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Abstract
E.R. van Dam and G.R. Omidi generalized the concept of strongly regular graphs as
follows. If for any two vertices the number of �-walks (walks of length �) from one
vertex to the other is the same which depends only on whether the two vertices are
the same, adjacent or non-adjacent, then G is called a strongly �-walk-regular graph.
The existence of strongly �-walk-regular graphs which are not strongly 3-walk-regular
graphs is unknown. In this paper, we prove that the edge-connectivity of a connected
strongly 3-walk-regular graph G of degree k ≥ 3 is equal to k. Moreover, if G is not
the graph formed by adding a perfect matching between two copies of K4, then each
edge cut set of size k is precisely the set of edges incident with a vertex of G. For a
regular graph G in general, we also give a sufficient and tight condition such that G
is 1-extendable.

Keywords Edge-connectivity · Eigenvalue · Strongly 3-walk-regular graph · Perfect
matching · 1-Extendable

Mathematics Subject Classification 05C40 · 05C50 · 05C70

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let G be a graph.
The vertex set and edge set ofG are denoted by V (G) and E(G) respectively. Let B be
a subset of the vertex set V (G) of G. The graph G − B is derived from G by deleting
the vertices of B and the edges incident with a vertex of B. If B = {u}, we denote
G − B by G − u for convenience. The graph G[B] is the subgraph of G induced by
B. Let E be a subset of the edge set E(G). The graph G − E is defined with vertex
set V (G − E) = V (G) and edge set E(G) − E . Let S1 and S2 be two disjoint subsets
of V (G) (or two vertex-disjoint subgraphs of G). Denote the set of edges between S1
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and S2 by E(S1, S2). Let G be a connected graph. A subset S of V (G) is said to be
a cut set if G − S is not connected. The connectivity of a non-complete graph G is
the minimum size of a cut set in G. We always admit that the connectivity of Kk+1
is k. A subset N of the edge set E(G) is said to be an edge cut set of G if there are
two disjoint subsets A and B of V (G) such that V (G) = A

⋃
B and E(A, B) = N .

An edge cut set N = E(A, B) is called a cyclic edge cut set if both G[A] and G[B]
contain a cycle. The (cyclic) edge-connectivity of G is the minimum size of a (cyclic)
edge cut set in G.

A matching M of G is a subset of E(G) such that the edges are independent in G.
If M covers each vertex of G, then M is called a perfect matching or a one-factor. The
graph G is 1-extendable if each edge of G is contained in a perfect matching of G,
and G is factor-critical if G − u has a perfect matching for any vertex u of G. Tutte
Theorem (see Theorem 2.4) is a fundamental result in matching theory, referring to
[1,14].

E.R. van Dam and G.R. Omidi generalized the concept of strongly regular graphs
to strongly �-walk-regular graphs in [9]. For an integer � ≥ 2, a (non-complete) graph
G is called a strongly �-walk-regular graph, if for any two vertices of G the number
of walks of length � from one vertex to the other is the same which depends only
on whether the two vertices are the same, adjacent or non-adjacent. In [9], it was
shown that a strongly �-walk-regular graph, which is not a strongly regular graph, is
either a strongly �-walk-regular graph for any odd integer � ≥ 3, or a strongly �-walk-
regular graph for a unique odd integer � ≥ 3. There are many examples of strongly
3-walk-regular graphs which are not strongly regular graphs. However, the existence
of strongly �-walk-regular graphs which are not strongly 3-walk-regular graphs is
unknown.

Let 1, 2, . . ., and v = |V (G)| be the vertices of G. The adjacency matrix of G is a
square matrix of order |V (G)|, which is denoted by A = (ai j ), where ai j = 1 if the
vertex i and the vertex j are adjacent, and ai j = 0 otherwise. The eigenvalues ofG are
the eigenvalues of A. In the sense of adjacency matrix, G is a strongly regular graph if
there exist three numbers k, a and b such that A2 = k I + aA + b(J − I − A), where
I is the identity matrix and J is the all-one matrix. Similarly, for an integer � ≥ 2, a
graph G is called a strongly �-walk-regular graph if A� = aI + bA + c(J − I − A)

for some numbers a, b and c. It is obvious that a strongly regular graph is also a
strongly �-walk-regular graph for any integer � ≥ 2 by induction on � as A2 is a linear
combination of A, I and J .

