ORIGINAL PAPER ORIGINAL PAPER

The Edge-Connectivity of Strongly 3-Walk-Regular Graphs

Rongquan Feng¹ · Wenqian Zhang[1](http://orcid.org/0000-0002-9312-4453)

Received: 29 October 2018 / Revised: 12 July 2019 / Published online: 19 November 2019 © Springer Japan KK, part of Springer Nature 2019

Abstract

E.R. van Dam and G.R. Omidi generalized the concept of strongly regular graphs as follows. If for any two vertices the number of ℓ -walks (walks of length ℓ) from one vertex to the other is the same which depends only on whether the two vertices are the same, adjacent or non-adjacent, then G is called a strongly ℓ -walk-regular graph. The existence of strongly ℓ -walk-regular graphs which are not strongly 3-walk-regular graphs is unknown. In this paper, we prove that the edge-connectivity of a connected strongly 3-walk-regular graph *G* of degree $k > 3$ is equal to *k*. Moreover, if *G* is not the graph formed by adding a perfect matching between two copies of *K*4, then each edge cut set of size *k* is precisely the set of edges incident with a vertex of *G*. For a regular graph *G* in general, we also give a sufficient and tight condition such that *G* is 1-extendable.

Keywords Edge-connectivity · Eigenvalue · Strongly 3-walk-regular graph · Perfect matching · 1-Extendable

Mathematics Subject Classification 05C40 · 05C50 · 05C70

1 Introduction

All graphs considered in this paper are finite, undirected and simple. Let *G* be a graph. The vertex set and edge set of *G* are denoted by $V(G)$ and $E(G)$ respectively. Let *B* be a subset of the vertex set $V(G)$ of *G*. The graph $G - B$ is derived from *G* by deleting the vertices of *B* and the edges incident with a vertex of *B*. If $B = \{u\}$, we denote $G - B$ by $G - u$ for convenience. The graph $G[B]$ is the subgraph of *G* induced by *B*. Let *E* be a subset of the edge set $E(G)$. The graph $G - E$ is defined with vertex set $V(G - E) = V(G)$ and edge set $E(G) - E$. Let S_1 and S_2 be two disjoint subsets of *V*(*G*) (or two vertex-disjoint subgraphs of *G*). Denote the set of edges between *S*¹

 \boxtimes Wenqian Zhang zhangwq@pku.edu.cn

¹ LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, People's Republic of China

and S_2 by $E(S_1, S_2)$. Let *G* be a connected graph. A subset *S* of $V(G)$ is said to be a *cut set* if $G - S$ is not connected. The *connectivity* of a non-complete graph G is the minimum size of a cut set in *G*. We always admit that the connectivity of K_{k+1} is k . A subset N of the edge set $E(G)$ is said to be an *edge cut set* of G if there are two disjoint subsets *A* and *B* of $V(G)$ such that $V(G) = A \bigcup B$ and $E(A, B) = N$. An edge cut set $N = E(A, B)$ is called a *cyclic edge cut set* if both $G[A]$ and $G[B]$ contain a cycle. The *(cyclic) edge-connectivity* of *G* is the minimum size of a (cyclic) edge cut set in *G*.

A *matching M* of *G* is a subset of *E*(*G*) such that the edges are independent in *G*. If *M* covers each vertex of *G*, then *M* is called a *perfect matching* or *a one-factor*. The graph *G* is 1*-extendable* if each edge of *G* is contained in a perfect matching of *G*, and *G* is *factor-critical* if $G - u$ has a perfect matching for any vertex *u* of *G*. Tutte Theorem (see Theorem [2.4\)](#page-2-0) is a fundamental result in matching theory, referring to [\[1](#page-9-0)[,14](#page-9-1)].

E.R. van Dam and G.R. Omidi generalized the concept of strongly regular graphs to strongly ℓ -walk-regular graphs in [\[9](#page-9-2)]. For an integer $\ell \geq 2$, a (non-complete) graph *G* is called *a strongly* ℓ *-walk-regular graph*, if for any two vertices of *G* the number of walks of length ℓ from one vertex to the other is the same which depends only on whether the two vertices are the same, adjacent or non-adjacent. In [\[9\]](#page-9-2), it was shown that a strongly ℓ -walk-regular graph, which is not a strongly regular graph, is either a strongly ℓ -walk-regular graph for any odd integer $\ell \geq 3$, or a strongly ℓ -walkregular graph for a unique odd integer $\ell \geq 3$. There are many examples of strongly 3-walk-regular graphs which are not strongly regular graphs. However, the existence of strongly ℓ -walk-regular graphs which are not strongly 3-walk-regular graphs is unknown.

Let 1, 2, ..., and $v = |V(G)|$ be the vertices of *G*. The adjacency matrix of *G* is a square matrix of order $|V(G)|$, which is denoted by $A = (a_{ij})$, where $a_{ij} = 1$ if the vertex *i* and the vertex *j* are adjacent, and $a_{ij} = 0$ otherwise. The eigenvalues of *G* are the eigenvalues of *A*. In the sense of adjacency matrix, *G* is a strongly regular graph if there exist three numbers *k*, *a* and *b* such that $A^2 = kI + aA + b(J - I - A)$, where *I* is the identity matrix and *J* is the all-one matrix. Similarly, for an integer $\ell \geq 2$, a graph *G* is called a strongly ℓ -walk-regular graph if $A^{\ell} = aI + bA + c(J - I - A)$ for some numbers *a*, *b* and *c*. It is obvious that a strongly regular graph is also a strongly ℓ -walk-regular graph for any integer $\ell \geq 2$ by induction on ℓ as A^2 is a linear combination of *A*, *I* and *J* .

