0; x; yÞ:

Thus tv�2;1ðG� f Þ ¼ p0ðG� f=f 0Þ ¼ p0ðGÞ � 1. Hence

tv�2;1ðGÞ ¼ tv�2;1ðG=f Þ þ tv�2;1ðG� f Þ ¼ 1þ ðp0ðGÞ � 1Þ ¼ p0ðGÞ.
Case 3. lðf Þ	 3. In this case, G / f has has more than 2 loops and hence

tv�2;1ðG=f Þ ¼ 0. Thus tv�2;1ðGÞ ¼ tv�2;1ðG� f Þ. Note that G� f is bridgeless. By

induction hypothesis, tv�2;1ðG� f Þ ¼ p0ðG� f Þ. Note that p0ðG� f Þ ¼ p0ðGÞ and

hence tv�2;1ðGÞ ¼ p0ðGÞ. This completes the proof of Theorem 2 (2). h

5 Duality

The readers have seen the duality in both theorems and their proofs. In this section,

we clarify it in the case of connected bridgeless and loopless plane graphs.

It is well known that if G is a plane graph and G
 is the dual graph of G, then

TðG
; x; yÞ ¼ TðG; y; xÞ:

Let t
i;j be the coefficient of xiyj in the Tutte polynomial TðG
; x; yÞ, and we have

t
i;j ¼ tj;i. Loops and bridges, deletion and contraction will interchange by taking

dual of a plane graph. The dual of a bridgeless and loopless connected plane graph is

still a bridgeless and loopless connected plane graph. Let G be a bridgeless and

loopless connected plane graph and G
 be the dual of G. Let v
 and e
 be the order
and size of G
, respectively. Then

e
 ¼e;

v
 ¼e� vþ 2;

sðG
Þ ¼pðGÞ;
pðG
Þ ¼sðGÞ;
s0ðG
Þ ¼p0ðGÞ;
p0ðG
Þ ¼s0ðGÞ;
HðG
Þ ¼DðGÞ;
DðG
Þ ¼HðGÞ:

Coefficients in Theorems 1 and 2 are dual in the case that G is a bridgeless and

loopless connected plane graph. Note that
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t
0;v�1 ¼ t
0;e
�v
þ1 ¼ 1 ¼ tv�1;0;

and

(1)

t
0;v�2 ¼t
0;e
�v


¼v
 þ sðG
Þ � e
 � 1

¼ðe� vþ 2Þ þ pðGÞ � e� 1

¼pðGÞ � vþ 1

¼tv�2;0:

(2)

t
0;v�3 ¼t
0;e
�v
�1

¼ e
 � v
 þ 1

2

� �

� ðe
 � v
ÞsðG
Þ þ sðG
Þ
2

� �

�HðG
Þ

¼ v� 1

2

� �

� ðv� 2ÞpðGÞ þ pðGÞ
2

� �

� DðGÞ

¼tv�3;0:

(3)

t
1;v�2 ¼t
1;e
�v


¼s0ðG
Þ
¼p0ðGÞ
¼tv�2;1:

6 Several Consequences

In this section, we deduce the results on extreme coefficients of the Jones

polynomials of graphs [3] and extreme coefficients of the chromatic and flow

polynomials. In [3], Dong and Jin introduced the Jones polynomial of graphs. In the

case of plane graphs, it (up to a simple pre-factor) reduces to the Jones polynomial

of the alternating link constructed from the plane graph via the medial construction.

We denote by JGðtÞ the Jones polynomial of G. Then

JGðtÞ ¼ ð�1Þv�1te�vþ1Tð�t;�t�1Þ:

Theorem 5 ([2, 3]) Let G ¼ ðV ;EÞ be a connected bridgeless and loopless graph
with order v and size e. Then
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JGðtÞ ¼ b0 þ b1t þ b2t
2 þ � � � þ be�2t

e�2 þ be�1t
e�1 þ bet

e;

where ð�1Þe�ibi is a non-negative integer for i ¼ 0; 1; 2; . . .; e and in particular,

b0 ¼ð�1Þe;
b1 ¼ð�1Þe½e� vþ 1� sðGÞ�;

be�2 ¼
pðGÞ � vþ 2

2

� �

þ p0ðGÞ � DðGÞ;

be�1 ¼v� 1� pðGÞ;
be ¼1:

We can deduce Theorem 5 by using Theorems 1 and 2 and taking

x ¼ �t; y ¼ �t�1, and further obtain:

Corollary 6

b2 ¼ ð�1Þe
sðGÞ � eþ v

2

� �

þ s0ðGÞ �HðGÞ
� �

:

Proof

b2 ¼ð�1Þe½t0;e�v�1 þ t1;e�v�

¼ð�1Þe e� vþ 1

2

� �

� ðe� vÞsðGÞ þ sðGÞ
2

� �

�HðGÞ þ s0ðGÞ
� �

¼ð�1Þe
sðGÞ � eþ v

2

� �

þ s0ðGÞ �HðGÞ
� �

:

h

We can also deduce extreme coefficients of chromatic and flow polynomials. We

list them as follows and omit the proofs.

Theorem 7 ([7, 8]) Let G be a loopless and bridgeless connected graph of order

v. Let PðG; kÞ ¼ a0k
v þ a1k

v�1 þ � � � þ av�1k. Then

a0 ¼1;

a1 ¼� pðGÞ;

a2 ¼
pðGÞ
2

� �

� DðGÞ:

Theorem 8 Let G be a loopless and bridgeless connected graph of order v and size

e. Let FðG; kÞ ¼ c0k
e�vþ1 þ c1k

e�v þ � � � þ ce�vþ1. Then
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c0 ¼1;

c1 ¼� sðGÞ;

c2 ¼
sðGÞ
2

� �

�HðGÞ:

Theorem 8 may be known but we have not found it in the literature. In [5],

Kauffman generalized the Tutte polynomials from graphs to signed graphs, which

includes the Jones polynomial [4] of both alternating and non-alternating links. It is

worth studying extreme coefficients of the signed Tutte polynomial.
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