In general, a strongly �-walk-regular graph can be not regular, and can be connected
even for c = 0. It determined the strongly �-walk-regular graphs with c = 0 in
Proposition 5.1 from [9]. These graphs are precisely either a disjoint union of complete
graphs of the same order, or a disjoint union of complete bipartite graphs of the same
size andpossibly some isolated verticeswhen � is odd. If c > 0, then J canbe expressed
as a polynomial of A and thus AJ = J A, which implies that G is regular. Moreover,
since for any two non-adjacent vertices there is a walk of length � connecting them
when c > 0, the diameter of G is at most �, and thus G is connected.

Let G be a connected strongly regular graph of degree k ≥ 3. In [3] it was shown
that the connectivity of G is equal to k, and each cut set of size k is precisely the
set of neighbours of a vertex in G. Later, the minimum size of the cut sets which
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disconnect G into non-singleton components was partially studied in [4,5]. For the
cyclic edge-connectivity of G, it was studied in [15].

In this paper, we prove that the edge-connectivity of a connected strongly 3-walk-
regular graph G of degree k ≥ 3 is equal to k. Moreover, if G is not the graph
formed by adding a perfect matching between two copies of K4, which has parameters
v = 8, k = 4, a = 6, b = 10 and c = 6, then each edge cut set of size k is precisely
the set of edges incident with a vertex of G. For a regular graph G in general, we also
give a sufficient and tight condition such thatG is 1-extendable. Our proofs are mainly
based on spectrum technique and Tutte Theorem (see Theorem 2.4). In this paper, for
any terminology used but not defined, one may refer to [11,13].

2 Main Tools

For a connected k-regular graph with four distinct eigenvalues, a characterization of
the spectrum is given in [6, Theorem 2.6]. The characterization is as follows.

Lemma 2.1 Let G be a connected k-regular graph on v vertices with eigenvalues with
multiplicities k1, θm1

1 , θ
m2
2 and θ

m3
3 , and let m = v−1

3 . Then m1 = m2 = m3 = m
and k = m or k = 2m, or G has two or four integral eigenvalues. Moreover, if G has
exactly two integral eigenvalues, then the other two have the same multiplicities and

are of the form
p±√

q
2 , where p, q are integers.

The following conclusion is from Lemma 3.3 and Proposition 4.1 in [9].

Lemma 2.2 LetG bea connected strongly3-walk-regular graphwhich is not a strongly
regular graph. Then G has four distinct eigenvalues k > θ1 > θ2 > θ3 and θ1 + θ2 +
θ3 = 0, where k is the degree of G.

The following conclusion is a result based on interlacing technique, referring to
Corollary 4.8.4 in [2].

Lemma 2.3 Let G be a connected k-regular graph on v vertices. Suppose that S is
a subset of V (G). Then |E(S, S)| ≥ (k−θ)|S|(v−|S|)

v
, where θ is the second largest

eigenvalue of G and S = V (G) − S.

Let G be a graph and S be a subset of V (G). The number of odd components of
G − S is denoted by o(G − S). Tutte [14] (or [1]) proved the following conclusion.

Theorem 2.4 A graph G has a perfect matching if and only if for any subset S of
V (G), it satisfies that o(G − S) ≤ |S|.

3 Main Results

Let G be a strongly regular graph of degree k ≥ 3. Since the edge-connectivity of a
graph is not less than its connectivity, thus we have that the edge-connectivity of G is
equal to k by the result of [3], and each edge cut set of size k is precisely the set of
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edges incident with a vertex inG as any two non-adjacent vertices of G has a common
neighbour. (This conclusion can be also derived directly from the result in [15].)