In general, a strongly ℓ -walk-regular graph can be not regular, and can be connected even for $c = 0$. It determined the strongly ℓ -walk-regular graphs with $c = 0$ in Proposition 5.1 from [\[9\]](#page-9-2). These graphs are precisely either a disjoint union of complete graphs of the same order, or a disjoint union of complete bipartite graphs of the same size and possibly some isolated vertices when ℓ is odd. If $c > 0$, then *J* can be expressed as a polynomial of *A* and thus $AJ = JA$, which implies that *G* is regular. Moreover, since for any two non-adjacent vertices there is a walk of length ℓ connecting them when $c > 0$, the diameter of G is at most ℓ , and thus G is connected.

Let *G* be a connected strongly regular graph of degree $k \geq 3$. In [\[3](#page-9-3)] it was shown that the connectivity of G is equal to k , and each cut set of size k is precisely the set of neighbours of a vertex in *G*. Later, the minimum size of the cut sets which disconnect *G* into non-singleton components was partially studied in [\[4](#page-9-4)[,5\]](#page-9-5). For the cyclic edge-connectivity of *G*, it was studied in [\[15](#page-9-6)].

In this paper, we prove that the edge-connectivity of a connected strongly 3-walkregular graph *G* of degree $k \geq 3$ is equal to *k*. Moreover, if *G* is not the graph formed by adding a perfect matching between two copies of *K*4, which has parameters $v = 8, k = 4, a = 6, b = 10$ and $c = 6$, then each edge cut set of size k is precisely the set of edges incident with a vertex of *G*. For a regular graph *G* in general, we also give a sufficient and tight condition such that *G* is 1-extendable. Our proofs are mainly based on spectrum technique and Tutte Theorem (see Theorem [2.4\)](#page-2-0). In this paper, for any terminology used but not defined, one may refer to [\[11](#page-9-7)[,13\]](#page-9-8).

2 Main Tools

For a connected *k*-regular graph with four distinct eigenvalues, a characterization of the spectrum is given in [\[6](#page-9-9), Theorem 2.6]. The characterization is as follows.

Lemma 2.1 *Let G be a connected k-regular graph on* v *vertices with eigenvalues with multiplicities* $k^1, \theta_1^{m_1}, \theta_2^{m_2}$ *and* $\theta_3^{m_3}$ *, and let* $m = \frac{v-1}{3}$ *. Then* $m_1 = m_2 = m_3 = m$ *and* $k = m$ *or* $k = 2m$ *, or G has two or four integral eigenvalues. Moreover, if G has exactly two integral eigenvalues, then the other two have the same multiplicities and are of the form* $\frac{p\pm\sqrt{q}}{2}$, where p, *q are integers.*

The following conclusion is from Lemma 3.3 and Proposition 4.1 in [\[9\]](#page-9-2).

Lemma 2.2 *Let G be a connected strongly* 3*-walk-regular graph which is not a strongly regular graph. Then G has four distinct eigenvalues* $k > \theta_1 > \theta_2 > \theta_3$ *and* $\theta_1 + \theta_2 + \theta_3$ $\theta_3 = 0$, where k is the degree of G.

The following conclusion is a result based on interlacing technique, referring to Corollary 4.8.4 in [\[2\]](#page-9-10).

Lemma 2.3 *Let G be a connected k-regular graph on* v *vertices. Suppose that S is a subset of V*(*G*)*. Then* $|E(S, \overline{S})| \ge \frac{(k-\theta)|S|(\nu-|S|)}{\nu}$, where θ is the second largest *eigenvalue of G and* $\overline{S} = V(G) - S$.

Let *G* be a graph and *S* be a subset of *V*(*G*). The number of odd components of *G* − *S* is denoted by $o(G - S)$. Tutte [\[14](#page-9-1)] (or [\[1](#page-9-0)]) proved the following conclusion.

Theorem 2.4 *A graph G has a perfect matching if and only if for any subset S of V*(*G*)*, it satisfies that* $o(G - S) \leq |S|$ *<i>.*

3 Main Results

Let *G* be a strongly regular graph of degree $k \geq 3$. Since the edge-connectivity of a graph is not less than its connectivity, thus we have that the edge-connectivity of *G* is equal to *k* by the result of [\[3](#page-9-3)], and each edge cut set of size *k* is precisely the set of edges incident with a vertex in *G* as any two non-adjacent vertices of *G* has a common neighbour. (This conclusion can be also derived directly from the result in [\[15](#page-9-6)].)