Note 1 Let G be a connected strongly 3-walk-regular graph on v vertices of degree
k ≥ 3. We can suppose that G is not a strongly regular graph by the above discussion
when we study the edge-connectivity of G. Thus by Lemma 2.2, G has four distinct
eigenvalues and the spectrum can be denoted by k1, θm1

1 , θ
m2
2 and θ

m3
3 . Let A be the

adjacency matrix of G. We can suppose that A3 = aI + bA+ c(J − I − A) for some
numbers (integers) a, b and c. Since there are precisely a 3-walks from each vertex
to itself, thus each vertex is in a

2 triangles. Since for any two adjacent vertices there
are precisely b 3-walks from one vertex to the other, thus each edge is in b − 2k + 1
4-cycles in G. In the following discussions on strongly 3-walk-regular graphs, we
always have this assumption.

Theorem 3.1 Let G be a connected strongly 3-walk-regular graph defined as Note 1.

If G has non-integral eigenvalues, then the spectrum is k1,
(
m+√

n
2

) f
, (−m)g,

(
m−√

n
2

) f
, where m, n ∈ Z, m �= 0, f = v−1− k

m
3 and g = v−1+ 2k

m
3 . Moreover,

we have the following conclusions.

(i) For m = 1, then k ≥ 8 is even, and the four distinct eigenvalues of G are

k,−1 and 1±√
6k−3
2 . Moreover, we have a − c = 3k−2

2 , b − c = 3k
2 and 2cv =

(k + 1)(k − 2)(2k − 1).
(ii) For m �= 1, if k ≥ 3 is odd, then λ2(G) ≤

√
18k−6
3 ; if k ≥ 4 is even, then

λ2(G) ≤
√
18k−12
3 .

(iii) We must have k �= 3 and k �= 4, which means that if G has non-integral eigen-
values, then k ≥ 5.

Proof By Lemma 2.2, we have θ1 + θ2 + θ3 = 0. If m1 = m2 = m3 = t , then
0 = tr(A) = k + t(θ1 + θ2 + θ3) = k, a contradiction. Therefore, G has precisely
two distinct non-integral eigenvalues by Lemma 2.1. Moreover, the two distinct non-

integral eigenvalues have the samemultiplicity and are of the form m±√
n

2 , withm, n ∈
Z . Then another eigenvalue is −m as θ1 + θ2 + θ3 = 0. Now we can suppose that the

eigenvalues with multiplicities are k1,
(
m+√

n
2

) f
, (−m)g,

(
m−√

n
2

) f
. If m = 0, then

0 = tr(A) = k + ( f − g)m = k, a contradiction. Now suppose m �= 0. Combining

v = 1 + 2 f + g with 0 = tr(A) = k + ( f − g)m, we have f = v−1− k
m

3 and

g = v−1+ 2k
m

3 .
Since all eigenvalues of A except k are the roots of equation x3+(c−b)x−(a−c) =

0, we have (−m)3 + (c − b)(−m) − (a − c) = 0 (1),
(
m+√

n
2

)3 + (c − b)
(
m+√

n
2

)
− (a − c) = 0 (2)

and
(
m−√

n
2

)3 + (c − b)
(
m−√

n
2

)
− (a − c) = 0 (3).

By equality (1) we have m3 = (b − c)m − (a − c) (4).
By (2)–(3) we have 3m2 + n = 4(b − c) (5).
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By (2) and (5) we have −m3 + mn = 4(a − c) (6).

Notice that kv = tr(A2) = k2 + m2g + f

[(
m+√

n
2

)2 +
(
m−√

n
2

)2
]

= k2 +
(

f
2 + g

)
m2 + f

2 n (7).

Substituting the values of f and g in (7), we have 6k(v − k − m
2 ) = 3m2(v − 1) +

n(v − 1 − k
m ) (8).

Notice that k3 = a + bk + c(v − 1 − k) = a − c + (b − c)k + cv (9).
Combining (5) and (6) with (9), we have k3 = 3m2k−m3

4 + m+k
4 n + cv (10).

(i) Supposem = 1. By (8) we have n = 6k−3. By (5) and (6) we have a−c = 3k−2
2

and b − c = 3k
2 . By (10) we have 2cv = (k + 1)(k − 2)(2k − 1). Moreover, the four

distinct eigenvalues of G are k,−1 and 1±√
6k−3
2 .

We see that k is even as a − c = 3k−2
2 is an integer. If k = 4, then by 2cv =

(k+1)(k−2)(2k−1)we have cv = 5∗7. Therefore, we have v = 7, a = 10, b = 11
and c = 5, or v = 35, a = 6, b = 7 and c = 1 . It is easy to check that there are no
graphs with such parameters (see the penultimate sentence of Note 1). If k = 6, then

by 2cv = (k + 1)(k − 2)(2k − 1) we have cv = 2 ∗ 7 ∗ 11. Since f = v−1− k
m

3 = v−7
3 ,

thus v ≡ 1(mod3). Therefore, we have v = 22, a = 15 or v = 154, a = 9, which is
impossible as a is even (see Note 1). Thus we have k ≥ 8.

(ii) Suppose m �= 1. If m ≥ 2, then by (8) we have 6k(v − k − 1) ≥ 6k(v − k −
m
2 ) = 3m2(v − 1) + n(v − 1 − k

m ) ≥ 3m2(v − 1) + n(v − 1 − k
2 ), which implies

3m2 + n < 6k. If −k ≤ m ≤ −1, then by (8) we have 6k(v − k
2 ) ≥ 6k(v − k − m

2 ) =
3m2(v − 1) + n(v − 1 − k

m ) ≥ 3m2(v − 1) + nv, which implies 3m2 + n < 6k.
By the above discussionwehave 3m2+n < 6k. By (5)we see that 4|(3m2+n). Thus

3m2+n ≤ 6k−2 if k ≥ 3 is odd, and 3m2+n ≤ 6k−4 if k ≥ 4 is even. By elementary
inequality we have (|m| + √

n)2 ≤ ( 1√
3

√
3|m| + √

n)2 ≤ ( 13 + 1)(3m2 + n) =
4
3 (3m

2 + n). Thus we have |m|+√
n

2 ≤
√
3
3

√
3m2 + n. Notice that n is not the square

of an integer, and thus n ≥ 2. If k ≥ 3 is odd, then |m|+√
n

2 ≤
√
18k−6
3 . Moreover, by

3m2 + n ≤ 6k − 2 we have |m| ≤ √
2k − 2 ≤

√
18k−6
3 . Thus λ2(G) ≤

√
18k−6
3 . If

k ≥ 4 is even, then |m|+√
n

2 ≤
√
18k−12
3 . Moreover, by 3m2 + n ≤ 6k − 4 we have

|m| ≤ √
2k − 2 ≤

√
18k−12
3 . Thus λ2(G) ≤

√
18k−12
3 .

(iii) For k = 3, by f = v−1− k
m

3 we have m = ±1. By (i) of Theorem 3.1 we have
m = −1. By the proof of (ii) of Theorem 3.1, which says 3m2 + n ≤ 6k − 2 = 16,
we have n ≤ 13. By (5) we have 4|(3m2 + n) and thus n ≡ 1(mod4), which implies
n = 5 or 13. (Notice that n is not the square of an integer, since G has non-integral
eigenvalues.) If n = 5, by (10) we have cv = 24, which implies v = 6, 8, 12 or 24. By
f = v+2

3 we have v ≡ 1(mod3), a contradiction. If n = 13, by (10) we have cv = 18,
which implies v = 6, 9 or 18. By f = v+2

3 we have v ≡ 1(mod3), a contradiction.

For k = 4, by f = v−1− k
m

3 we havem = ±1 or ±2. By (i) of Theorem 3.1 we have
m = −1 or ±2. By the proof of (ii) of Theorem 3.1, we have 3m2 +n ≤ 6k−4 = 20.
By (5) we have 4|(3m2 + n).
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If m = −1, then we have n ≤ 17 and n ≡ 1(mod4), which implies n = 5, 13 or
17. If n = 5, then by (8) we have v = 6, a contradiction. If n = 13, then by (8) and
(10) we have v = 15 and cv = 51, a contradiction. If n = 17, then by (8) and (10) we
have v = 33 and cv = 48, a contradiction.