Note 1 Let *G* be a connected strongly 3-walk-regular graph on v vertices of degree $k \geq 3$. We can suppose that *G* is not a strongly regular graph by the above discussion when we study the edge-connectivity of *G*. Thus by Lemma [2.2,](#page-2-1) *G* has four distinct eigenvalues and the spectrum can be denoted by k^1 , $\theta_1^{m_1}$, $\theta_2^{m_2}$ and $\theta_3^{m_3}$. Let *A* be the adjacency matrix of *G*. We can suppose that $A^3 = aI + bA + c(J - I - A)$ for some numbers (integers) *a*, *b* and *c*. Since there are precisely *a* 3-walks from each vertex to itself, thus each vertex is in $\frac{a}{2}$ triangles. Since for any two adjacent vertices there are precisely *b* 3-walks from one vertex to the other, thus each edge is in $b - 2k + 1$ 4-cycles in *G*. In the following discussions on strongly 3-walk-regular graphs, we always have this assumption.

Theorem 3.1 *Let G be a connected strongly 3-walk-regular graph defined as Note [1.](#page-3-0) If G* has non-integral eigenvalues, then the spectrum is k^1 , $\left(\frac{m+\sqrt{n}}{2}\right)^f$, $(-m)^g$, $\left(\frac{m-\sqrt{n}}{2}\right)^f$, where $m, n \in \mathbb{Z}$, $m \neq 0$, $f = \frac{v-1-\frac{k}{m}}{3}$ and $g = \frac{v-1+\frac{2k}{m}}{3}$. Moreover, *we have the following conclusions.*

- (i) *For* $m = 1$ *, then* $k \geq 8$ *is even, and the four distinct eigenvalues of G are k*, −1 *and* $\frac{1 \pm \sqrt{6k-3}}{2}$ *. Moreover, we have a* − *c* = $\frac{3k-2}{2}$ *, b* − *c* = $\frac{3k}{2}$ *and* 2*cv* = $(k + 1)(k - 2)$ $(2k - 1)$.
- (ii) *For m* \neq 1, if $k \geq 3$ is odd, then $\lambda_2(G) \leq \frac{\sqrt{18k-6}}{3}$; if $k \geq 4$ is even, then $\lambda_2(G) \leq \frac{\sqrt{18k-12}}{3}.$
- (iii) We must have $k \neq 3$ and $k \neq 4$, which means that if G has non-integral eigen*values, then* $k \geq 5$ *.*

Proof By Lemma [2.2,](#page-2-1) we have $\theta_1 + \theta_2 + \theta_3 = 0$. If $m_1 = m_2 = m_3 = t$, then $0 = tr(A) = k + t(\theta_1 + \theta_2 + \theta_3) = k$, a contradiction. Therefore, G has precisely two distinct non-integral eigenvalues by Lemma [2.1.](#page-2-2) Moreover, the two distinct nonintegral eigenvalues have the same multiplicity and are of the form $\frac{m\pm\sqrt{n}}{2}$, with *m*, *n* ∈ *Z*. Then another eigenvalue is $-m$ as $\theta_1 + \theta_2 + \theta_3 = 0$. Now we can suppose that the eigenvalues with multiplicities are k^1 , $\left(\frac{m+\sqrt{n}}{2}\right)^f$, $(-m)^g$, $\left(\frac{m-\sqrt{n}}{2}\right)^f$. If $m=0$, then $0 = tr(A) = k + (f - g)m = k$, a contradiction. Now suppose $m \neq 0$. Combining $v = 1 + 2f + g$ with $0 = tr(A) = k + (f - g)m$, we have $f = \frac{v - 1 - \frac{k}{m}}{3}$ and $g = \frac{v-1+\frac{2k}{m}}{3}.$

Since all eigenvalues of *A* except *k* are the roots of equation $x^3 + (c - b)x - (a - c) =$ 0, we have $(-m)^3 + (c - b)(-m) - (a - c) = 0$ (1),

$$
\left(\frac{m+\sqrt{n}}{2}\right)^3 + (c-b)\left(\frac{m+\sqrt{n}}{2}\right) - (a-c) = 0 (2)
$$

and
$$
\left(\frac{m-\sqrt{n}}{2}\right)^3 + (c-b)\left(\frac{m-\sqrt{n}}{2}\right) - (a-c) = 0 (3).
$$

By equality (1) we have $m^3 = (b-c)m - (a-c) (4)$.
By (2)–(3) we have $3m^2 + n = 4(b-c)$ (5).

 \mathcal{D} Springer

By (2) and (5) we have $-m^3 + mn = 4(a - c)$ (6).

Notice that $kv = tr(A^2) = k^2 + m^2g + f\left[\left(\frac{m+\sqrt{n}}{2}\right)^2 + \left(\frac{m-\sqrt{n}}{2}\right)^2\right] = k^2 +$ $\left(\frac{f}{2} + g\right)m^2 + \frac{f}{2}n$ (7).

Substituting the values of *f* and *g* in (7), we have $6k(v - k - \frac{m}{2}) = 3m^2(v - 1) +$ $n(v-1-\frac{k}{m})$ (8).

Notice that $k^3 = a + bk + c(v - 1 - k) = a - c + (b - c)k + cv$ (9).

Combining (5) and (6) with (9), we have $k^3 = \frac{3m^2k - m^3}{4} + \frac{m+k}{4}n + cv$ (10). (i) Suppose *m* = 1. By (8) we have *n* = 6*k* − 3. By (5) and (6) we have $a - c = \frac{3k-2}{2}$ and *b* − *c* = $\frac{3k}{2}$. By (10) we have 2*cv* = (*k* + 1)(*k* − 2)(2*k* − 1). Moreover, the four distinct eigenvalues of *G* are *k*, −1 and $\frac{1 \pm \sqrt{6k-3}}{2}$.