If m = ±2, then we have n ≤ 8 and 4|n, which implies n = 8. For m = −2,
by (8) and (10) we have v = 17 and cv = 46, a contradiction. For m = 2, by (8)
and (10) we have v = 21 and cv = 42, which implies a = 4, b = 7 and c = 2. It
is not difficult to show that there is no such graphs with these parameters. (If G has
parameters v = 21, k = 4, a = 4, b = 7 and c = 2, then by Note 1 we have that
each vertex is in 2 triangles, and there is no 4-cycles. Let u be a vertex, and Ni (u) be
the set of vertices from which to u the distance is i , where 0 ≤ i ≤ 3 (diameter≤ 3).
Then the subgraph induced by N1(u) (the neighbours of u) is the disjoint union of
two copies of K2, and the subgraph induced by N2(u) is 2-regular with 8 vertices,
and has a perfect matching (Notice that for any two non-adjacent vertices there are
precisely c = 2 3-walks from one vertex to the other). Moreover, each vertex in N2(u)

has precisely one neighbour in N1(u). Since each vertex is in 2 triangles, thus we
must have |N3(u)| = 4, which implies v = 1 + 4 + 8 + 4 = 17, a contradiction. We
complete the proof. 	

Theorem 3.2 Let G be a connected strongly 3-walk-regular graph defined as Note 1.
If G has integral eigenvalues (each eigenvalue is an integer), then its second largest
eigenvalue is at most k − 2. Moreover, we have k ≥ 4.

Proof Without loss of generality, we can suppose k > θ1 > θ2 > θ3. We prove the
conclusion by contradiction. Suppose θ1 = k − 1.

Since all eigenvalues of A except k are the roots of equation x3+(c−b)x−(a−c) =
0, we have θ2+θ3 = 1−k, θ2θ3+(k−1)(θ2+θ3) = c−b and (k−1)θ2θ3 = a−c. If
θ3 = −k, thenG is a bipartite graph, and thus c = 0. By Proposition 5.1 of [9] we have
thatG is a complete bipartite graph and is thus a strongly regular graph, a contradiction.
Thus θ3 ≥ 1 − k, and then θ2 ≤ 0. If θ2 = 0 and thus θ3 = 1 − k, then we have
(k−1)|k as tr(A) = 0, which is impossible. Thus we have−1 ≥ θ2 > θ3 ≥ 2−k. As
a ≤ k(k−1), c > 0, we have (k−1)θ2θ3 ≤ k(k−1)−1, which implies θ2θ3 ≤ k−1.

Since θ2θ3 ≤ k − 1 and θ2 + θ3 = 1 − k, we have θ2 = −1 and θ3 = 2 − k for
−1 ≥ θ2 > θ3 ≥ 2−k. Thus a−c = (k−1)(k−2) and b−c = k2−3k+3. Since a is
even, thus c is even. By k3 = a+bk+c(v−1−k), we have cv = 2(k+1)(k−1), which
implies v|(k − 1)(k + 1) as c is even. Combining tr(A) = 0 and tr(A2) = vk with
1+m1 +m2 +m3 = v, by substitution of eigenvalues we have m1 = 2(k−1)(v−1−k)

2k2−3k
.

Since (k−1, 2k2−3k) = 1, we have (2k2−3k)|(2v−2(k+1)). Since v|(k−1)(k+1),
we have 2v − 2(k + 1) ≤ 2k2 − 2k − 4 < 2(2k2 − 3k). Then by (2k2 − 3k)|(2v −
2(k + 1)) we have 2k2 − 3k = 2v − 2(k + 1), which implies 2v = 2k2 − k + 2. Then
(2k2 − k+2)|2(k+1)(k−1), which implies 2k2 − k+2 = 2(k+1)(k−1) or k = 4.
Then G has parameters v = 15, k = 4, a = 8, b = 9 and c = 2. It is not difficult
to show that it is impossible, since each vertex is in 4 triangles and each edge is in 2
4-cycles by Note 1. Then we complete the proof of the first part.

Now suppose that the case k = 3 is possible. By the above discussion we have
that the second largest eigenvalue of G is at most k − 2 = 1. Thus the four distinct
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eigenvalues are 3, 1, 0 and −1 (θ1 + θ2 + θ3 = 0), which is impossible as m2 =
8 − 2v < 0. We complete the proof. 	

Remark 1 By Theorems 3.1 and 3.2 (see Note 1) we have that each connected cubic
strongly 3-walk-regular graph is a strongly regular graph.

Lemma 3.3 Let G be a connected strongly 3-walk-regular graph defined as Note 1.
Then G contains no k-clique (a clique of size k) except the graph formed by adding a
perfect matching between two copies of K4, which has parameters v = 8, k = 4, a =
6, b = 10 and c = 6.

Proof By Theorems 3.1 and 3.2 we can suppose k ≥ 4. Now suppose that G contains
a k-clique W . Thus a ≥ (k − 1)(k − 2). Let x be a vertex of W such that x is adjacent
to a vertex y of W . Then we have |E(x,W )| | k, since each vertex is in the same
number of triangles. Since both the vertex x and the vertex y are in a

2 triangles, thus
the vertex x has the the unique neighbour in W which is the vertex y for k ≥ 4. It
implies a = (k − 1)(k − 2). Consequently, for each vertex u in W , if u is adjacent to
W , then it has precisely one neighbour in W . Then each vertex is in a k-clique as G is
connected.

It is easy to see that twodistinct k-cliques are vertex-disjoint by the abovediscussion.
Therefore, the vertices of G can be partitioned into some k-cliques. For any two
adjacent k-cliques W and H , the number of edges between them is at least 2, since
both an edge between them and an edge in W are in the same number of 4-cycles.
Thus, we can suppose that there are p ≥ 2 edges between them, and thus there
are two vertices u1, w1 in W which are adjacent to x1, y1 in H , respectively. Since
both the edge u1w1 and the edge u1x1 are in the same number of 4-cycles, we have
p − 1 = 1 + (k − 2)(k − 3), which implies p = k = 4. Moreover, G is the graph
formed by adding a perfect matching between two copies of the complete graph K4,
which has parameters v = 8, k = 4, a = 6, b = 10 and c = 6. We complete the
proof. 	

Theorem 3.4 Let G be a connected strongly 3-walk-regular graph of degree k ≥ 3.
Then the edge-connectivity of G is equal to k. Moreover, if G is not the graph formed
by adding a perfect matching between two copies of K4, which has parameters v =
8, k = 4, a = 6, b = 10 and c = 6, then each edge cut set of size k is precisely the
set of edges incident with a vertex of G.

Proof By Note 1 we need only to consider that G is not a strongly regular graph. Let
M be an edge cut of minimum size in G. Then there exists a subset S of V (G) such
that |S| ≤ v

2 and M = E(S, S), where S = V (G) − S. The two induced subgraphs
G[S] and G[S] are both connected by the choice of M .

If |S| = 1, then the conclusion is easy to see.
If 1 < |S| ≤ k, then |M | ≥ |S|(k + 1 − |S|) ≥ k by regularity. If equality holds,

then G[S] is a clique of size k, which is impossible by Lemma 3.3 except the graph
formed by adding a perfect matching between two copies of K4 with parameters
v = 8, k = 4, a = 6, b = 10 and c = 6.

Now consider the remained case k + 1 ≤ |S| ≤ v
2 . Suppose that G has non-

integral eigenvalues. Then we are in the case of Theorem 3.1. As in Theorem 3.1,
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for m = 1, we have k ≥ 8, and |M | ≥ (k− 1+√
6k−3
2 )|S|(v−|S|)

v
by Lemma 2.3, which

implies |M | ≥
(
k − 1+√

6k−3
2

)
k+1
2 > k for k ≥ 8, since the function h(x) =

2x2−3x−(x+1)
√
6x − 3−1 is monotonously increasing when x ≥ 3 and h(5) > 0.