We see that *k* is even as $a - c = \frac{3k-2}{2}$ is an integer. If $k = 4$, then by 2*cv* = $(k+1)(k-2)(2k-1)$ we have $cv = 5 \times 7$. Therefore, we have $v = 7$, $a = 10$, $b = 11$ and $c = 5$, or $v = 35$, $a = 6$, $b = 7$ and $c = 1$. It is easy to check that there are no graphs with such parameters (see the penultimate sentence of Note [1\)](#page-3-0). If $k = 6$, then by $2cv = (k+1)(k-2)(2k-1)$ we have $cv = 2*7*11$. Since $f = \frac{v-1-\frac{k}{m}}{3} = \frac{v-7}{3}$, thus $v \equiv 1 \pmod{3}$. Therefore, we have $v = 22$, $a = 15$ or $v = 154$, $a = 9$, which is impossible as *a* is even (see Note [1\)](#page-3-0). Thus we have $k > 8$.

(ii) Suppose $m \neq 1$. If $m \geq 2$, then by (8) we have $6k(v - k - 1) \geq 6k(v - k - 1)$ $\frac{2^m}{2}$ = 3*m*²(*v* – 1) + *n*(*v* – 1 – $\frac{k}{m}$) ≥ 3*m*²(*v* – 1) + *n*(*v* – 1 – $\frac{k}{2}$), which implies $3m^2 + n < 6k$. If $-k \le m \le -1$, then by (8) we have $6k(v - \frac{k}{2}) \ge 6k(v - k - \frac{m}{2}) =$ $3m^2(v-1) + n(v-1-\frac{k}{m}) \geq 3m^2(v-1) + nv$, which implies $3m^2 + n < 6k$.

By the above discussion we have $3m^2 + n < 6k$. By (5) we see that $4|(3m^2 + n)$. Thus $3m^2 + n \le 6k - 2$ if $k \ge 3$ is odd, and $3m^2 + n \le 6k - 4$ if $k \ge 4$ is even. By elementary inequality we have $(|m| + \sqrt{n})^2 \leq (\frac{1}{\sqrt{n}})$ $\frac{3}{3}\sqrt{3}|m| + \sqrt{n}$ ² $\leq (\frac{1}{3} + 1)(3m^2 + n) =$ $\frac{4}{3}(3m^2 + n)$. Thus we have $\frac{|m| + \sqrt{n}}{2} \le \frac{\sqrt{3}}{3}\sqrt{3m^2 + n}$. Notice that *n* is not the square of an integer, and thus $n \ge 2$. If $k \ge 3$ is odd, then $\frac{|m| + \sqrt{n}}{2} \le \frac{\sqrt{18k-6}}{3}$. Moreover, by $3m^2 + n \leq 6k - 2$ we have $|m| \leq \sqrt{2k - 2} \leq \frac{\sqrt{18k - 6}}{3}$. Thus $\lambda_2(G) \leq \frac{\sqrt{18k - 6}}{3}$. If *k* ≥ 4 is even, then $\frac{|m|+\sqrt{n}}{2}$ ≤ $\frac{\sqrt{18k-12}}{3}$. Moreover, by $3m^2 + n$ ≤ 6*k* − 4 we have $|m|$ ≤ $\sqrt{2k-2}$ ≤ $\frac{\sqrt{18k-12}}{3}$. Thus $\lambda_2(G)$ ≤ $\frac{\sqrt{18k-12}}{3}$.

(iii) For $k = 3$, by $f = \frac{v - 1 - \frac{k}{m}}{3}$ we have $m = \pm 1$. By (i) of Theorem [3.1](#page-3-1) we have *m* = −1. By the proof of (ii) of Theorem [3.1,](#page-3-1) which says $3m^2 + n \le 6k - 2 = 16$, we have $n < 13$. By (5) we have $4|(3m^2 + n)$ and thus $n \equiv 1 \pmod{4}$, which implies $n = 5$ or 13. (Notice that *n* is not the square of an integer, since *G* has non-integral eigenvalues.) If $n = 5$, by (10) we have $cv = 24$, which implies $v = 6, 8, 12$ or 24. By $f = \frac{v+2}{3}$ we have $v \equiv 1 \pmod{3}$, a contradiction. If $n = 13$, by (10) we have $cv = 18$, which implies $v = 6, 9$ or 18. By $f = \frac{v+2}{3}$ we have $v \equiv 1 \pmod{3}$, a contradiction.

For $k = 4$, by $f = \frac{v - 1 - \frac{k}{m}}{3}$ we have $m = \pm 1$ or ± 2 . By (i) of Theorem [3.1](#page-3-1) we have *m* = −1 or ±2. By the proof of (ii) of Theorem [3.1,](#page-3-1) we have $3m^2 + n \le 6k - 4 = 20$. By (5) we have $4|(3m^2 + n)$.

If $m = -1$, then we have $n \le 17$ and $n \equiv 1 \pmod{4}$, which implies $n = 5, 13$ or 17. If $n = 5$, then by (8) we have $v = 6$, a contradiction. If $n = 13$, then by (8) and (10) we have $v = 15$ and $cv = 51$, a contradiction. If $n = 17$, then by (8) and (10) we have $v = 33$ and $cv = 48$, a contradiction.