For m �= 1, then by (iii) of Theorem 3.1, we have k ≥ 5.
Suppose that k ≥ 5 is odd. By Lemma 2.3 and Theorem 3.1 we have |M | ≥

(k−
√
18k−6
3 )|S|(v−|S|)

v
≥ (k+1)(k−

√
18k−6
3 )

2 > k if and only if 3k4−12k3−7k2−2k+2 > 0.
It is obviously true if k ≥ 5.

Suppose that k ≥ 6 is even. By Lemma 2.3 and Theorem 3.1 we have |M | ≥
(k−

√
18k−12
3 )|S|(v−|S|)

v
≥ (k+1)(k−

√
18k−12
3 )

2 > k if and only if 3k4−12k3−5k2+2k+4 >

0. It is obviously true if k ≥ 6.
Now we can suppose that G has integral eigenvalues. By Theorem 3.2 we have

k ≥ 4 and λ2(G) ≤ k − 2. For k + 1 ≤ |S| ≤ v
2 , we have |M | ≥ (k−(k−2))|S|(v−|S|)

v
≥

2(k+1)
2 > k by Theorem 3.2. We complete the proof. 	


Remark 2 By Theorem 2.4 it is not difficult to see that for each connected k-regular
graph G on v vertices with edge-connectivity at least k−1, G is 1-extendable for even
v and is factor-critical for odd v (see [14]). Let G be a connected strongly 3-walk-
regular graph on v vertices. Then by Theorem 3.4 we see that G is 1-extendable for
even v and is factor-critical for odd v.

Considering the 3-walks (walks of length 3) in a regular graph G in general, we
give a sufficient and tight condition such that G is 1-extendable as follows.

Theorem 3.5 Let G be a k-regular (k ≥ 3) graph on even number of vertices. If for
any two non-adjacent vertices of G the number of 3-walks from one vertex to the other
is at least [ k−1

2 ], then G is 1-extendable.

Proof Set d = [ k−1
2 ]. We prove the conclusion by contradiction. Suppose thatG is not

1-extendable. By Theorem 2.4, there is a subset S of V (G) such that o(G − S) ≥ |S|
and G[S] contains an edge e.

Let P1, P2, . . . , P|S| be the odd components of G − S. By regularity, S can accept
at most k|S| − 2 edges from G − S as the edge e is inside S. If each vertex in Pi
has a neighbour in S for 1 ≤ i ≤ |S|, then we have |E(Pi , S)| ≥ |Pi | ≥ k for
|Pi | ≥ k and |E(Pi , S)| ≥ |Pi |(k + 1 − |Pi |) ≥ k for |Pi | ≤ k − 1. It implies that
|E(G − S, S)| ≥ k|S|, which is a contradiction as S can accept at most k|S|−2 edges
from G− S. Thus, without loss of generality, we can suppose that there exists a vertex
u in P1 such that u has no neighbour in S and thus |P1| > k. It is easy to see that
|E(P1, S)| ≥ d as the number of 3-walks is at least d from the vertex u to each vertex
in P2. For any component Pi for i > 1, each vertex w in Pi has a neighbour in S as
there is a 3-walk from the vertex u to w. Similarly, we have |E(S, Pi )| ≥ k.

If there exists an odd component which is a singleton set. Then we have |S| ≥ k.
Let S1 be the subset of S of which each vertex has a neighbour in P1. Then each
vertex w in S − S1 has a neighbour in S1 as there is a 3-walk from the vertex u
to w. Thus |E(S)| + |E(S, P1)| ≥ k, where E(S) is the set of edges in S. We have
2|E(S)|+|E(S, P1)| > k as |E(S)| > 0. Therefore, S can accept atmost k(|S|−1)−1
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edges from G − S − P1, which is a contradiction to the fact that |E(S, Pi )| ≥ k for
1 < i ≤ |S|.

Now we can suppose that there is no singleton set among the odd components of
G−S. Similarly, if |Pi | < k for some i , then |E(S, Pi )| ≥ |Pi |(k−|Pi |+1) ≥ 2(k−1).
Thus we have |E(G − S, S)| ≥ 2k − 2 + k(|S| − 2) + d = k|S| − 2 + d, which is
impossible as S accepts at most k|S| − 2 edges by regularity. Thus we have |Pi | ≥ k
for any 1 ≤ i ≤ |S|. For any vertex w in S, there are at most k − 1 neighbours in
G − S − P1 as there is a 3-walk from the vertex u to w. Similarly, the number of
neighbours of S − w in G − S − P1 is at most (k − 1)(|S| − 1) which is less than
|G − S − P1| as |Pi | ≥ k for 2 ≤ i ≤ |S|. Thus there is a vertex x in G − S − P1 such
that x has only one neighbour w in S, which implies |E(w, P1)| ≥ d as there are d
3-walks from the vertex u to x . Consequently, we have |E(w, P1)| ≥ d for any vertex
w in S.

If k is odd, then |E(P1, S)| ≥ d|S| ≥ 2d is odd as P1 is an odd component, which
implies |E(P1, S)| ≥ 2d+1. Since there is an edge in S and |E(Pi , S)| ≥ k for i > 1,
we have |E(P1, S)| ≤ k|S| − k(|S| − 1) − 2 = k − 2. Thus we have d ≤ k−3

2 , which
is a contradiction.

If k is even, then |P2| > k as |P2| ≥ k is odd and thus |E(P2, S)| > k as each
vertex in P2 has a neighbour in S, which implies |E(P2, S)| ≥ k + 2 by parity. Thus
we have 2d ≤ |E(P1, S)| ≤ k|S|− k(|S|− 2)− (k + 2)− 2 and thus d ≤ k−4

2 , which
is a contradiction. We complete the proof. 	


The lower bound in Theorem 3.5 is tight. Indeed, if k ≥ 9 is an odd integer, we can
construct a k-regular graph G on 2k + 4 vertices such that for any two non-adjacent
vertices of G, the number of 3-walks from one vertex to the other is at least k−3

2 , but
G is not 1-extendable. In detail, let A be the graph derived from K k−1

2
by deleting

the edges of a hamiltonian cycle of K k−1
2

and B be the graph derived from K k−3
2

by
deleting the edges of a hamiltonian cycle of K k−3

2
. Let C be a 4-cycle, D = K2 = xy

be an edge and E be Kk . Now G is formed from the five parts as follows. For any
two distinct parts of A, B and C , connect each vertex in one part to each vertex in the
other part. Also, add an edge from the vertex x to each vertex of A and to each vertex
of (any) k−1

2 vertices of E , and add an edge from the vertex y to each vertex of B and
to each vertex of the remained k+1

2 vertices of E , as required.
If k ≥ 8 is an even integer, we can construct a k-regular graph G on 2k + 4 vertices

such that for any two non-adjacent vertices of G, the number of 3-walks from one
vertex to the other is at least k−4

2 , but G is not 1-extendable. In detail, let A be a
k−4
2 -clique K k−4

2
and B be a k−4

2 -clique K k−4
2
. Let C be a 5-clique, D = K2 = xy

be an edge and E be a graph on k + 1 vertices such that there is one vertex, say u, of
degree k−2 and the other k vertices of degree k−1 (such a graph can be derived from
Kk+1 by deleting the edges of a path of length 2 and k−2

2 independent edges). Now G
is formed from the five parts as follows. Connect each vertex in C to each vertex in A
and B. Add all the edges except a perfect matching between A and B. Also, add two
edges ux and uy, and add an edge from the vertex x to each vertex of A and to each
vertex of (any) k

2 vertices of degree k − 1 in E , and add an edge from the vertex y to
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each vertex of B and to each vertex of the remained k
2 vertices of degree k − 1 in E ,

as required.
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