If $m = \pm 2$, then we have $n \leq 8$ and $4|n$, which implies $n = 8$. For $m = -2$, by (8) and (10) we have $v = 17$ and $cv = 46$, a contradiction. For $m = 2$, by (8) and (10) we have $v = 21$ and $cv = 42$, which implies $a = 4$, $b = 7$ and $c = 2$. It is not difficult to show that there is no such graphs with these parameters. (If *G* has parameters $v = 21$ $v = 21$, $k = 4$, $a = 4$, $b = 7$ and $c = 2$, then by Note 1 we have that each vertex is in 2 triangles, and there is no 4-cycles. Let u be a vertex, and $N_i(u)$ be the set of vertices from which to *u* the distance is *i*, where $0 \le i \le 3$ (diameter ≤ 3). Then the subgraph induced by $N_1(u)$ (the neighbours of *u*) is the disjoint union of two copies of K_2 , and the subgraph induced by $N_2(u)$ is 2-regular with 8 vertices, and has a perfect matching (Notice that for any two non-adjacent vertices there are precisely $c = 2$ 3-walks from one vertex to the other). Moreover, each vertex in $N_2(u)$ has precisely one neighbour in $N_1(u)$. Since each vertex is in 2 triangles, thus we must have $|N_3(u)| = 4$, which implies $v = 1 + 4 + 8 + 4 = 17$, a contradiction. We complete the proof. \Box

Theorem 3.2 *Let G be a connected strongly 3-walk-regular graph defined as Note* [1](#page-3-0)*. If G has integral eigenvalues (each eigenvalue is an integer), then its second largest eigenvalue is at most* $k - 2$ *. Moreover, we have* $k > 4$ *.*

Proof Without loss of generality, we can suppose $k > \theta_1 > \theta_2 > \theta_3$. We prove the conclusion by contradiction. Suppose $\theta_1 = k - 1$.

Since all eigenvalues of *A* except *k* are the roots of equation $x^3 + (c - b)x - (a - c) =$ 0, we have $\theta_2 + \theta_3 = 1 - k$, $\theta_2 \theta_3 + (k - 1)(\theta_2 + \theta_3) = c - b$ and $(k - 1)\theta_2 \theta_3 = a - c$. If $\theta_3 = -k$, then *G* is a bipartite graph, and thus $c = 0$. By Proposition 5.1 of [\[9](#page-9-2)] we have that *G* is a complete bipartite graph and is thus a strongly regular graph, a contradiction. Thus $\theta_3 \geq 1 - k$, and then $\theta_2 \leq 0$. If $\theta_2 = 0$ and thus $\theta_3 = 1 - k$, then we have $(k-1)$ |*k* as $tr(A) = 0$, which is impossible. Thus we have $-1 \ge \theta_2 > \theta_3 \ge 2 - k$. As $a \leq k(k-1), c > 0$, we have $(k-1)\theta_2\theta_3 \leq k(k-1)-1$, which implies $\theta_2\theta_3 \leq k-1$. Since $\theta_2 \theta_3 \le k - 1$ and $\theta_2 + \theta_3 = 1 - k$, we have $\theta_2 = -1$ and $\theta_3 = 2 - k$ for $-1 \ge \theta_2 > \theta_3 \ge 2 - k$. Thus $a - c = (k-1)(k-2)$ and $b - c = k^2 - 3k + 3$. Since *a* is even, thus *c* is even. By $k^3 = a + bk + c(v-1-k)$, we have $cv = 2(k+1)(k-1)$, which implies $v|(k-1)(k+1)$ as *c* is even. Combining $tr(A) = 0$ and $tr(A^2) = vk$ with $1 + m_1 + m_2 + m_3 = v$, by substitution of eigenvalues we have $m_1 = \frac{2(k-1)(v-1-k)}{2k^2-3k}$. Since $(k-1, 2k^2-3k) = 1$, we have $(2k^2-3k)(2v-2(k+1))$. Since $v|(k-1)(k+1)$, we have $2v - 2(k + 1) < 2k^2 - 2k - 4 < 2(2k^2 - 3k)$. Then by $(2k^2 - 3k)(2v - 4)$ $2(k+1)$) we have $2k^2 - 3k = 2v - 2(k+1)$, which implies $2v = 2k^2 - k + 2$. Then $(2k^2 - k + 2)|2(k+1)(k-1)$, which implies $2k^2 - k + 2 = 2(k+1)(k-1)$ or $k = 4$. Then *G* has parameters $v = 15$, $k = 4$, $a = 8$, $b = 9$ and $c = 2$. It is not difficult to show that it is impossible, since each vertex is in 4 triangles and each edge is in 2 4-cycles by Note [1.](#page-3-0) Then we complete the proof of the first part.

Now suppose that the case $k = 3$ is possible. By the above discussion we have that the second largest eigenvalue of *G* is at most $k - 2 = 1$. Thus the four distinct eigenvalues are 3, 1, 0 and -1 ($\theta_1 + \theta_2 + \theta_3 = 0$), which is impossible as $m_2 = 8 - 2v < 0$. We complete the proof. $8 - 2v < 0$. We complete the proof.

Remark 1 By Theorems [3.1](#page-3-1) and [3.2](#page-5-0) (see Note [1\)](#page-3-0) we have that each connected cubic strongly 3-walk-regular graph is a strongly regular graph.

Lemma 3.3 *Let G be a connected strongly 3-walk-regular graph defined as Note* [1](#page-3-0)*. Then G contains no k-clique (a clique of size k) except the graph formed by adding a perfect matching between two copies of K₄, which has parameters* $v = 8, k = 4, a = 4$ $6, b = 10$ and $c = 6$.

Proof By Theorems [3.1](#page-3-1) and [3.2](#page-5-0) we can suppose $k \geq 4$. Now suppose that *G* contains a *k*-clique *W*. Thus $a \ge (k-1)(k-2)$. Let *x* be a vertex of \overline{W} such that *x* is adjacent to a vertex *y* of *W*. Then we have $|E(x, W)|$ | *k*, since each vertex is in the same number of triangles. Since both the vertex *x* and the vertex *y* are in $\frac{a}{2}$ triangles, thus the vertex *x* has the the unique neighbour in *W* which is the vertex *y* for $k \geq 4$. It implies $a = (k - 1)(k - 2)$. Consequently, for each vertex *u* in \overline{W} , if *u* is adjacent to *W*, then it has precisely one neighbour in *W*. Then each vertex is in a *k*-clique as *G* is connected.

It is easy to see that two distinct *k*-cliques are vertex-disjoint by the above discussion. Therefore, the vertices of G can be partitioned into some *k*-cliques. For any two adjacent *k*-cliques *W* and *H*, the number of edges between them is at least 2, since both an edge between them and an edge in *W* are in the same number of 4-cycles. Thus, we can suppose that there are $p \geq 2$ edges between them, and thus there are two vertices u_1, w_1 in *W* which are adjacent to x_1, y_1 in *H*, respectively. Since both the edge u_1w_1 and the edge u_1x_1 are in the same number of 4-cycles, we have $p-1 = 1 + (k-2)(k-3)$, which implies $p = k = 4$. Moreover, *G* is the graph formed by adding a perfect matching between two copies of the complete graph *K*4, which has parameters $v = 8, k = 4, a = 6, b = 10$ and $c = 6$. We complete the proof. \Box

Theorem 3.4 *Let G be a connected strongly* 3*-walk-regular graph of degree* $k \geq 3$ *. Then the edge-connectivity of G is equal to k. Moreover, if G is not the graph formed by adding a perfect matching between two copies of* K_4 *, which has parameters* $v =$ $8, k = 4, a = 6, b = 10$ and $c = 6$, then each edge cut set of size k is precisely the *set of edges incident with a vertex of G.*

Proof By Note [1](#page-3-0) we need only to consider that *G* is not a strongly regular graph. Let *M* be an edge cut of minimum size in *G*. Then there exists a subset *S* of $V(G)$ such that $|S| \leq \frac{v}{2}$ and $M = E(S, \overline{S})$, where $\overline{S} = V(G) - S$. The two induced subgraphs $G[S]$ and $G[\overline{S}]$ are both connected by the choice of *M*.

If $|S| = 1$, then the conclusion is easy to see.

If $1 < |S| \leq k$, then $|M| \geq |S|(k+1-|S|) \geq k$ by regularity. If equality holds, then *G*[*S*] is a clique of size *k*, which is impossible by Lemma [3.3](#page-6-0) except the graph formed by adding a perfect matching between two copies of *K*⁴ with parameters $v = 8, k = 4, a = 6, b = 10 \text{ and } c = 6.$

Now consider the remained case $k + 1 \leq |S| \leq \frac{v}{2}$. Suppose that *G* has nonintegral eigenvalues. Then we are in the case of Theorem [3.1.](#page-3-1) As in Theorem [3.1,](#page-3-1) for $m = 1$, we have $k \ge 8$, and $|M| \ge \frac{(k - \frac{1 + \sqrt{6k-3}}{2})|S|(v-|S|)}{v}$ by Lemma [2.3,](#page-2-3) which implies $|M| \geq \left(k - \frac{1 + \sqrt{6k - 3}}{2}\right) \frac{k + 1}{2} > k$ for $k \geq 8$, since the function *h*(*x*) = $2x^2-3x-(x+1)\sqrt{6x-3}-1$ is monotonously increasing when $x \ge 3$ and $h(5) > 0$. For $m \neq 1$, then by (iii) of Theorem [3.1,](#page-3-1) we have $k \geq 5$.

Suppose that $k \ge 5$ is odd. By Lemma [2.3](#page-2-3) and Theorem [3.1](#page-3-1) we have $|M| \ge$ $\frac{(k-\frac{\sqrt{18k-6}}{3})|S|(v-|S|)}{v} \ge \frac{(k+1)(k-\frac{\sqrt{18k-6}}{3})}{2} > k$ if and only if $3k^4-12k^3-7k^2-2k+2 > 0$. It is obviously true if $k \geq 5$.

Suppose that $k \ge 6$ is even. By Lemma [2.3](#page-2-3) and Theorem [3.1](#page-3-1) we have $|M| \ge$ $\frac{(k-\frac{\sqrt{18k-12}}{3})|S|(v-|S|)}{2} \ge \frac{(k+1)(k-\frac{\sqrt{18k-12}}{3})}{2} > k$ if and only if $3k^4-12k^3-5k^2+2k+4 >$ 0. It is obviously true if $k \geq 6$.

Now we can suppose that *G* has integral eigenvalues. By Theorem [3.2](#page-5-0) we have *k* ≥ 4 and $\lambda_2(G)$ ≤ *k* − 2. For $k + 1 \leq |S| \leq \frac{v}{2}$, we have $|M| \geq \frac{(k - (k-2))|S|(v-|S|)}{v}$ ≥ $\frac{2(k+1)}{2}$ > *k* by Theorem [3.2.](#page-5-0) We complete the proof.

Remark 2 By Theorem [2.4](#page-2-0) it is not difficult to see that for each connected *k*-regular graph *G* on v vertices with edge-connectivity at least $k - 1$, *G* is 1-extendable for even v and is factor-critical for odd v (see [\[14\]](#page-9-1)). Let *G* be a connected strongly 3-walkregular graph on v vertices. Then by Theorem [3.4](#page-6-1) we see that *G* is 1-extendable for even v and is factor-critical for odd v .

Considering the 3-walks (walks of length 3) in a regular graph *G* in general, we give a sufficient and tight condition such that *G* is 1-extendable as follows.

Theorem 3.5 *Let G be a k-regular* ($k \geq 3$) *graph on even number of vertices. If for any two non-adjacent vertices of G the number of* 3*-walks from one vertex to the other is at least* $\left[\frac{k-1}{2}\right]$ *, then G is 1-extendable.*

Proof Set $d = \left[\frac{k-1}{2}\right]$. We prove the conclusion by contradiction. Suppose that *G* is not 1-extendable. By Theorem [2.4,](#page-2-0) there is a subset *S* of $V(G)$ such that $o(G - S) \geq |S|$ and *G*[*S*] contains an edge *e*.

Let $P_1, P_2, \ldots, P_{|S|}$ be the odd components of $G - S$. By regularity, *S* can accept at most $k|S| - 2$ edges from $G - S$ as the edge *e* is inside *S*. If each vertex in P_i has a neighbour in *S* for $1 \le i \le |S|$, then we have $|E(P_i, S)| \ge |P_i| \ge k$ for $|P_i|$ ≥ *k* and $|E(P_i, S)|$ ≥ $|P_i|(k+1 - |P_i|)$ ≥ *k* for $|P_i|$ ≤ *k* − 1. It implies that $|E(G - S, S)| \ge k|S|$, which is a contradiction as *S* can accept at most $k|S|$ − 2 edges from *G* − *S*. Thus, without loss of generality, we can suppose that there exists a vertex *u* in P_1 such that *u* has no neighbour in *S* and thus $|P_1| > k$. It is easy to see that $|E(P_1, S)| \ge d$ as the number of 3-walks is at least *d* from the vertex *u* to each vertex in P_2 . For any component P_i for $i > 1$, each vertex w in P_i has a neighbour in *S* as there is a 3-walk from the vertex *u* to *w*. Similarly, we have $|E(S, P_i)| \geq k$.

If there exists an odd component which is a singleton set. Then we have $|S| \geq k$. Let S_1 be the subset of *S* of which each vertex has a neighbour in P_1 . Then each vertex w in $S - S_1$ has a neighbour in S_1 as there is a 3-walk from the vertex u to w. Thus $|E(S)| + |E(S, P_1)| \geq k$, where $E(S)$ is the set of edges in *S*. We have $2|E(S)|+|E(S, P_1)| > k$ as $|E(S)| > 0$. Therefore, *S* can accept at most $k(|S|-1)-1$ edges from $G - S - P_1$, which is a contradiction to the fact that $|E(S, P_i)| \geq k$ for $1 < i \leq |S|$.

Now we can suppose that there is no singleton set among the odd components of *G*−*S*. Similarly, if $|P_i|$ < *k* for some *i*, then $|E(S, P_i)| \ge |P_i|(k-|P_i|+1) \ge 2(k-1)$. Thus we have $|E(G - S, S)| \ge 2k - 2 + k(|S| - 2) + d = k|S| - 2 + d$, which is impossible as *S* accepts at most $k|S| - 2$ edges by regularity. Thus we have $|P_i| \geq k$ for any $1 \le i \le |S|$. For any vertex w in *S*, there are at most $k - 1$ neighbours in $G - S - P_1$ as there is a 3-walk from the vertex *u* to *w*. Similarly, the number of neighbours of $S - w$ in $G - S - P_1$ is at most $(k - 1)(|S| - 1)$ which is less than $|G - S - P_1|$ as $|P_i|$ ≥ *k* for 2 ≤ *i* ≤ |*S*|. Thus there is a vertex *x* in $G - S - P_1$ such that *x* has only one neighbour w in *S*, which implies $|E(w, P_1)| > d$ as there are *d* 3-walks from the vertex *u* to *x*. Consequently, we have $|E(w, P_1)| \ge d$ for any vertex w in *S*.

If *k* is odd, then $|E(P_1, S)| \ge d|S| \ge 2d$ is odd as P_1 is an odd component, which implies $|E(P_1, S)| \geq 2d + 1$. Since there is an edge in *S* and $|E(P_i, S)| \geq k$ for $i > 1$, we have $|E(P_1, S)| \le k|S| - k(|S| - 1) - 2 = k - 2$. Thus we have $d \le \frac{k-3}{2}$, which is a contradiction.

If *k* is even, then $|P_2| > k$ as $|P_2| \geq k$ is odd and thus $|E(P_2, S)| > k$ as each vertex in P_2 has a neighbour in *S*, which implies $|E(P_2, S)| \ge k + 2$ by parity. Thus we have $2d \le |E(P_1, S)| \le k|S| - k(|S| - 2) - (k + 2) - 2$ and thus $d \le \frac{k-4}{2}$, which is a contradiction. We complete the proof.

The lower bound in Theorem [3.5](#page-7-0) is tight. Indeed, if $k \geq 9$ is an odd integer, we can construct a *k*-regular graph *G* on $2k + 4$ vertices such that for any two non-adjacent vertices of *G*, the number of 3-walks from one vertex to the other is at least $\frac{k-3}{2}$, but *G* is not 1-extendable. In detail, let *A* be the graph derived from *K ^k*−¹ by deleting the edges of a hamiltonian cycle of $K_{\frac{k-1}{2}}$ and *B* be the graph derived from $K_{\frac{k-3}{2}}$ by deleting the edges of a hamiltonian cycle of $K_{\frac{k-3}{2}}$. Let *C* be a 4-cycle, $D = K_2 = xy$ be an edge and *E* be K_k . Now *G* is formed from the five parts as follows. For any two distinct parts of *A*, *B* and *C*, connect each vertex in one part to each vertex in the other part. Also, add an edge from the vertex *x* to each vertex of *A* and to each vertex of (any) $\frac{k-1}{2}$ vertices of *E*, and add an edge from the vertex *y* to each vertex of *B* and to each vertex of the remained $\frac{k+1}{2}$ vertices of *E*, as required.

If $k \geq 8$ is an even integer, we can construct a *k*-regular graph *G* on $2k + 4$ vertices such that for any two non-adjacent vertices of *G*, the number of 3-walks from one vertex to the other is at least $\frac{k-4}{2}$, but *G* is not 1-extendable. In detail, let *A* be a *k*^{−4} -clique *K*_{*k*−4}</sub> and *B* be a $\frac{k-4}{2}$ -clique *K*_{*k*−4}. Let *C* be a 5-clique, *D* = *K*₂ = *xy* be an edge and *E* be a graph on $k + 1$ vertices such that there is one vertex, say *u*, of degree *k* −2 and the other *k* vertices of degree *k* −1 (such a graph can be derived from K_{k+1} by deleting the edges of a path of length 2 and $\frac{k-2}{2}$ independent edges). Now *G* is formed from the five parts as follows. Connect each vertex in *C* to each vertex in *A* and *B*. Add all the edges except a perfect matching between *A* and *B*. Also, add two edges *ux* and *uy*, and add an edge from the vertex *x* to each vertex of *A* and to each vertex of (any) $\frac{k}{2}$ vertices of degree $k - 1$ in *E*, and add an edge from the vertex *y* to each vertex of *B* and to each vertex of the remained $\frac{k}{2}$ vertices of degree $k - 1$ in *E*, as required.

Acknowledgements The authors are grateful for the useful comments which improve the paper. This work is supported by the National Natural Science Foundation of China (Grant Nos. 61370187 and 11731002).

References

- 1. Anderson, I.: Perfect matchings of a graph. J. Combin. Theory **10**, 183–186 (1971)
- 2. Brouwer, A.E., Haemers, W.H.: Spectra of Graphs. Springer, New York (2012)
- 3. Brouwer, A.E., Mesner, D.M.: The connectivity of strongly regular graphs. Eur. J. Combin. **6**, 215–216 (1985)
- 4. Cioabă, S.M., Kim, K., Koolen, J.H.: On a conjecture of Brouwer involving the connectivity of strongly regular graphs. J. Combin. Theory, Ser. A **119**, 904–922 (2012)
- 5. Cioab˘a, S.M., Koolen, J.H., Li, W.: Disconnecting strongly regular graphs. Eur. J. Combin. **38**, 1–11 (2014)
- 6. Cvetković, D., Rowlinson, P., Simić, S.: Eigenspace of Graphs. Cambridge University Press, Cambridge (1997)
- 7. Duval, A.M.: A directed graph version of strongly regular graphs. J. Combin. Theory, Ser. A **47**, 71–100 (1988)
- 8. van Dam, E.R.: Regular graphs with four eigenvalues. Linear Algebra Appl. **226–228**, 139–162 (1995)
- 9. van Dam, E.R., Omidi, G.R.: Strongly walk-regular graphs. J. Combin. Theory, Ser. A **120**, 803–810 (2013)
- 10. van Dam, E.R., Omidi, G.R.: Directed strongly walk-regular graphs. J. Algebr. Combin. **120**, 1–17 (2015)
- 11. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2001)
- 12. Haemers, W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. **226**, 593–616 (1995)
- 13. Lovász, L., Plummer, M. D.: Matching Theory, Ann. Discrete Math (1986)
- 14. Tutte, W.T.: The factorization of linear graphs. J. Lond. Math. Soc. **2**, 107–111 (1947)
- 15. Zhang, W.: The cyclic edge-connectivity of strongly regular graphs. Graphs Combin. **35**, 779–785 (2019)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.